## Motion Planning for Dynamic Environments **Part IV - Dynamic Environments: Methods**

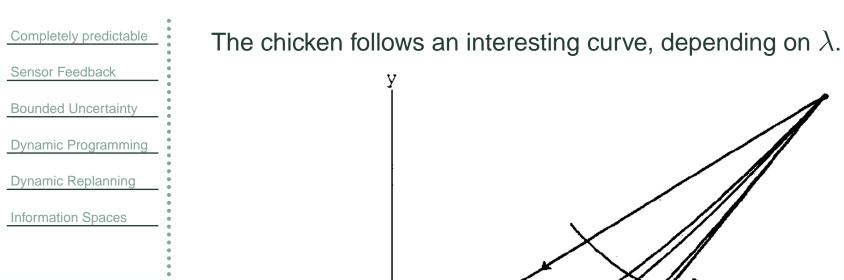
Steven M. LaValle University of Illinois





ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 1 / 64

#### **Solution to Homework 3**



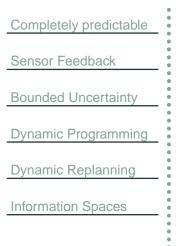
Rajeev Sharma, IEEE TRA 1992



ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 2 / 64

-X

#### **Methods**



#### Families:

- Completely predictable environments
- Sensor feedback and collision avoidance
- Planning under bounded motion uncertainty
- Dynamic programming over cost maps
- Information spaces that tolerate uncertainty



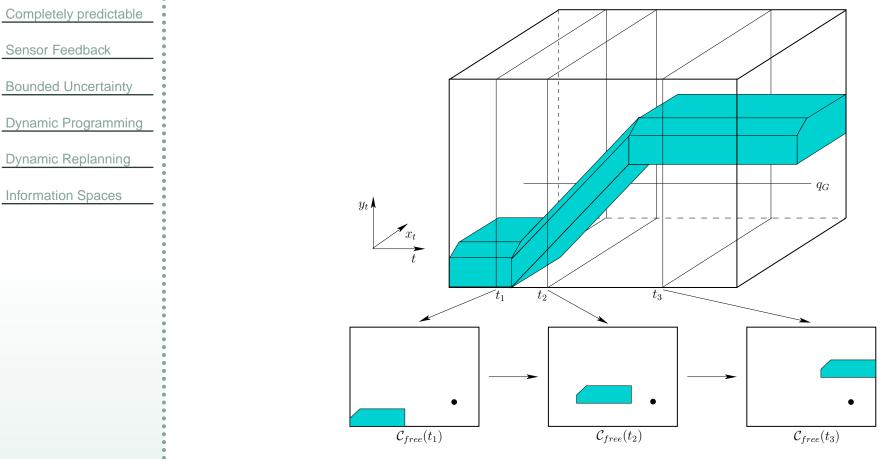
| Completely predictable |
|------------------------|
|                        |
| Sensor Feedback        |
|                        |
| Bounded Uncertainty    |
|                        |
| Dynamic Programming    |
|                        |
| Dynamic Replanning     |
|                        |
| Information Spaces     |

## **Completely predictable**



ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 4 / 64

#### **Recall Configuration-Time Space**



At each time slice  $t \in T$ , we must avoid

 $\mathcal{C}_{obs}(t) = \{ q \in \mathcal{C} \mid \mathcal{A}(q) \cap \mathcal{O}(t) \neq \emptyset \}$ 



ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 5 / 64

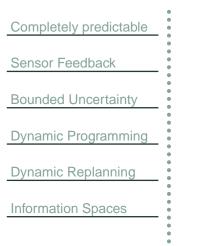
## **Solutions for Completely Predictable Environments**

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

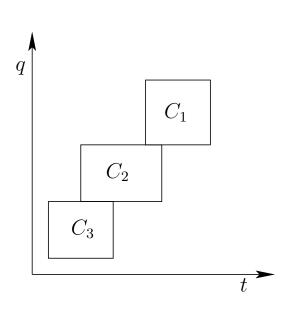
- Sampling-based methods
- Combinatorial methods
- Handling robot speed bounds
- Velocity tuning method



#### **Extending Combinatorial Methods**



Transitivity issue:



In ordinary path planning, if  $C_1$  and  $C_2$  are adjacent and  $C_2$  and  $C_3$  adjacent, then a path exists from  $C_1$  to  $C_3$ .

However, for dynamic environments it might require time travel.



Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

Most approaches depend on a metric  $\rho : \mathcal{C} \times \mathcal{C} \rightarrow [0, \infty)$ . Must extend into X to ensure that time only increases.

To extend across  $Z = C \times T$ :

$$\rho_Z(x, x') = \begin{cases} 0 & \text{if } q = q' \\ \infty & \text{if } q \neq q' \text{ and } t' \leq t \\ \rho(q, q') & \text{otherwise.} \end{cases}$$

- Sampling-based RRTs extend across Z using  $\rho_Z$ . Bidirectional is a bit more complicated.
- Sampling-based roadmaps (including PRMs) extend to produce directed roadmaps.

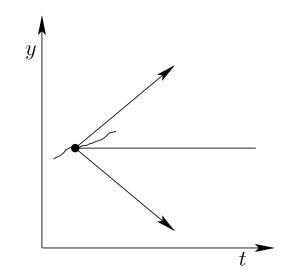
#### **Bounded Speed**

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

Robot velocity:  $v = (\dot{x}, \dot{y})$ Speed bound:  $|v| \le b$  for some constant b > 0

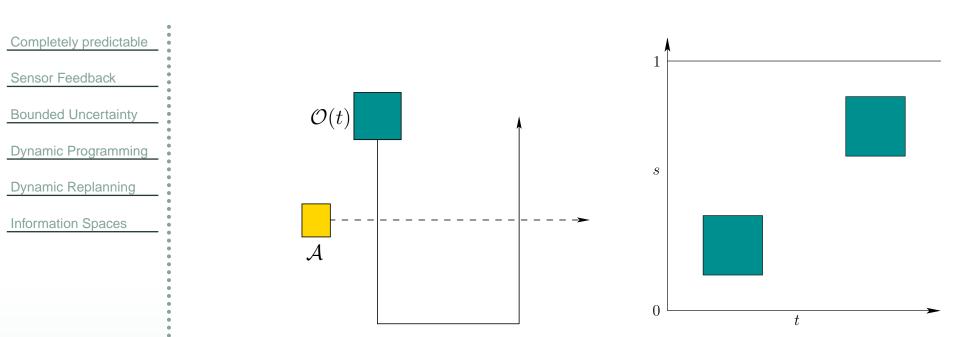
The velocity v at every point in Z must point within a cone at all times:

$$\left(x(t+\Delta t)-x(t)\right)^2 + \left(y(t+\Delta t)-y(t)\right)^2 \le b^2(\Delta t)^2.$$



Warning: PSPACE-hard in general.

## **Velocity Tuning**



Workspace

Compute a collision-free path:  $\tau : [0, 1] \to C_{free}$ . Design a *timing function* (or *time scaling*):  $\sigma : T \to [0, 1]$ . This produces a composition  $\phi = \tau \circ \sigma$ , which maps from T to  $C_{free}$  via [0, 1].



ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 10 / 64

State space

## **Velocity Tuning**

 Completely predictable

 Sensor Feedback

 Bounded Uncertainty

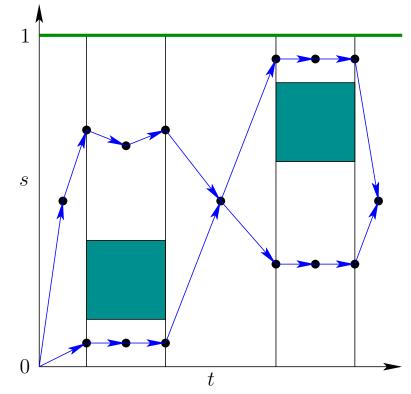
 Dynamic Programming

 Dynamic Replanning

 Information Spaces

Because it is a 2D problem, many methods can be used. Simple grid search: BFS, DFS, Dijkstra,  $A^*$ , ...

It is more elegant and efficient to use combinatorial methods.



For example, trapezoidal decomposition.



| Completely predictable |
|------------------------|
| Sanaar Faadbaak        |
| Sensor Feedback        |
| Bounded Uncertainty    |
| Dynamic Programming    |
| Dynamic Replanning     |
|                        |

Information Spaces

#### **Sensor Feedback**



ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 12 / 64

### **Velocity Obstacles**

 Completely predictable

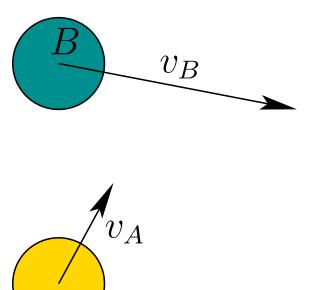
 Sensor Feedback

 Bounded Uncertainty

 Dynamic Programming

 Dynamic Replanning

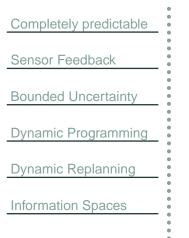
 Information Spaces

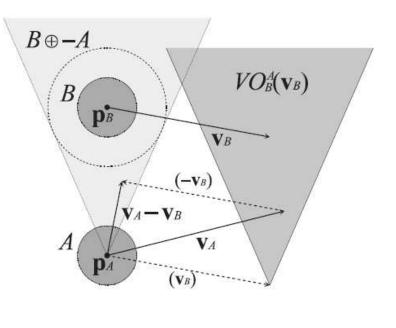


- Two rigid bodies A and B moving in  $\mathbb{R}^2$ .
- They have constant velocities  $v_A$  and  $v_B$ .
  - If  $v_B$  is constant, what values of  $v_A$  cause collision?



#### **Velocity Obstacles**



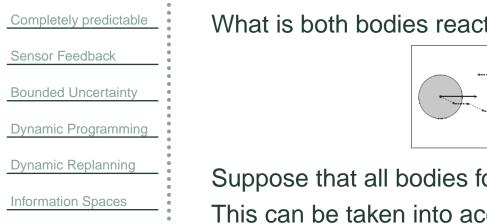


 $\lambda(p,v) = \{p + tv \mid t \ge 0\}$ 

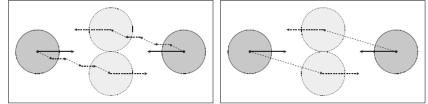
 $VO_B^A(v_B) = \{ v_A \mid \lambda(p_A, v_A - v_B) \cap \mathcal{C}_{obs} \neq \emptyset \}$ 

Here,  $C_{obs} = B \ominus A$  (Minkowski difference). Fiorini, Shiller, 1998.

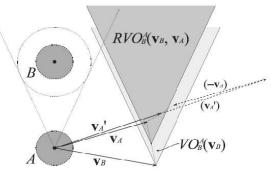
## **Reciprocal Velocity Obstacles**



What is both bodies react? Oscillation possible.



Suppose that all bodies follow the same strategy. This can be taken into account for a great advantage.



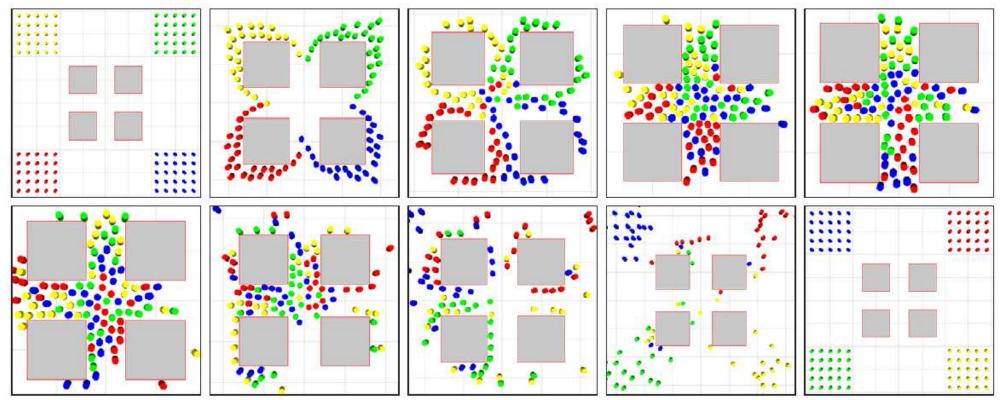
$$RVO_B^A(v_B) = \{ v'_A \mid 2v'_A - v_A \in VO_b^A(v_B) \}$$

Choose  $v'_A$  as the average of its current velocity and a velocity that lies outside the velocity obstacle.

van den Berg, Lin, Manocha, 2008

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 15 / 64

## **Recriprocal Velocity Obstacles**



A computed result:

Try it at the next ICRA coffee break...



#### **Other Sensor Feedback Strategies**

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

- Potential fields, Khatib, 1980
- Vector field histogram, Borenstein, Koren, 1991
- Dynamic window approach, Fox, Burgard, Thrun, 1997
- Nearness diagram, Minguez, Montano, 2004

Many more...

| Completely predictable |
|------------------------|
|                        |
| Sensor Feedback        |
| Bounded Uncertainty    |
|                        |
| Dynamic Programming    |
|                        |
| Dynamic Replanning     |
| Information Spaces     |

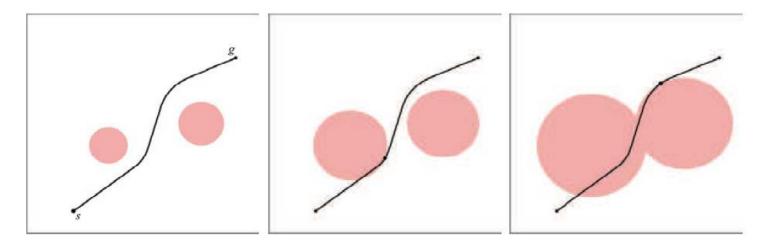
## **Bounded Uncertainty**



## **Time-Minimal Trajectories**

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

- Point (or disc) robot moves at constant speed.
- A finite set of point (or disc) obstacles.
- Obstacles have omnidirectional speed bound.
- Problem: Compute time-optimal collision-free trajectory.



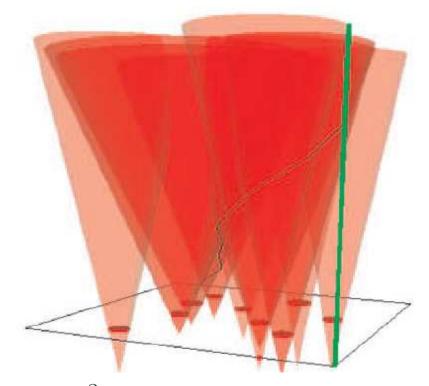
van den Berg, Overmars, 2008



### **Time-Minimal Trajectories**

| Completely predictable | • |
|------------------------|---|
| Sensor Feedback        | • |
|                        | • |
| Bounded Uncertainty    | • |
| Dynamic Programming    | • |
| Dynamic Replanning     | • |
| Information Spaces     | • |
|                        | • |

A computed example, shown through configuration-time space:



Can solve problems  $O(n^3 \lg n)$  time.

It is related to shortest-path graphs in the plane (bitangents). Recently improved to  $O(n^2 \lg n)$  by Maheshwari et al.

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 20 / 64

|  | Complete | ly predict | able |
|--|----------|------------|------|
|--|----------|------------|------|

Sensor Feedback

Bounded Uncertainty

Dynamic Programming

Dynamic Replanning

Information Spaces

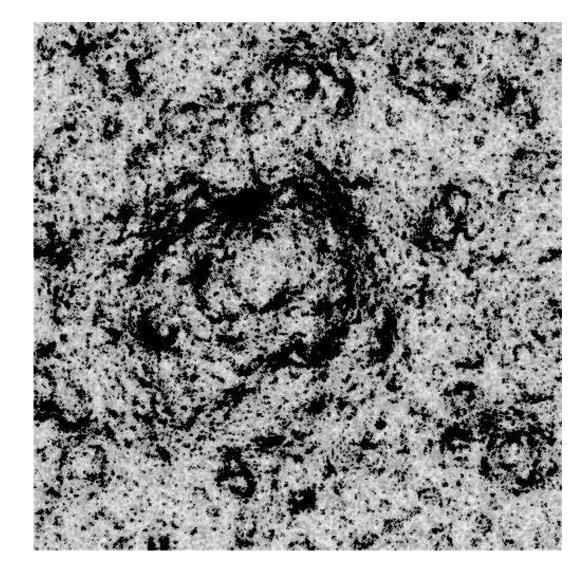
## **Dynamic Programming**



ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 21 / 64

#### **Cost Maps**

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces





Instead of a crisp  $C_{obs}$  and  $C_{free}$ , a *cost* could be associated with each q (or each neighborhood). ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 22 / 64

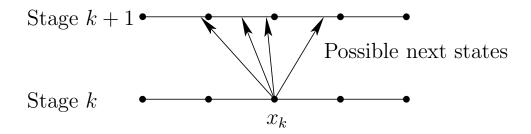
Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces Let X be any state space. We can make a state-time space by  $Z = X \times T$ . Let U be an action set. There are K + 1 stages  $(1, 2, \ldots, K + 1)$  along the time axis. Let x' = f(x, u) be a state transition equation. Let L denote a stage-additive *cost functional*,

$$L = \sum_{k=1}^{K} l(x_k, u_k) + l_{K+1}(x_{K+1}).$$

The task or goal can be expressed in terms of L.



Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces A feedback plan is represented as  $\pi : X \to U$ Let  $G_k^*(x_k)$  denote the *optimal cost to go* from  $x_k$  at stage k (optimized over all possible  $\pi$ ).



Bellman's dynamic programming equation:

 $G_k^*(x_k) = \min_{u_k \in U(x_k)} \left\{ l(x_k, u_k) + G_{k+1}^*(x_{k+1}) \right\}$ 



Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces Bellman's dynamic programming equation:

$$G_k^*(x_k) = \min_{u_k \in U(x_k)} \left\{ l(x_k, u_k) + G_{k+1}^*(x_{k+1}) \right\}.$$

#### Algorithm:

- Initially,  $G_{K+1}^*$  is known (from  $l_{K+1}(x_{K+1})$ ).
- Compute  $G_K^*$  from  $G_{K+1}^*$ .
- Compute  $G_{K-1}^*$  from  $G_K^*$ .



Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

But X and U are usually continuous spaces. A finite subset of U can be sampled in Bellman's equation. Interpolation (this is the 1D case) over X:

$$G_{k+1}^*(x) \approx \alpha G_{k+1}^*(s_i) + (1-\alpha)G_{k+1}^*(s_{i+1})$$



Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

Stochastic version not difficult.

Let  $p(x_{k+1}|x_k, u_k)$  be a probabilistic state transition equation. Bellman's equation becomes:

$$G_k^*(x_k) = \min_{u_k \in U(x_k)} \left\{ l(x_k, u_k) + \sum_{x_{k+1}} G_{k+1}^*(x_{k+1}) p(x_{k+1}|x_k, u_k) \right\}.$$

Optimizes the *expected* cost-to-go.

In the stationary case, there are Dijkstra-like versions.

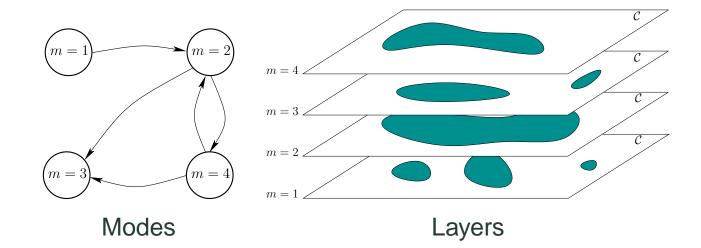
See Planning Algorithms: Sections 2.3.2, 8.5.5, 10.6



## **Applying to Dynamic Environments**

| Completely predictable |  |
|------------------------|--|
| Sensor Feedback        |  |
| Bounded Uncertainty    |  |
| Dynamic Programming    |  |
| Dynamic Replanning     |  |
| Information Spaces     |  |
|                        |  |

#### Recall the hybrid system formulation.



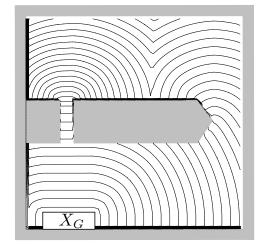
Doors may open or close according to a Markov chain.

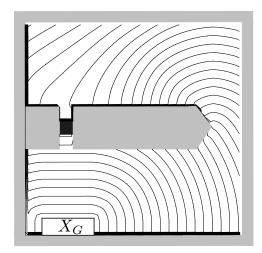


## **Applying to Dynamic Environments**

| Completely predictable | TI |
|------------------------|----|
| Sensor Feedback        |    |
| Bounded Uncertainty    |    |
| Dynamic Programming    |    |
| Dynamic Replanning     |    |
| 0<br>0                 |    |
| Information Spaces     |    |
| •                      |    |

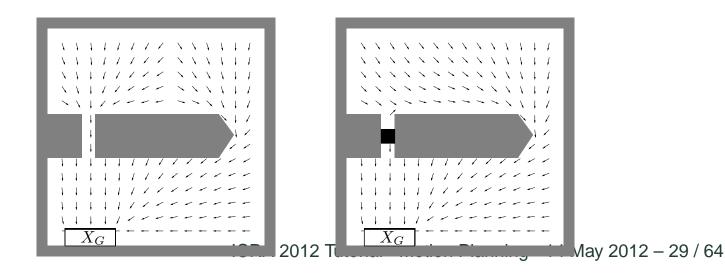
he optimal cost-to-go and feedback plan.





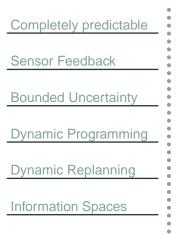
Cost-to-go, open mode

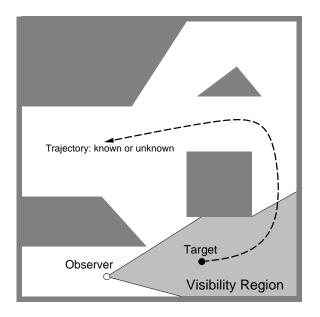
Cost-to-go, closed mode





# **Maintaining Visibility**





A robot must follow a moving target with a camera.

How to move the robot to maintain visibility as much as possible?

Optimize the total robot motion.

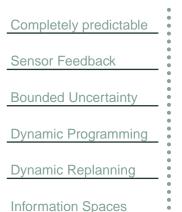
Predictable and partially predictable target cases

LaValle, Gonzalez-Banos, Becker, Latombe, 1997

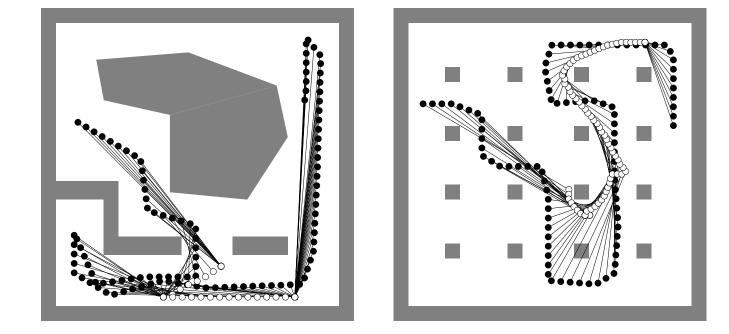
ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 30 / 64



# **Maintaining Visibility**



Optimal robot trajectories computed using value iteration:



For unpredictable target, move robot to maximize the target's minimum time to escape.



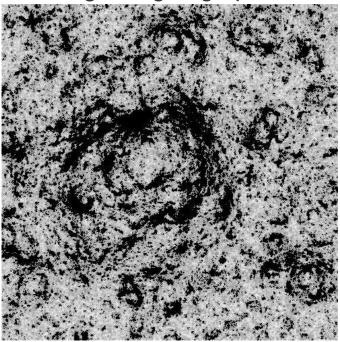


Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning

Information Spaces

D-Star: Stentz, 1994 D-Star Lite: Koenig, Likhachev, 2002

Consider  $A^*$  search on a weighted grid graph.



Execution of the plan causes new information to be learned. Enhance  $A^*$  to allow edge costs to increase or decrease.



**D-Star** 

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

Let

 $rhs(q) = \min_{q' \in Succ(q)} \{c(q, q') + g(q')\}$ 

For the optimal cost-to-go function, Bellman's equation should be satisfied everywhere:

$$g(q) = rhs(q)$$

(Also,  $g(q_G) = 0$ .)

If it is not, then fix it!





Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

Let h(q, q') be a *heuristic* underestimate of the optimal cost from q to q'. Keep search queue sorted by key value:

```
\min(g(q), rhs(s)) + h(q_I, s)
```

If vertices have equal key value, then select one with smallest  $\min(g(q), rhs(s))$ .

When edges costs change, affected nodes are placed on the search queue.

Iterations continue until all affected nodes are fixed, and Bellman is happy again.



| Dynamic Replanning     |
|------------------------|
| Dynamic Programming    |
| Bounded Uncertainty    |
| Sensor Feedback        |
| Completely predictable |

Information Spaces

## **Dynamic Replanning**



ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 35 / 64

## **Sliding Window**

| Completely predictable |
|------------------------|
| Sensor Feedback        |
| Bounded Uncertainty    |
| Dynamic Programming    |
| Dynamic Replanning     |
| Information Spaces     |
|                        |

Consider the following loop:

- 1. Plan a sequence of actions
- 2. Take the first action
- 3. Receive new information from sensors
- 4. Go to 1



## **Sliding Window**

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

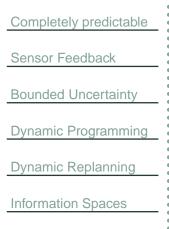
That was the usual sense-plan-act loop.

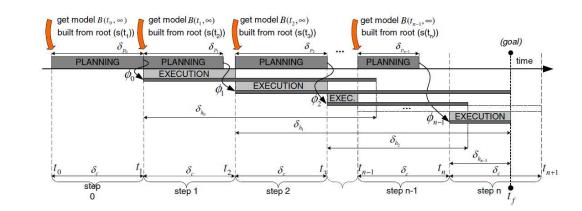
Related ideas:

- Receding horizon control
- Model predictive control
- Dynamic replanning
- Partial motion planning
- Anytime planning



## **Partial Motion Planning**





- Construct a partial plan toward the goal within allotted time.
- Compute  $X_{ric}$  (inevitable collision states).
- Ensure that paths are safe by avoiding  $X_{ric}$ .
- While executing, construct the next partial plan.

Fraichard, Asama, 2004; Petti, Fraichard, 2005

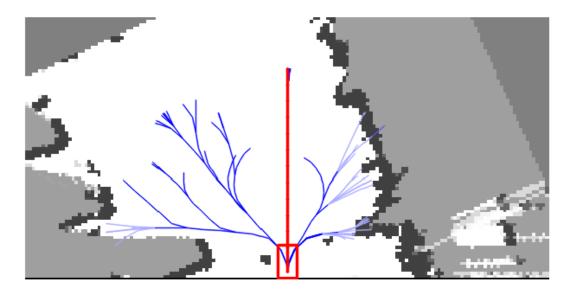


# **Partial Motion Planning**

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

#### Probabilistic RRTs

- Use partial planning paradigm.
- Build a probabilistic "cost map" that biases RRT growth into lower collision probabilities.
- Use HMM prediction models learned from other moving bodies.



Fulgenzi, Spalanzani, and Laugier, 2009

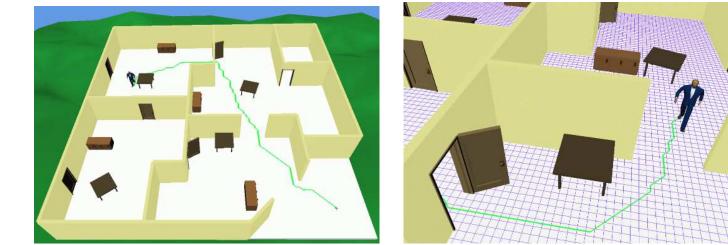


ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 39 / 64

#### **Replanning From Scratch**

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

#### Kuffner, 2004



Run  $A^*$  or Dijkstra but with reduced neighborhood structure. Computation times around 10ms.



## Replanning

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces A few other replanning works:

- Leven, Hutchinson, 2002
- Jaillet, Simeon, 2004
- Kallmann, Bargmann, Mataric 2004
- Vannoy, Xiao 2006
- Bekris, Kavraki, 2007
- Nabbe, Hebert, 2007
- Bekris, 2010



#### **Anytime Algorithms**

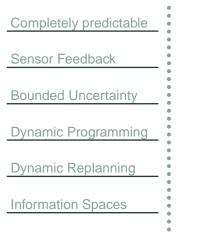
Completely predictableSensor FeedbackBounded UncertaintyDynamic ProgrammingDynamic ReplanningInformation Spaces

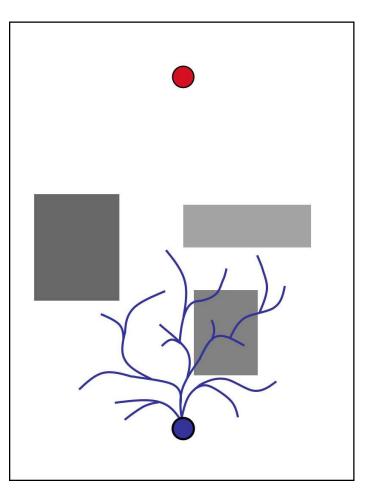
Appearing throughout compute science, an *any-time algorithm* has properties:

- May be terminated at any time
- The solution it produces gradually improves over time

This seems ideally suited for on-line planning and execution.



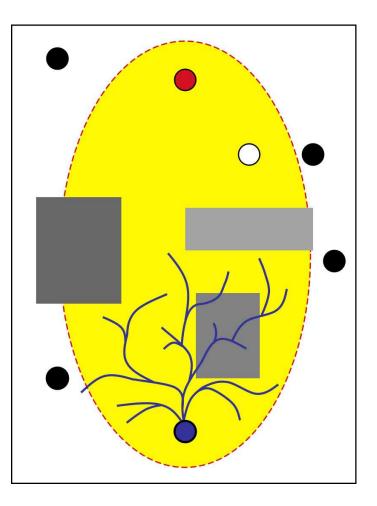




Ferguson, Stentz, 2006

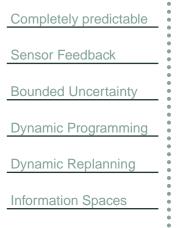


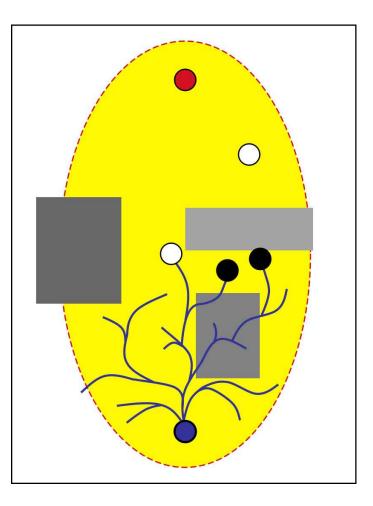
| Completely predictable |
|------------------------|
| •                      |
| Sensor Feedback        |
| •                      |
| Bounded Uncertainty    |
| Dynamic Programming    |
| Dynamic Replanning     |
| Information Spaces     |
|                        |





ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 44 / 64

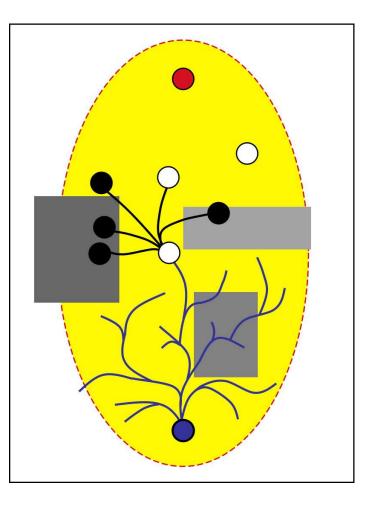






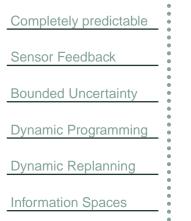
ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 45 / 64

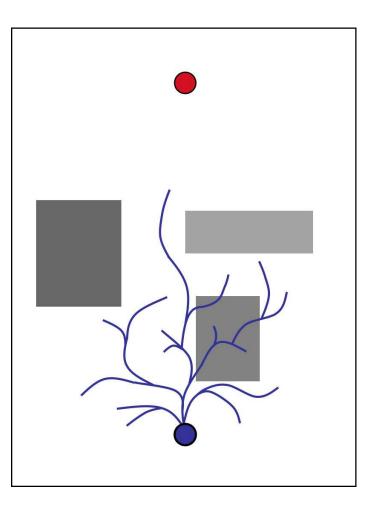
| Completely predictable |
|------------------------|
| •                      |
| Sensor Feedback        |
| •                      |
| Bounded Uncertainty    |
|                        |
| Dynamic Programming    |
| •                      |
| Dynamic Replanning     |
|                        |
| Information Spaces     |





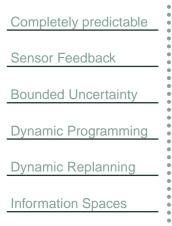
ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 46 / 64









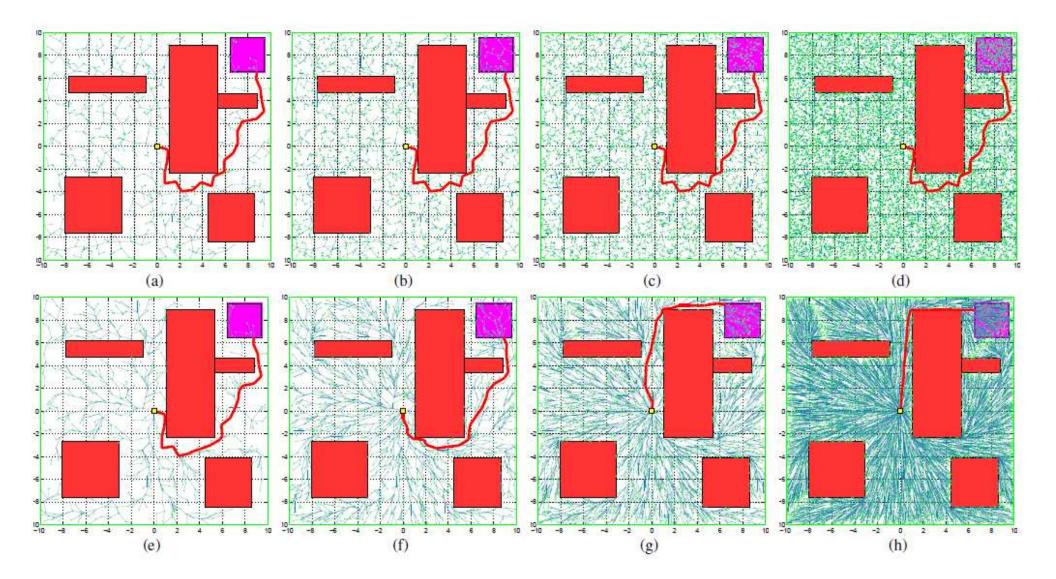


- Grow RRT in the usual way
- When a new vertex  $x_{new}$  is added, try to connect to other RRT vertices within radius  $\rho$ .
- Among all paths to the root from  $x_{new}$ , add a new RRT edge only for the shortest one.
- If possible to reduce cost for other vertices within radius  $\rho$  by connecting to  $x_{new}$ , then disconnect them from their parents and connect them through  $x_{new}$ .
- The radius \(\rho\) is prescribed through careful percolation theory analysis (related to dispersion).
- RRT\* yields asymptotically optimal paths through  $C_{free}$ .

Karaman, Frazzoli, IJRR 2011









ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 49 / 64

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning

Information Spaces

#### Backwards A\*:

- Sort queue by:  $g(q) + h(q_I, q)$
- $\blacksquare$  g(q) is the optimal cost-to-come from  $q_G$ .
- $h(q_I, q)$  is the guaranteed underestimate of the optimal cost from  $q_I$  to q.



Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming

Dynamic Replanning

Information Spaces

- Anytime A\*:
  - Sort queue by:  $g(q) + \gamma h(q_I, q)$
  - $\gamma \geq 1$  is an *inflation factor*
  - It causes non-optimality, but no worse than a factor of  $\gamma$ .
  - Approach: Generate a quick solution for large  $\gamma$ , and then gradually decrease it.

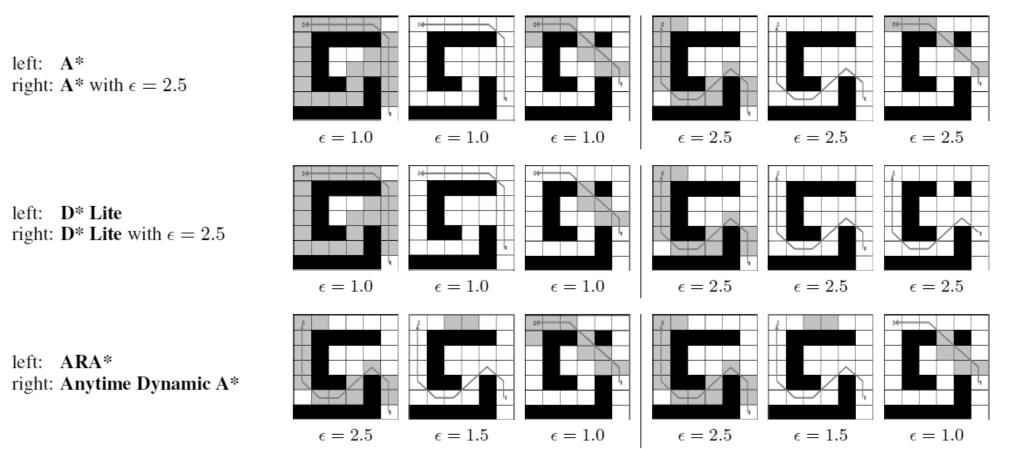


Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces Anytime D\*:

- $\blacksquare \ \operatorname{Use} g(q) + \gamma h(q_I,q) \ \text{in } \ \operatorname{D*} \operatorname{lite}$
- Optimality factor for computed paths remains  $\gamma$ .
- Likhachev, Ferguson, Gordon, Stentz, Thrun, 2005



#### Example:





| Completely predictable |
|------------------------|
|                        |
| Sensor Feedback        |
|                        |
| Bounded Uncertainty    |
|                        |
| Dynamic Programming    |
|                        |
| Dynamic Replanning     |
|                        |
| Information Spaces     |

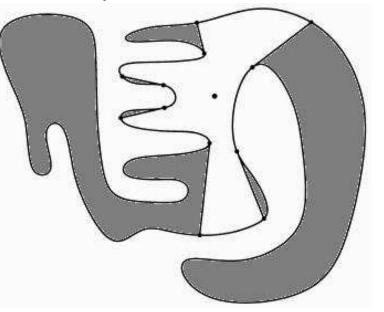
## **Information Spaces**



#### **Visibility-Based Pursuit-Evasion**

| Completely predictable |
|------------------------|
|                        |
| Sensor Feedback        |
|                        |
| Bounded Uncertainty    |
|                        |
| Dynamic Programming    |
|                        |
| Dynamic Replanning     |
|                        |
| Information Spaces     |
|                        |
|                        |

Recall simple model: Evader moves on a continuous path.



An exact cell decomposition method can solve it. Guibas et al. 1999



#### **Visibility-Based Pursuit-Evasion**

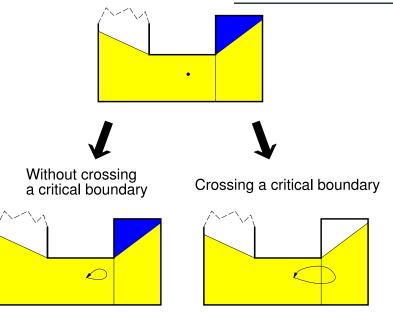
| Completely predictable | •     |
|------------------------|-------|
| Sensor Feedback        | •     |
| Bounded Uncertainty    | •     |
| Dynamic Programming    | ••••• |
| Dynamic Replanning     | •     |
| Information Spaces     | •     |

Identify all unique situations that can occur:

An information state is identified by (x, S) in which

- x = the position of the pursuer
- S = set of possible evader positions

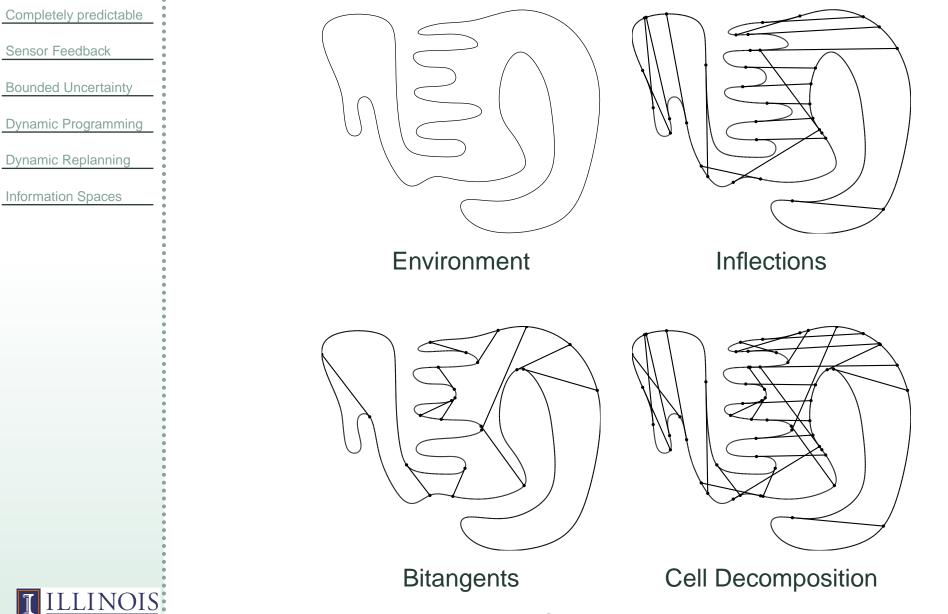
The set of all information states forms an information space.



Many closed-path motions retain the same information state.



#### **Visibility-Based Pursuit-Evasion**



ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 57 / 64

#### **Imperfect State Information**

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

Two types of imperfect state information:

- 1. Environment: Obstacles, cost map, moving body configurations
- 2. Robot: The localization problem

These generally force plan feedback to occur over an *information space*:

$$\pi:\mathcal{I}\to U$$



#### **Imperfect State Information**

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces What does  $\iota \in \mathcal{I}$  look like? Possibilities:

- A partial map with robot localized
- A full map with a pdf over robot configurations
- A topological map with robot localized

In the most general setting, we may obtain either a set

$$F(\tilde{u}_{k-1}, \tilde{y}_k) \subseteq X$$

or a pdf

$$p(x_k \mid \tilde{u}_{k-1}, \tilde{y}_k)$$

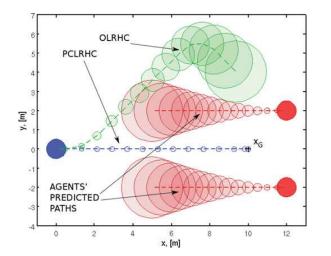
over whatever X state space is needed.

The state  $x \in X$  may encode robot configuration, map, other bodies.

# **Planning in the Probabilistic Information Space**

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces State:  $x \in X$  encodes configuration and velocities of robot and bodies. Stochastic transition law:  $p(x_{k+1}|x_k, u_k)$ Disturbed sensor mapping:  $p(y_k|x_k)$ 

- Receding horizon approach
- Partially closed loop: Estimate future sensor readings
- Compute information feedback strategies





DuToit, Burdick, 2012

# **Planning in the Probabilistic Information Space**

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

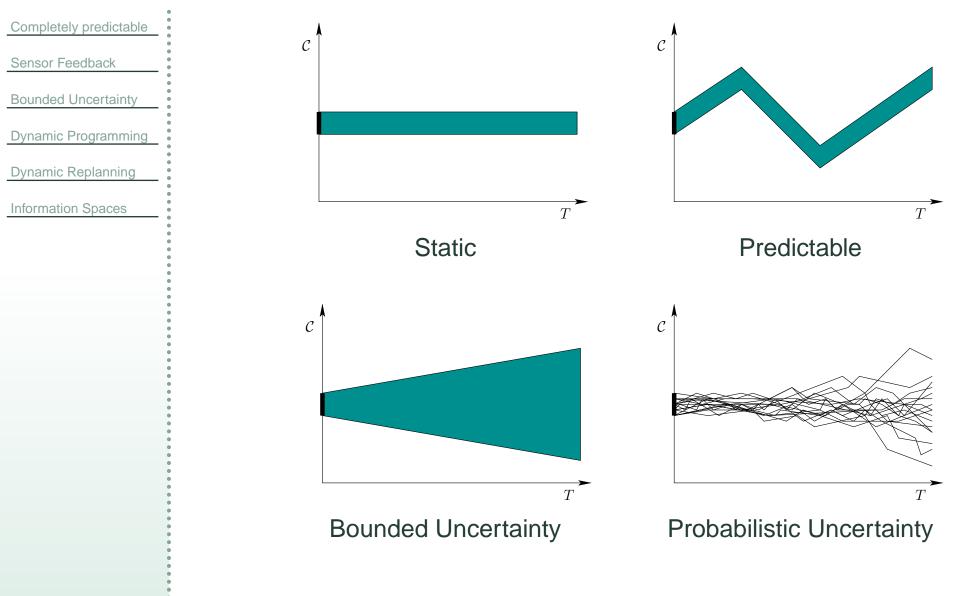
There are many other approaches to planning in belief space:

- Roy, Burgard, Fox, Thrun, 1998
- Pineau, Gordon, 2005
- Kurniawati, Hsu, Lee, 2008
- Prentice, Roy, 2009
- Hauser, 2010
- Platt, Kaelbling, Lozano-Perez, Tedrake, 2012

This list is very incomplete...



#### **Forward Projections**





ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 62 / 64

#### Summary of Part IV

Completely predictable Sensor Feedback Bounded Uncertainty Dynamic Programming Dynamic Replanning Information Spaces

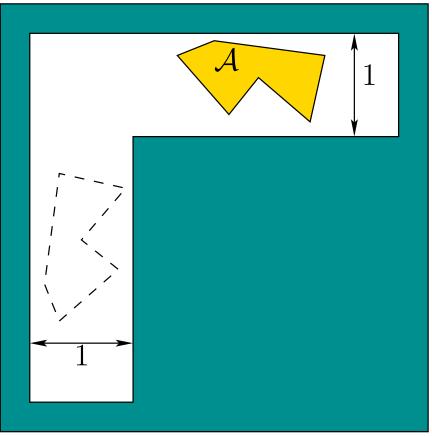
- Model: predictable, bounded uncertainty, probabilistic
- Sensor feedback vs. dynamic replanning vs. computing optimal strategy
- The power of dynamic programming
- In which information space should the robot live?
- There are NP-hard problems everywhere. We have yet to really understand what makes some problems simpler.
- Which method to use? Need demo, robust experimental system, theoretical guarantees?



## Homework 4: Solve During This Century

Completely predictableSensor FeedbackBounded UncertaintyDynamic ProgrammingDynamic ReplanningInformation Spaces

Let  $\mathcal A$  be a rigid, polygonal (or semi-algebraic) robot. Let  $\mu(\mathcal A)$  denote the area of  $\mathcal A.$ 



What is the largest robot, in terms of  $\mu(\mathcal{A}),$  that can fit through the corridor?

