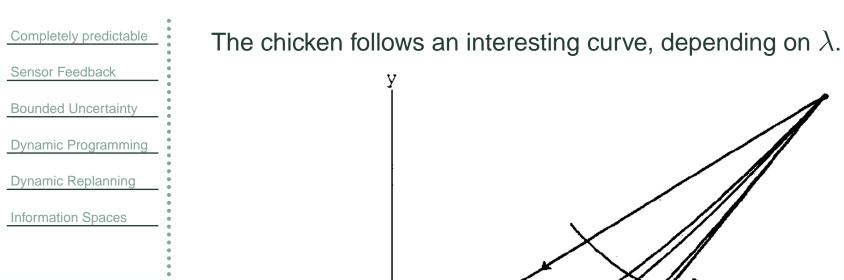
Motion Planning for Dynamic Environments **Part IV - Dynamic Environments: Methods**

Steven M. LaValle University of Illinois

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 1 / 64

Solution to Homework 3

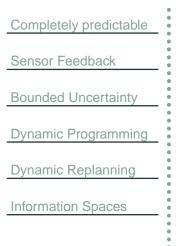


Rajeev Sharma, IEEE TRA 1992

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 2 / 64

-X

Methods



Families:

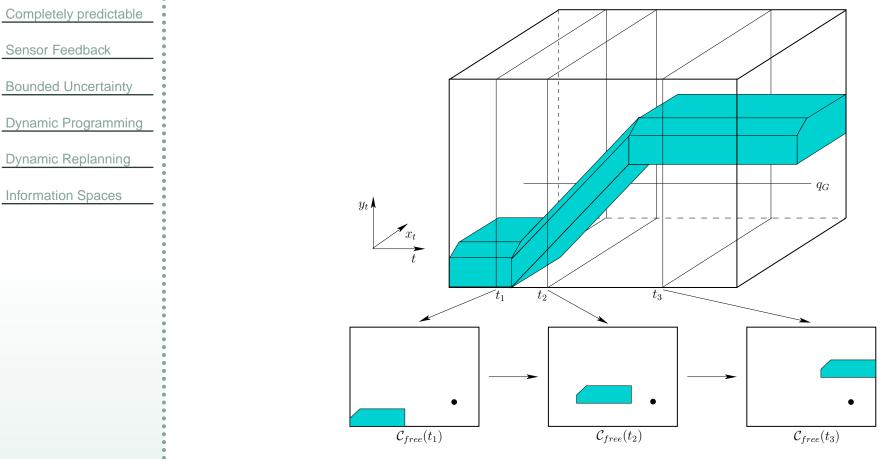
- Completely predictable environments
- Sensor feedback and collision avoidance
- Planning under bounded motion uncertainty
- Dynamic programming over cost maps
- Information spaces that tolerate uncertainty

Completely predictable
Sensor Feedback
Bounded Uncertainty
Dynamic Programming
Dynamic Replanning
Information Spaces

Completely predictable

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 4 / 64

Recall Configuration-Time Space



At each time slice $t \in T$, we must avoid

 $\mathcal{C}_{obs}(t) = \{ q \in \mathcal{C} \mid \mathcal{A}(q) \cap \mathcal{O}(t) \neq \emptyset \}$

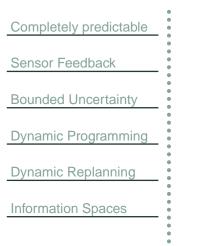
ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 5 / 64

Solutions for Completely Predictable Environments

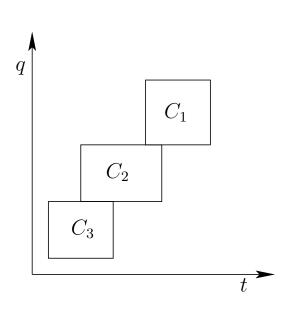
Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

- Sampling-based methods
- Combinatorial methods
- Handling robot speed bounds
- Velocity tuning method

Extending Combinatorial Methods



Transitivity issue:



In ordinary path planning, if C_1 and C_2 are adjacent and C_2 and C_3 adjacent, then a path exists from C_1 to C_3 .

However, for dynamic environments it might require time travel.

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

Most approaches depend on a metric $\rho : \mathcal{C} \times \mathcal{C} \rightarrow [0, \infty)$. Must extend into X to ensure that time only increases.

To extend across $Z = C \times T$:

$$\rho_Z(x, x') = \begin{cases} 0 & \text{if } q = q' \\ \infty & \text{if } q \neq q' \text{ and } t' \leq t \\ \rho(q, q') & \text{otherwise.} \end{cases}$$

- Sampling-based RRTs extend across Z using ρ_Z . Bidirectional is a bit more complicated.
- Sampling-based roadmaps (including PRMs) extend to produce directed roadmaps.

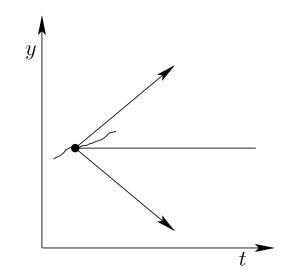
Bounded Speed

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

Robot velocity: $v = (\dot{x}, \dot{y})$ Speed bound: $|v| \le b$ for some constant b > 0

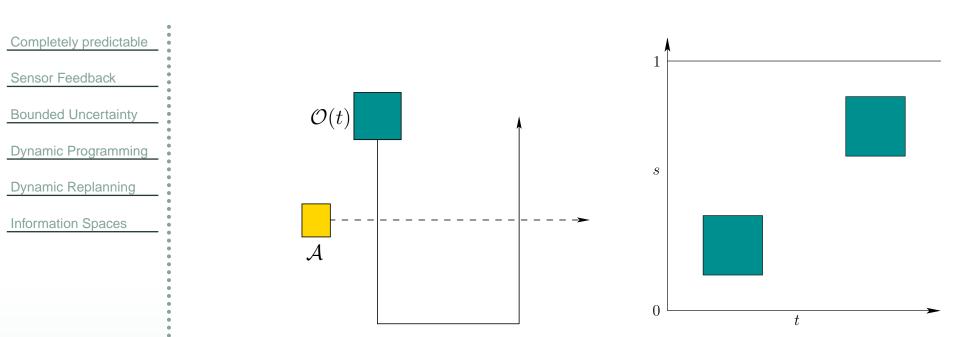
The velocity v at every point in Z must point within a cone at all times:

$$\left(x(t+\Delta t)-x(t)\right)^2 + \left(y(t+\Delta t)-y(t)\right)^2 \le b^2(\Delta t)^2.$$



Warning: PSPACE-hard in general.

Velocity Tuning



Workspace

Compute a collision-free path: $\tau : [0, 1] \to C_{free}$. Design a *timing function* (or *time scaling*): $\sigma : T \to [0, 1]$. This produces a composition $\phi = \tau \circ \sigma$, which maps from T to C_{free} via [0, 1].

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 10 / 64

State space

Velocity Tuning

 Completely predictable

 Sensor Feedback

 Bounded Uncertainty

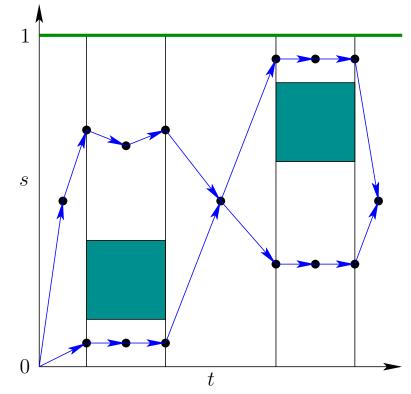
 Dynamic Programming

 Dynamic Replanning

 Information Spaces

Because it is a 2D problem, many methods can be used. Simple grid search: BFS, DFS, Dijkstra, A^* , ...

It is more elegant and efficient to use combinatorial methods.



For example, trapezoidal decomposition.

Completely predictable
Sanaar Faadbaak
Sensor Feedback
Bounded Uncertainty
Dynamic Programming
Dynamic Replanning

Information Spaces

Sensor Feedback

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 12 / 64

Velocity Obstacles

 Completely predictable

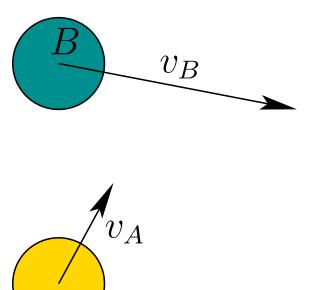
 Sensor Feedback

 Bounded Uncertainty

 Dynamic Programming

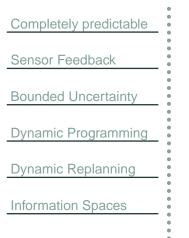
 Dynamic Replanning

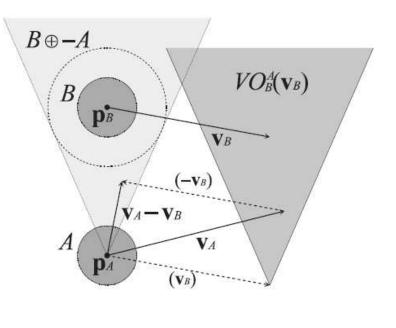
 Information Spaces



- Two rigid bodies A and B moving in \mathbb{R}^2 .
- They have constant velocities v_A and v_B .
 - If v_B is constant, what values of v_A cause collision?

Velocity Obstacles



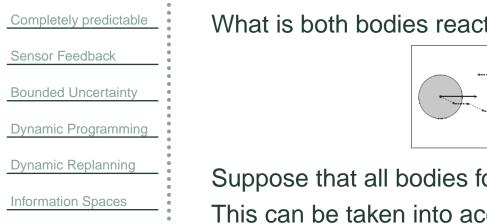


 $\lambda(p,v) = \{p + tv \mid t \ge 0\}$

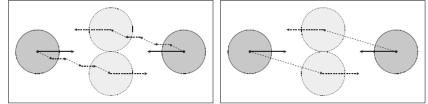
 $VO_B^A(v_B) = \{ v_A \mid \lambda(p_A, v_A - v_B) \cap \mathcal{C}_{obs} \neq \emptyset \}$

Here, $C_{obs} = B \ominus A$ (Minkowski difference). Fiorini, Shiller, 1998.

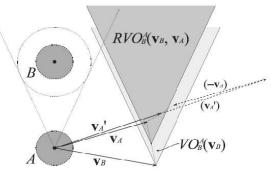
Reciprocal Velocity Obstacles



What is both bodies react? Oscillation possible.



Suppose that all bodies follow the same strategy. This can be taken into account for a great advantage.



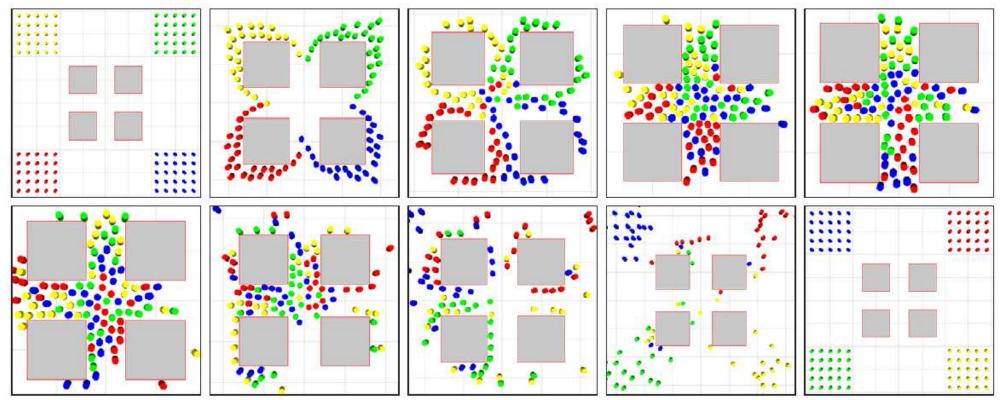
$$RVO_B^A(v_B) = \{ v'_A \mid 2v'_A - v_A \in VO_b^A(v_B) \}$$

Choose v'_A as the average of its current velocity and a velocity that lies outside the velocity obstacle.

van den Berg, Lin, Manocha, 2008

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 15 / 64

Recriprocal Velocity Obstacles



A computed result:

Try it at the next ICRA coffee break...

Other Sensor Feedback Strategies

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

- Potential fields, Khatib, 1980
- Vector field histogram, Borenstein, Koren, 1991
- Dynamic window approach, Fox, Burgard, Thrun, 1997
- Nearness diagram, Minguez, Montano, 2004

Many more...

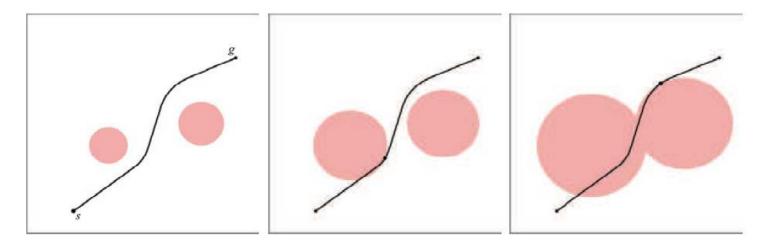
Completely predictable
Sensor Feedback
Bounded Uncertainty
Dynamic Programming
Dynamic Replanning
Information Spaces

Bounded Uncertainty

Time-Minimal Trajectories

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

- Point (or disc) robot moves at constant speed.
- A finite set of point (or disc) obstacles.
- Obstacles have omnidirectional speed bound.
- Problem: Compute time-optimal collision-free trajectory.

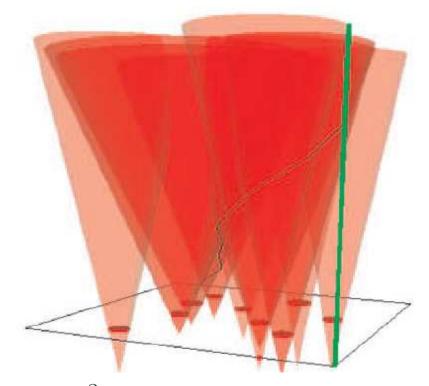


van den Berg, Overmars, 2008

Time-Minimal Trajectories

Completely predictable	•
Sensor Feedback	•
	•
Bounded Uncertainty	•
Dynamic Programming	•
Dynamic Replanning	•
Information Spaces	•
	•

A computed example, shown through configuration-time space:



Can solve problems $O(n^3 \lg n)$ time.

It is related to shortest-path graphs in the plane (bitangents). Recently improved to $O(n^2 \lg n)$ by Maheshwari et al.

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 20 / 64

	Complete	ly predict	able
--	----------	------------	------

Sensor Feedback

Bounded Uncertainty

Dynamic Programming

Dynamic Replanning

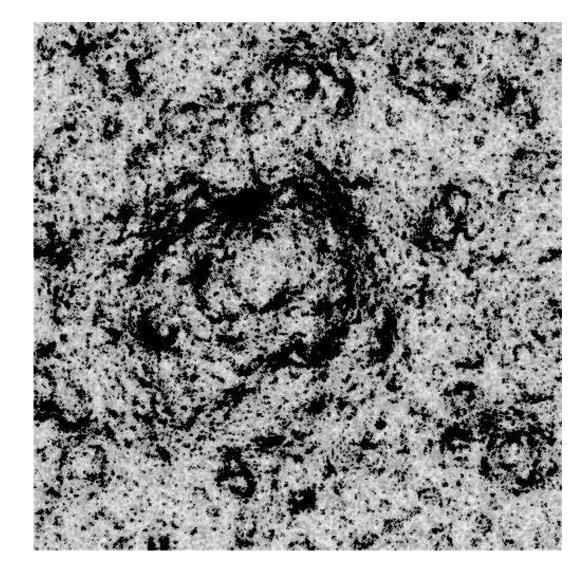
Information Spaces

Dynamic Programming

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 21 / 64

Cost Maps

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces



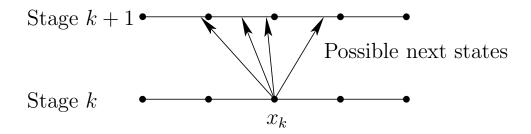
Instead of a crisp C_{obs} and C_{free} , a *cost* could be associated with each q (or each neighborhood). ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 22 / 64

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces Let X be any state space. We can make a state-time space by $Z = X \times T$. Let U be an action set. There are K + 1 stages $(1, 2, \ldots, K + 1)$ along the time axis. Let x' = f(x, u) be a state transition equation. Let L denote a stage-additive *cost functional*,

$$L = \sum_{k=1}^{K} l(x_k, u_k) + l_{K+1}(x_{K+1}).$$

The task or goal can be expressed in terms of L.

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces A feedback plan is represented as $\pi : X \to U$ Let $G_k^*(x_k)$ denote the *optimal cost to go* from x_k at stage k (optimized over all possible π).



Bellman's dynamic programming equation:

 $G_k^*(x_k) = \min_{u_k \in U(x_k)} \left\{ l(x_k, u_k) + G_{k+1}^*(x_{k+1}) \right\}$

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces Bellman's dynamic programming equation:

$$G_k^*(x_k) = \min_{u_k \in U(x_k)} \left\{ l(x_k, u_k) + G_{k+1}^*(x_{k+1}) \right\}.$$

Algorithm:

- Initially, G_{K+1}^* is known (from $l_{K+1}(x_{K+1})$).
- Compute G_K^* from G_{K+1}^* .
- Compute G_{K-1}^* from G_K^* .

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

But X and U are usually continuous spaces. A finite subset of U can be sampled in Bellman's equation. Interpolation (this is the 1D case) over X:

$$G_{k+1}^*(x) \approx \alpha G_{k+1}^*(s_i) + (1-\alpha)G_{k+1}^*(s_{i+1})$$

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

Stochastic version not difficult.

Let $p(x_{k+1}|x_k, u_k)$ be a probabilistic state transition equation. Bellman's equation becomes:

$$G_k^*(x_k) = \min_{u_k \in U(x_k)} \left\{ l(x_k, u_k) + \sum_{x_{k+1}} G_{k+1}^*(x_{k+1}) p(x_{k+1}|x_k, u_k) \right\}.$$

Optimizes the *expected* cost-to-go.

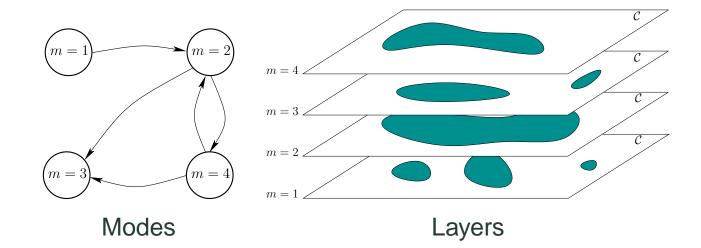
In the stationary case, there are Dijkstra-like versions.

See Planning Algorithms: Sections 2.3.2, 8.5.5, 10.6

Applying to Dynamic Environments

Completely predictable	
Sensor Feedback	
Bounded Uncertainty	
Dynamic Programming	
Dynamic Replanning	
Information Spaces	

Recall the hybrid system formulation.

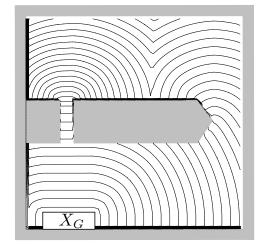


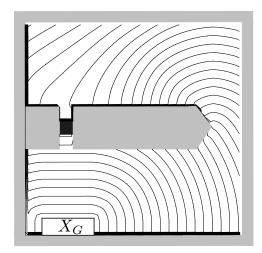
Doors may open or close according to a Markov chain.

Applying to Dynamic Environments

Completely predictable	TI
Sensor Feedback	
Bounded Uncertainty	
Dynamic Programming	
Dynamic Replanning	
0 0	
Information Spaces	
•	

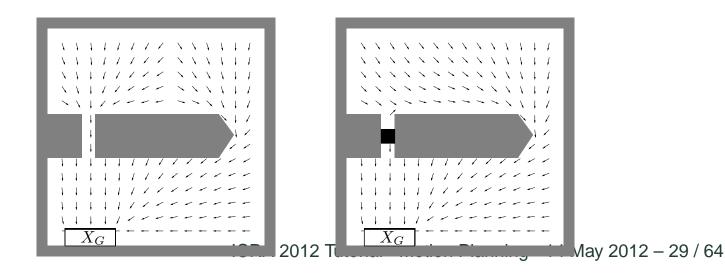
he optimal cost-to-go and feedback plan.



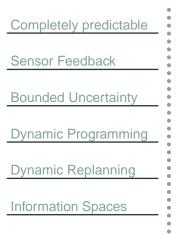


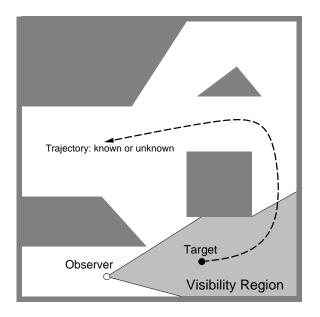
Cost-to-go, open mode

Cost-to-go, closed mode



Maintaining Visibility





A robot must follow a moving target with a camera.

How to move the robot to maintain visibility as much as possible?

Optimize the total robot motion.

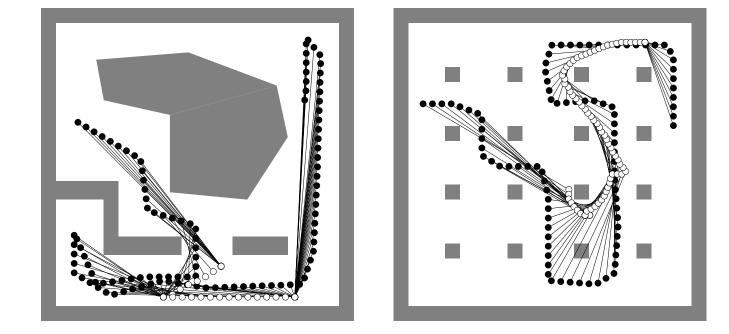
Predictable and partially predictable target cases

LaValle, Gonzalez-Banos, Becker, Latombe, 1997

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 30 / 64

Maintaining Visibility

Optimal robot trajectories computed using value iteration:



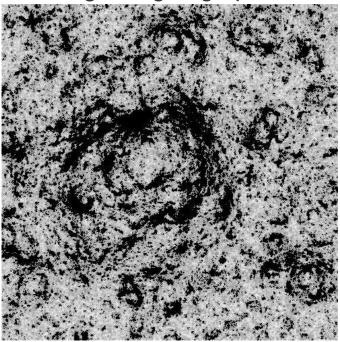
For unpredictable target, move robot to maximize the target's minimum time to escape.

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning

Information Spaces

D-Star: Stentz, 1994 D-Star Lite: Koenig, Likhachev, 2002

Consider A^* search on a weighted grid graph.



Execution of the plan causes new information to be learned. Enhance A^* to allow edge costs to increase or decrease.

D-Star

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

Let

 $rhs(q) = \min_{q' \in Succ(q)} \{c(q, q') + g(q')\}$

For the optimal cost-to-go function, Bellman's equation should be satisfied everywhere:

$$g(q) = rhs(q)$$

(Also, $g(q_G) = 0$.)

If it is not, then fix it!

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

Let h(q, q') be a *heuristic* underestimate of the optimal cost from q to q'. Keep search queue sorted by key value:

```
\min(g(q), rhs(s)) + h(q_I, s)
```

If vertices have equal key value, then select one with smallest $\min(g(q), rhs(s))$.

When edges costs change, affected nodes are placed on the search queue.

Iterations continue until all affected nodes are fixed, and Bellman is happy again.

Dynamic Replanning
Dynamic Programming
Bounded Uncertainty
Sensor Feedback
Completely predictable

Information Spaces

Dynamic Replanning

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 35 / 64

Sliding Window

Completely predictable
Sensor Feedback
Bounded Uncertainty
Dynamic Programming
Dynamic Replanning
Information Spaces

Consider the following loop:

- 1. Plan a sequence of actions
- 2. Take the first action
- 3. Receive new information from sensors
- 4. Go to 1

Sliding Window

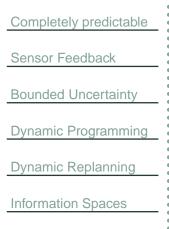
Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

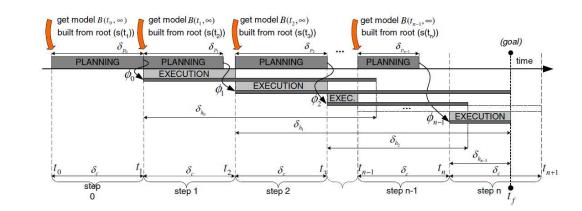
That was the usual sense-plan-act loop.

Related ideas:

- Receding horizon control
- Model predictive control
- Dynamic replanning
- Partial motion planning
- Anytime planning

Partial Motion Planning





- Construct a partial plan toward the goal within allotted time.
- Compute X_{ric} (inevitable collision states).
- Ensure that paths are safe by avoiding X_{ric} .
- While executing, construct the next partial plan.

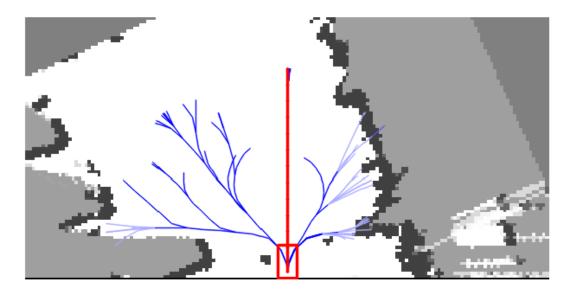
Fraichard, Asama, 2004; Petti, Fraichard, 2005

Partial Motion Planning

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

Probabilistic RRTs

- Use partial planning paradigm.
- Build a probabilistic "cost map" that biases RRT growth into lower collision probabilities.
- Use HMM prediction models learned from other moving bodies.



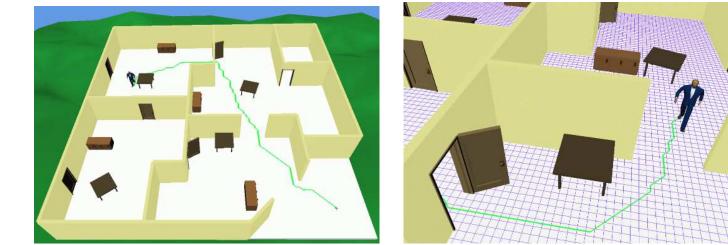
Fulgenzi, Spalanzani, and Laugier, 2009

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 39 / 64

Replanning From Scratch

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

Kuffner, 2004



Run A^* or Dijkstra but with reduced neighborhood structure. Computation times around 10ms.

Replanning

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces A few other replanning works:

- Leven, Hutchinson, 2002
- Jaillet, Simeon, 2004
- Kallmann, Bargmann, Mataric 2004
- Vannoy, Xiao 2006
- Bekris, Kavraki, 2007
- Nabbe, Hebert, 2007
- Bekris, 2010

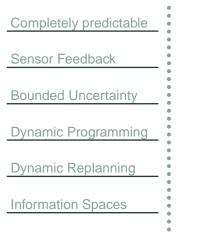
Anytime Algorithms

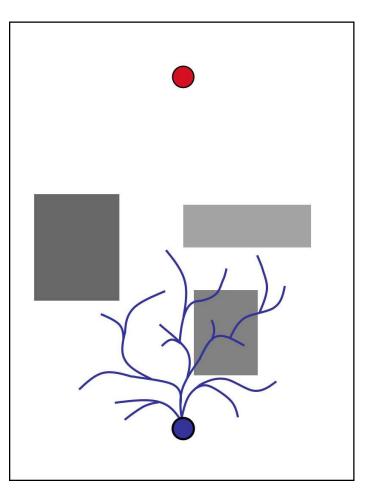
Completely predictableSensor FeedbackBounded UncertaintyDynamic ProgrammingDynamic ReplanningInformation Spaces

Appearing throughout compute science, an *any-time algorithm* has properties:

- May be terminated at any time
- The solution it produces gradually improves over time

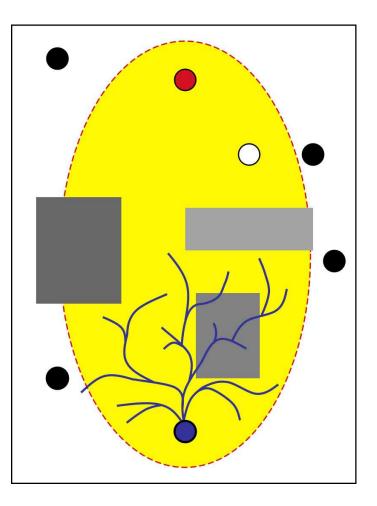
This seems ideally suited for on-line planning and execution.



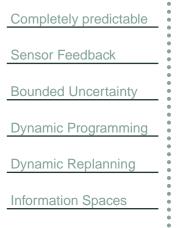


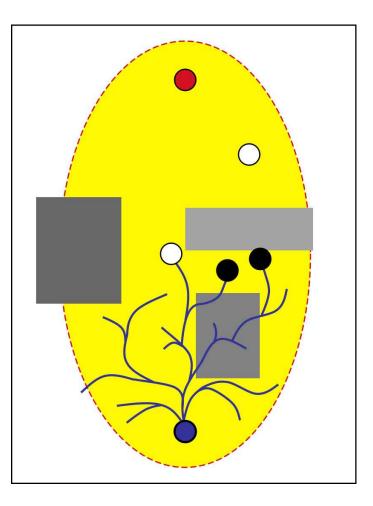
Ferguson, Stentz, 2006

Completely predictable
•
Sensor Feedback
•
Bounded Uncertainty
Dynamic Programming
Dynamic Replanning
Information Spaces



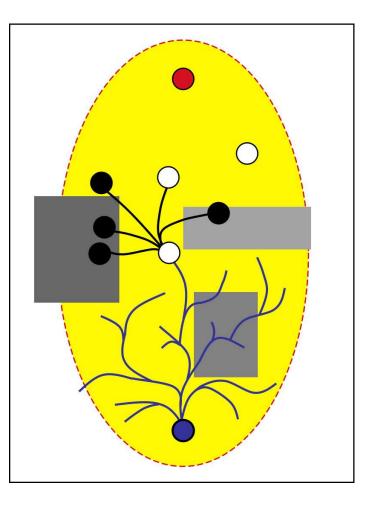
ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 44 / 64



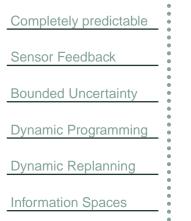


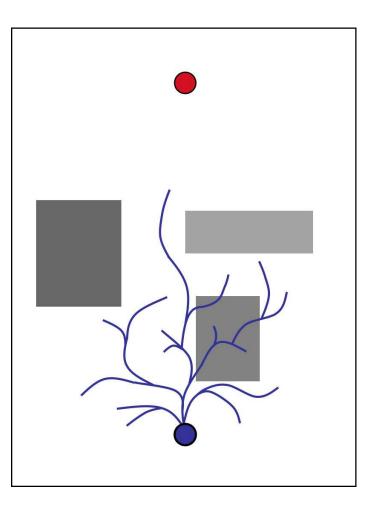
ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 45 / 64

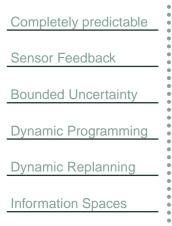
Completely predictable
•
Sensor Feedback
•
Bounded Uncertainty
Dynamic Programming
•
Dynamic Replanning
Information Spaces



ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 46 / 64

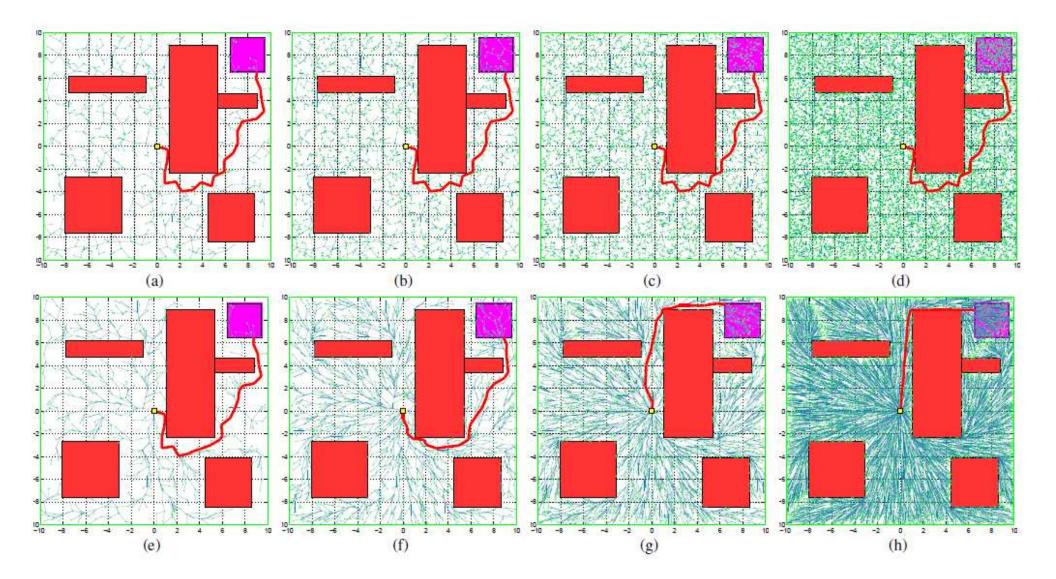






- Grow RRT in the usual way
- When a new vertex x_{new} is added, try to connect to other RRT vertices within radius ρ .
- Among all paths to the root from x_{new} , add a new RRT edge only for the shortest one.
- If possible to reduce cost for other vertices within radius ρ by connecting to x_{new} , then disconnect them from their parents and connect them through x_{new} .
- The radius \(\rho\) is prescribed through careful percolation theory analysis (related to dispersion).
- RRT* yields asymptotically optimal paths through C_{free} .

Karaman, Frazzoli, IJRR 2011



ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 49 / 64

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning

Information Spaces

Backwards A*:

- Sort queue by: $g(q) + h(q_I, q)$
- \blacksquare g(q) is the optimal cost-to-come from q_G .
- $h(q_I, q)$ is the guaranteed underestimate of the optimal cost from q_I to q.

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming

Dynamic Replanning

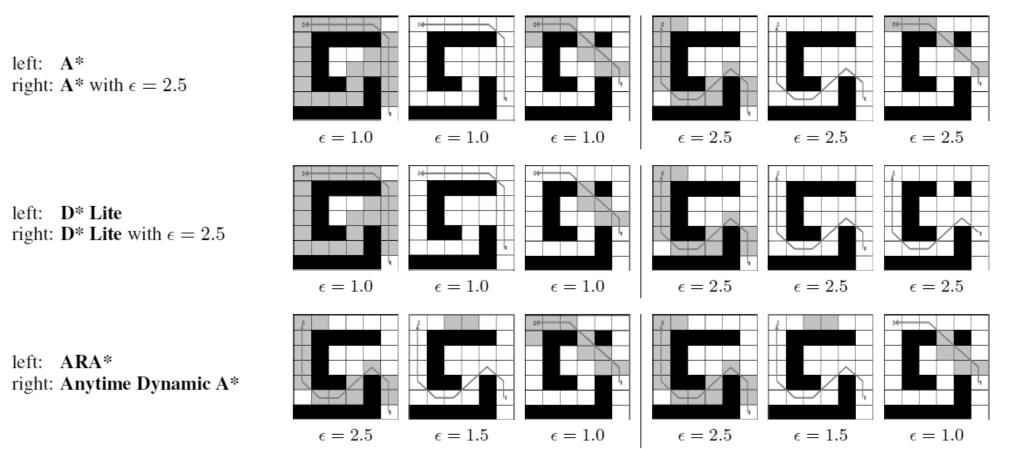
Information Spaces

- Anytime A*:
 - Sort queue by: $g(q) + \gamma h(q_I, q)$
 - $\gamma \geq 1$ is an *inflation factor*
 - It causes non-optimality, but no worse than a factor of γ .
 - Approach: Generate a quick solution for large γ , and then gradually decrease it.

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces Anytime D*:

- $\blacksquare \ \operatorname{Use} g(q) + \gamma h(q_I,q) \ \text{in } \ \operatorname{D*} \operatorname{lite}$
- Optimality factor for computed paths remains γ .
- Likhachev, Ferguson, Gordon, Stentz, Thrun, 2005

Example:



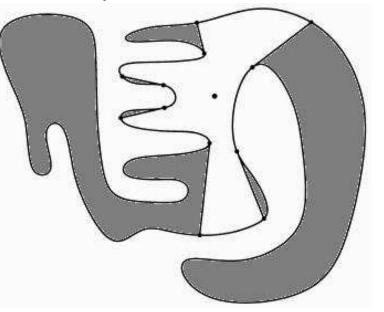
Completely predictable
Sensor Feedback
Bounded Uncertainty
Dynamic Programming
Dynamic Replanning
Information Spaces

Information Spaces

Visibility-Based Pursuit-Evasion

Completely predictable
Sensor Feedback
Bounded Uncertainty
Dynamic Programming
Dynamic Replanning
Information Spaces

Recall simple model: Evader moves on a continuous path.



An exact cell decomposition method can solve it. Guibas et al. 1999

Visibility-Based Pursuit-Evasion

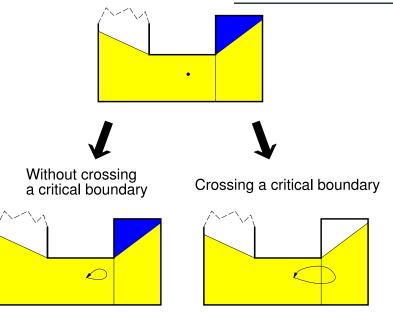
Completely predictable	•
Sensor Feedback	•
Bounded Uncertainty	•
Dynamic Programming	•••••
Dynamic Replanning	•
Information Spaces	•

Identify all unique situations that can occur:

An information state is identified by (x, S) in which

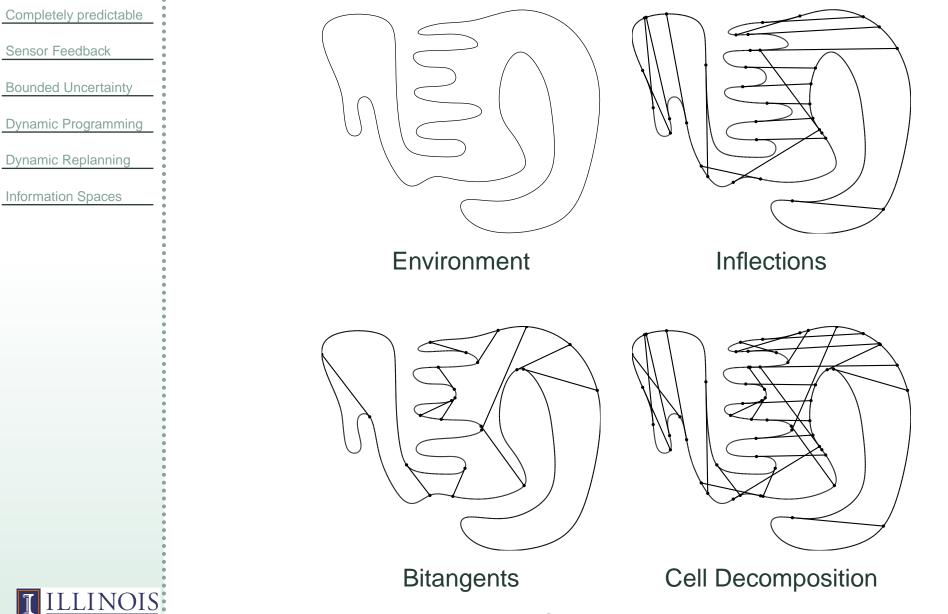
- x = the position of the pursuer
- S = set of possible evader positions

The set of all information states forms an information space.



Many closed-path motions retain the same information state.

Visibility-Based Pursuit-Evasion



ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 57 / 64

Imperfect State Information

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

Two types of imperfect state information:

- 1. Environment: Obstacles, cost map, moving body configurations
- 2. Robot: The localization problem

These generally force plan feedback to occur over an *information space*:

$$\pi:\mathcal{I}\to U$$

Imperfect State Information

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces What does $\iota \in \mathcal{I}$ look like? Possibilities:

- A partial map with robot localized
- A full map with a pdf over robot configurations
- A topological map with robot localized

In the most general setting, we may obtain either a set

$$F(\tilde{u}_{k-1}, \tilde{y}_k) \subseteq X$$

or a pdf

$$p(x_k \mid \tilde{u}_{k-1}, \tilde{y}_k)$$

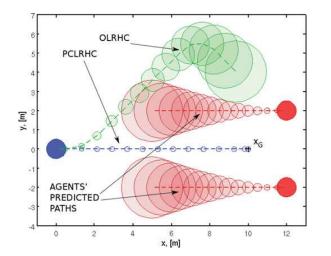
over whatever X state space is needed.

The state $x \in X$ may encode robot configuration, map, other bodies.

Planning in the Probabilistic Information Space

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces State: $x \in X$ encodes configuration and velocities of robot and bodies. Stochastic transition law: $p(x_{k+1}|x_k, u_k)$ Disturbed sensor mapping: $p(y_k|x_k)$

- Receding horizon approach
- Partially closed loop: Estimate future sensor readings
- Compute information feedback strategies



DuToit, Burdick, 2012

Planning in the Probabilistic Information Space

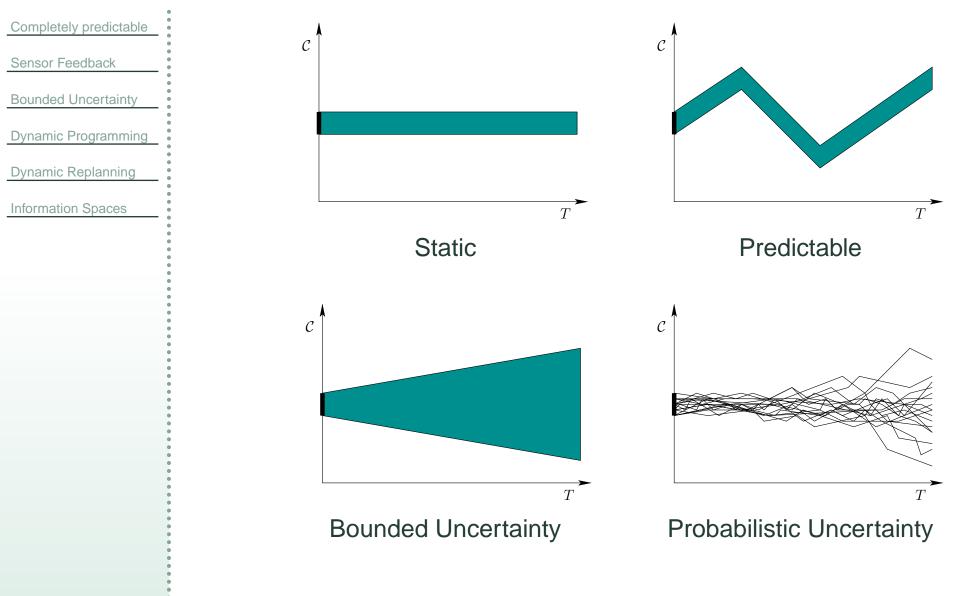
Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

There are many other approaches to planning in belief space:

- Roy, Burgard, Fox, Thrun, 1998
- Pineau, Gordon, 2005
- Kurniawati, Hsu, Lee, 2008
- Prentice, Roy, 2009
- Hauser, 2010
- Platt, Kaelbling, Lozano-Perez, Tedrake, 2012

This list is very incomplete...

Forward Projections



ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 62 / 64

Summary of Part IV

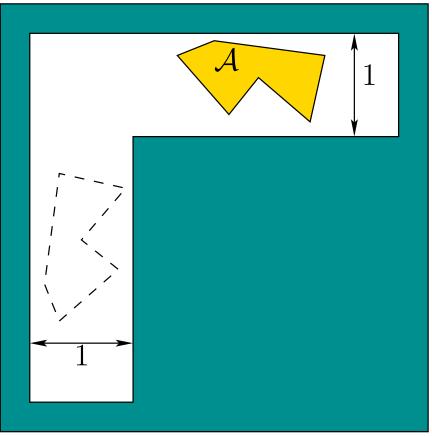
Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

- Model: predictable, bounded uncertainty, probabilistic
- Sensor feedback vs. dynamic replanning vs. computing optimal strategy
- The power of dynamic programming
- In which information space should the robot live?
- There are NP-hard problems everywhere. We have yet to really understand what makes some problems simpler.
- Which method to use? Need demo, robust experimental system, theoretical guarantees?

Homework 4: Solve During This Century

Completely predictableSensor FeedbackBounded UncertaintyDynamic ProgrammingDynamic ReplanningInformation Spaces

Let $\mathcal A$ be a rigid, polygonal (or semi-algebraic) robot. Let $\mu(\mathcal A)$ denote the area of $\mathcal A.$



What is the largest robot, in terms of $\mu(\mathcal{A}),$ that can fit through the corridor?

