Motion Planning for Dynamic EnvironmentsPart IV - Dynamic Environments: Methods

Steven M. LaValleUniversity of Illinois

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – ¹ / 64

Solution to Homework 3

The chicken follows an interesting curve, depending on $\lambda.$

Rajeev Sharma, IEEE TRA 1992

Methods

Families:

- Completely predictable environments
- Sensor feedback and collision avoidance
- Planning under bounded motion uncertainty
- Dynamic programming over cost maps
- Information spaces that tolerate uncertainty

Completely predictable

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – ⁴ / 64

Recall Configuration-Time Space

At each time slice $t\in T$, we must avoid

 $\mathcal{C}_{obs}(t) = \{q \in \mathcal{C} \mid \mathcal{A}(q) \cap \mathcal{O}(t) \neq \emptyset\}$

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – ⁵ / 64

Solutions for Completely Predictable Environments

- E Sampling-based methods
- E Combinatorial methods
- E Handling robot speed bounds
- E Velocity tuning method

Extending Combinatorial Methods

Transitivity issue:

In ordinary path planning, if C_1 and C_2 are adjacent and C_2 and C_3 adjacent, then a path exists from C_1 to $C_3.$

However, for dynamic environments it might require time travel.

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

Most approaches depend on a metric $\rho: \mathcal{C} \times \mathcal{C} \rightarrow [0, \infty).$ Must extend into X to ensure that time only increases. Must extend into X to ensure that time only increases.

To extend across $Z = \mathcal{C} \times T$:

$$
\rho_Z(x, x') = \begin{cases} 0 & \text{if } q = q' \\ \infty & \text{if } q \neq q' \text{ and } t' \leq t \\ \rho(q, q') & \text{otherwise.} \end{cases}
$$

- Г ■ Sampling-based RRTs extend across Z using ρ_Z . Bidirectional is ^a bit more complicated.
- Sampling-based roadmaps (including PRMs) extend to produce directed roadmaps.

Bounded Speed

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

Robot velocity: $v=(\dot{x},\dot{y})$ Speed bound: $|v| \leq b$ for some constant $b > 0$

The velocity v at every point in Z must point within a cone at all times:

$$
(x(t + \Delta t) - x(t))^{2} + (y(t + \Delta t) - y(t))^{2} \leq b^{2}(\Delta t)^{2}.
$$

Warning: PSPACE-hard in general.

Velocity Tuning

Workspace State space

Compute a collision-free path: $\tau:[0,1]\rightarrow \mathcal{C}_{free}.$ Design a *timing function* (or *time scaling*): $\sigma : T \rightarrow [0,1].$
This produces a composition $\phi = \tau \circ \sigma$, which mans from This produces a composition $\phi=\tau\circ\sigma$, which maps from T to \mathcal{C}_{free} via
[\odot 1] $[0,1].$

Velocity Tuning

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

Because it is ^a 2D problem, many methods can be used. Simple grid search: BFS, DFS, Dijkstra, A^* , ...

It is more elegant and efficient to use combinatorial methods.

For example, trapezoidal decomposition.

[Information](#page-53-0) Spaces

Sensor Feedback

Velocity Obstacles

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

- E \blacksquare Two rigid bodies A and B moving in $\mathbb{R}^2.$
- E \blacksquare They have constant velocities v_A and $v_B.$
- E If v_B is constant, what values of v_A cause collision?

Velocity Obstacles

 $\lambda(p, v) = \{p + tv \mid t \ge 0\}$

 $VO_B^A(v_B) = \{v_A \mid \lambda(p_A, v_A - v_B) \cap C_{obs} \neq \emptyset\}$

Here, $\mathcal{C}_{obs} = B \ominus A$ (Minkowski difference). Fiorini, Shiller, 1998.

Reciprocal Velocity Obstacles

$$
RVO_B^A(v_B) = \{v'_A \mid 2v'_A - v_A \in VO_b^A(v_B)\}
$$

Choose v^\prime_A outside the velocity obstacle. α_A' as the average of its current velocity and a velocity that lies

van den Berg, Lin, Manocha, 2008

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 15 / 64

Recriprocal Velocity Obstacles

A computed result:

Try it at the next ICRA coffee break...

Other Sensor Feedback Strategies

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

- Potential fields, Khatib, ¹⁹⁸⁰
- Vector field histogram, Borenstein, Koren, ¹⁹⁹¹
- Dynamic window approach, Fox, Burgard, Thrun, ¹⁹⁹⁷
- Nearness diagram, Minguez, Montano, ²⁰⁰⁴

Many more...

Bounded Uncertainty

Time-Minimal Trajectories

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

- Point (or disc) robot moves at constant speed.
- ^A finite set of point (or disc) obstacles.
- Obstacles have omnidirectional speed bound.
- Problem: Compute time-optimal collision-free trajectory.

van den Berg, Overmars, 2008

Time-Minimal Trajectories

A computed example, shown through configuration-time space:

Can solve problems $O(n^3 \lg n)$ time. It is related to shortest-path graphs in the plane (bitangents). Recently improved to $O(n)$ $^{2}\lg n)$ by Maheshwari et al.

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 20 / 64

Sensor [Feedback](#page-11-0)

Bounded [Uncertainty](#page-17-0)

Dynamic [Programming](#page-20-0)

Dynamic [Replanning](#page-34-0)

[Information](#page-53-0) Spaces

Dynamic Programming

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – ²¹ / 64

Cost Maps

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

INOIS

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – ²² / 64Instead of a crisp \mathcal{C}_{obs} and \mathcal{C}_{free} , a \boldsymbol{cost} could be associated with each q (or each neighborhood).

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

Let X be any state space.
We are male a state time. We can make a state-time space by $Z = X \times T.$ Let U be an action set.
— There are $K + 1$ stages $(1, 2, \ldots, K + 1)$ along the time axis. Let $x' = f(x, u)$ be a state transition equation. Let L denote a stage-additive \boldsymbol{cost} functional,

$$
L = \sum_{k=1}^{K} l(x_k, u_k) + l_{K+1}(x_{K+1}).
$$

The task or goal can be expressed in terms of L .

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

A feedback plan is represented as $\pi: X \to U$
Let $C^*(x)$ denote the ontimal cost to go from Let $G_k^*(x_k)$ denote the *optimal cost to go* from x_k at stage k (optimized over all possible π).

Bellman's dynamic programming equation:

 $G_k^*(x_k) = \min_{u_k \in U(x_k)} \left\{ l(x_k, u_k) + G_{k+1}^*(x_{k+1}) \right\}$

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – ²⁴ / 64

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

Bellman's dynamic programming equation:

$$
G_k^*(x_k) = \min_{u_k \in U(x_k)} \left\{ l(x_k, u_k) + G_{k+1}^*(x_{k+1}) \right\}.
$$

Algorithm:

.

- Г ■ Initially, G^*_{K+1} is known (from $l_{K+1}(x_{K+1})$).
- Compute G_K^* from G_{K+1}^* .
- Compute G^*_{K-1} from G^*_K .

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

But X and U are usually continuous spaces.
A finite subset of U assumes assumed in Pallin. A finite subset of U can be sampled in Bellman's equation. Interpolation (this is the 1D case) over $X\!\!$:

$$
G_{k+1}^*(x) \approx \alpha G_{k+1}^*(s_i) + (1-\alpha)G_{k+1}^*(s_{i+1})
$$

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

Stochastic version not difficult.

Let $p(x_{k+1} \vert x_k, u_k)$ be a probabilistic state transition equation. Bellman's equation becomes:

$$
G_k^*(x_k) = \min_{u_k \in U(x_k)} \left\{ l(x_k, u_k) + \sum_{x_{k+1}} G_{k+1}^*(x_{k+1}) p(x_{k+1} | x_k, u_k) \right\}.
$$

Optimizes the *expected* cost-to-go.

In the stationary case, there are Dijkstra-like versions.

See Planning Algorithms: Sections 2.3.2, 8.5.5, 10.6

Applying to Dynamic Environments

Recall the hybrid system formulation.

Doors may open or close according to ^a Markov chain.

Applying to Dynamic Environments

he optimal cost-to-go and feedback plan.

Cost-to-go, open mode Cost-to-go, closed mode

Maintaining Visibility

E ^A robot must follow ^a moving target with ^a camera.

E How to move the robot to maintain visibility as much as possible?

E Optimize the total robot motion.

E Predictable and partially predictable target cases

LaValle, Gonzalez-Banos, Becker, Latombe, 1997

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 30 / 64

Maintaining Visibility

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)

[Information](#page-53-0) Spaces

Optimal robot trajectories computed using value iteration:

For unpredictable target, move robot to maximize the target's minimumtime to escape.

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)

[Information](#page-53-0) Spaces

D-Star: Stentz, 1994D-Star Lite: Koenig, Likhachev, 2002

Consider A^\ast search on a weighted grid graph.

Execution of the plan causes new information to be learned. Enhance A^{\ast} to allow edge costs to increase or decrease.

D-Star

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

Let

$$
rhs(q) = \min_{q' \in Succ(q)} \{c(q, q') + g(q')\}
$$

For the optimal cost-to-go function, Bellman's equation should be satisfiedeverywhere:

$$
g(q) = rhs(q)
$$

(Also, $g(q_G) = 0$.)

If it is not, then fix it!

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

Let $h(q,q')$ be a *heuristic* underestimate of the optimal cost from q to q' . Keep search queue sorted by key value:

```
\min(g(q),rhs(s)) + h(q_I, s)
```
If vertices have equal key value, then select one with smallest $\min(g(q), rhs(s)).$

When edges costs change, affected nodes are placed on the searchqueue.

Iterations continue until all affected nodes are fixed, and Bellman is happyagain.

Dynamic [Replanning](#page-34-0)

[Information](#page-53-0) Spaces

Dynamic Replanning

Sliding Window

Consider the following loop:

- 1. Plan ^a sequence of actions
- 2. Take the first action
- 3. Receive new information from sensors
- 4. Go to ¹

Sliding Window

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

That was the usual sense-plan-act loop.

Related ideas:

- Receding horizon control
- Model predictive control
- Dynamic replanning
- E Partial motion planning
- E Anytime planning

Partial Motion Planning

- Construct ^a partial plan toward the goal within allotted time.
- Compute X_{ric} (inevitable collision states).
- Ensure that paths are safe by avoiding $X_{ric.}$
- While executing, construct the next partial plan.

Fraichard, Asama, 2004; Petti, Fraichard, 2005

Partial Motion Planning

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

Probabilistic RRTs

- Use partial planning paradigm.
- Build ^a probabilistic "cost map" that biases RRT growth into lower collision probabilities.
- Use HMM prediction models learned from other moving bodies.

Fulgenzi, Spalanzani, and Laugier, 2009

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 39 / 64

Replanning From Scratch

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

Kuffner, 2004

Run A^{\ast} or Dijkstra but with reduced neighborhood structure. Computation times around 10 ms.

Replanning

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

A few other replanning works:

- **Leven, Hutchinson, 2002**
- Jaillet, Simeon, ²⁰⁰⁴
- E Kallmann, Bargmann, Mataric ²⁰⁰⁴
- E Vannoy, Xiao ²⁰⁰⁶
- E Bekris, Kavraki, ²⁰⁰⁷
- E Nabbe, Hebert, ²⁰⁰⁷
- Г Bekris, ²⁰¹⁰

Anytime Algorithms

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

Appearing throughout compute science, an *any-time algorithm* has properties:

- May be terminated at any time
- The solution it produces gradually improves over time

This seems ideally suited for on-line planning and execution.

Ferguson, Stentz, 2006

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – ⁴⁴ / 64

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 45 / 64

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 46 / 64

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – ⁴⁷ / 64

- E Grow RRT in the usual way
- E When a new vertex x_{new} is added, try to connect to other RRT vertices within radius $\rho.$
- Г Among all paths to the root from x_{new} , add a new RRT edge only for the shortest one.
- If possible to reduce cost for other vertices within radius ρ by connecting to x_{new} , then disconnect them from their parents and connect them through $x_{new}.$
- The radius ρ is prescribed through careful percolation theory analysis (related to dispersion).
- RRT* yields asymptotically optimal paths through C_{free} .

Karaman, Frazzoli, IJRR 2011

...
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 49 / 64

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)

[Information](#page-53-0) Spaces

Backwards A*:

- Sort queue by: $g(q) + h(q_I, q)$
- $g(q)$ is the optimal cost-to-come from q_G .
- $h(q_I,q)$ is the guaranteed underestimate of the optimal cost from q_I to q .

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)

Dynamic [Replanning](#page-34-0)

[Information](#page-53-0) Spaces

Anytime A*:

- Sort queue by: $g(q) + \gamma h(q_I,q)$
- \blacksquare $\gamma \geq 1$ is an *inflation factor*
- It causes non-optimality, but no worse than a factor of γ .
- Approach: Generate a quick solution for large γ , and then gradually decrease it.

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

Anytime D*:

- Use $g(q) + \gamma h(q_I,q)$ in D* lite
- Optimality factor for computed paths remains γ .
- Likhachev, Ferguson, Gordon, Stentz, Thrun, ²⁰⁰⁵

Example:

Information Spaces

Visibility-Based Pursuit-Evasion

Recall simple model: Evader moves on ^a continuous path.

An exact cell decomposition method can solve it. Guibas et al. 1999

Visibility-Based Pursuit-Evasion

Identify all unique situations that can occur:

An <u>information state</u> is identified by (x, S) in which

- \mathcal{X} =the position of the pursuer
- S $=$ set of possible evader positions

The set of all information states forms an information space.

Many closed-path motions retain the same information state.

Visibility-Based Pursuit-Evasion

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – ⁵⁷ / 64

Imperfect State Information

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

Two types of imperfect state information:

- 1. Environment: Obstacles, cost map, moving body configurations
- 2. Robot: The localization problem

These generally force plan feedback to occur over an *information space*:

$$
\pi:\mathcal{I}\to U
$$

Imperfect State Information

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

What does $\iota \in \mathcal{I}$ look like? Possibilities:

- A partial map with robot localized
- A full map with a pdf over robot configurations
- ^A topological map with robot localized

In the most general setting, we may obtain either ^a set

$$
F(\tilde{u}_{k-1}, \tilde{y}_k) \subseteq X
$$

or ^a pdf

$$
p(x_k \mid \tilde{u}_{k-1}, \tilde{y}_k)
$$

over whatever X state space is needed.

The state $x\in X$ may encode robot configuration, map, other bodies.

Planning in the Probabilistic Information Space

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

State: $x\in X$ encodes configuration and velocities of robot and bodies.
Charles the stin boundary set of the state of robot and bodies. Stochastic transition law: $p(x_{k+1} | x_k, u_k)$ Disturbed sensor mapping: $p\!\left(y_k\middle\vert x_k\right)$

- E Receding horizon approach
- E Partially closed loop: Estimate future sensor readings
- E Compute information feedback strategies

DuToit, Burdick, 2012

Planning in the Probabilistic Information Space

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

There are many other approaches to planning in belief space:

- Roy, Burgard, Fox, Thrun, ¹⁹⁹⁸
- Pineau, Gordon, ²⁰⁰⁵
- E Kurniawati, Hsu, Lee, ²⁰⁰⁸
- E Prentice, Roy, ²⁰⁰⁹
- E Hauser, ²⁰¹⁰
- E Platt, Kaelbling, Lozano-Perez, Tedrake, ²⁰¹²

This list is very incomplete...

Forward Projections

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 62 / 64

Summary of Part IV

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

- Model: predictable, bounded uncertainty, probabilistic
- Sensor feedback vs. dynamic replanning vs. computing optimal strategy
- The power of dynamic programming
- In which information space should the robot live?
- There are NP-hard problems everywhere. We have yet to really understand what makes some problems simpler.
- E Which method to use? Need demo, robust experimental system, theoretical guarantees?

Homework 4: Solve During This Century

[Completely](#page-3-0) predictableSensor [Feedback](#page-11-0)Bounded [Uncertainty](#page-17-0)Dynamic [Programming](#page-20-0)Dynamic [Replanning](#page-34-0)[Information](#page-53-0) Spaces

Let $\mathcal A$ be a rigid, polygonal (or semi-algebraic) robot. Let $\mu(\mathcal{A})$ denote the area of $\mathcal{A}.$

What is the largest robot, in terms of $\mu(\mathcal{A})$, that can fit through the corridor?

