Motion Planning for Dynamic Environments Part II: Motion Planning: Finding the Path

> Steven M. LaValle University of Illinois

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 1 / 72

Solution to Homework 1

Combinatorial Planning Sampling-Based Planning Differential Constraints	A car driving on a gigantic sphere:
	The C-space is:

Solution to Homework 1

Combinatorial Planning	A car driving on a gigantic sphere.
Sampling-Based Planning Differential Constraints	A cal driving on a giganite sphere. S^2
	The C-space is: $SO(3) = \mathbb{R}P^3$ To see it, imagine car is painted on S^2 and rotate S^2 about its cente It is not $S^2 \times S^1$: Cartesian product vs. fiber bundle (Hopf fibration)
T ILLINOIS	

VERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 2 / 72

Basic Motion Planning Problem

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 3 / 72

Competing Paradigms

Combinatorial Planning	
Sampling-Based	
Planning	

Differential Constraints

Combinatorial planning

(exact planning)

Sampling-based planning

(probabilistic planning, randomized planning)

The methods differ in the philosophy they use to *discretize* the problem.

Also: Approximate cell decompositions

Completeness Notions

Combinatorial Planning	
Sampling-Based	
Planning	

Differential Constraints

A planning algorithm may be:

- Complete: If a solution exists, it finds one; otherwise, it reports failure.
- Semi-complete: If a solution exists, it finds one; otherwise, it may run forever.
- Resolution complete: If a solution exists, it finds one; otherwise, it terminates and reports that no solution within a specified resolution exists.
- Probabilistically complete: If a solution exists, the probability that it will be found tends to one as the number of iterations tends to infinity.

Combinatorial	Planning

Sampling-Based Planning

Differential Constraints

Combinatorial Planning

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 6 / 72

Combinatorial Planning Methods

Combinatorial Planning	
Sampling-Based	
Planning	

Differential Constraints

- Mostly developed in the 1980s
- Influence from computational geometry and computational real algebraic geometry
- All algorithms are complete
- Usually produce a roadmap in C_{free}
- Extremely efficient for low-dimensional problems
- Some are difficult to implement (numerical issues)

Topological Graph

Combinatorial Planning	
Sampling-Based	
Planning	

Differential Constraints

Methods produce a *topological graph* \mathcal{G} :

- Each vertex is a configuration $q \in C_{free}$.
- Each *edge* is a path $\tau : [0, 1] \to C_{free}$ for which $\tau(0)$ and $\tau(1)$ are vertices.

Sometimes, C_{free} may be replaced by $cl(C_{free})$ (include the boundary of C_{free}).

This allows the robot to "scrape" the obstacles.

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 8 / 72

Combinatorial Planning	
Sampling-Based	
Planning	

Differential Constraints

A roadmap is a topological graph \mathcal{G} with two properties:

- 1. Accessibility: From anywhere in C_{free} it is trivial to compute a path that reaches at least one point along any edge in G.
- 2. **Connectivity-preserving:** If there exists a path through C_{free} from q_I to q_G , then there must also exist one that travels through G.

Planning in a Polygonal Obstacle Region

Combinatorial Planning	
Sampling-Based	
Planning	

Differential Constraints

Assume that C_{obs} (and C_{free}) are piecewise linear. Could be a point robot among polygonal obstacles. Could be a polygonal, translating robot among polygonal obstacles. The methods tend to extend well to a disc robot.

Use clever data structures to encode vertices, edges, regions Example: Doubly connected edge list

Planning in a Polygonal Obstacle Region

Combinatorial Planning	
Sampling-Based	
Planning	

Differential Constraints

We consider four methods:

- Trapezoidal decomposition
- Triangulation
- Maximum-clearance roadmap (retraction method)
- Shortest-path roadmap (reduced visibility graph)

Combinatorial Planning	
Sampling-Based	
Planning	

Differential Constraints

Try to extend a ray above or below every vertex.

There are four cases:

Combinatorial Planning	
Sampling-Based	
Planning	

Differential Constraints

- Use the plane sweep principle to efficiently determine where the rays terminate.
- Sort vertices by x coordinate.
- Handle extensions from left to right, while maintaining a vertically sorted list of edges.
- Leads to $O(n \lg n)$ running time. Easy to implement.

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 13 / 72

Combinatorial Planning Sampling-Based Planning

Differential Constraints

The resulting roadmap \mathcal{G} :

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 15 / 72

Triangulation

Combinatorial Planning
Sampling-Based
Planning

Differential Constraints

Compute triangulation:

 $O(n^2)$ time naive, O(n) optimal, $O(n\lg n)$ a good tradeoff.

Build easy roadmap from the triangulation:

Maximum Clearance Roadmap

Imagine obtaining a skeleton by gradually thinning C_{free} . Based on *deformation retract* from topology. Also is a kind of generalized Voronoi diagram.

O'Dunlaing, Yap, 1983

Maximum Clearance Roadmap

Picture from Latombe, 1991

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 18 / 72

Combinatorial Planning	
Compling Doood	
Sampling-Based	
Planning	

Differential Constraints

Optimal planning is easy in polygonal environments.

The shortest-path roadmap contains all vertices and edges that optimal paths follow when obstructed.

Imagine pulling a string tight between q_I and q_G .

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 19 / 72

Combinatorial Planning
Sampling-Based
Planning

Differential Constraints

Every *reflex vertex* (interior angle $> \pi$) is a roadmap vertex.

Edges in the roadmap correspond to two cases:

- 1. Consecutive reflex vertices
- 2. Bitangent edges

A bitangent edge is needed when this is true:

 $(f_l(p_1, p_2, p_5) \oplus f_l(p_3, p_2, p_5)) \vee (f_l(p_4, p_5, p_2) \oplus f_l(p_6, p_5, p_2)),$

in which f_l is a *left-turn predicate*.

Combinatorial Planning
Quarting Daniel
Sampling-Based
Planning

Differential Constraints

To solve a query, connect q_I and q_G to the roadmap:

Combinatorial Planning
Sampling-Based
Planning

Differential Constraints

Use Dijkstra's algorithm to search for a shortest path.

Higher Dimensions

Combinatorial Planning
Sampling-Based Planning

Differential Constraints

If C is 3 or more dimensions, most methods do not extend. Optimal path planning for 3D polyhedra is NP-hard. Maximal clearance roadmaps become disconnected in 3D.

Trapezoidal decomposition extends:

Higher Dimensions

Combinatorial Planning Sampling-Based Planning

Differential Constraints

- Specialized decompositions: ladder, rigid planar robot, discs
- Cylindrical algebraic decomposition (Schwartz, Sharir, 1983)
- Canny's roadmap algorithm (1987)

Rearranging a bunch of rectangles is PSPACE-hard:

Decomposition for a Ladder

Differential Constraints

 $O(n^5)$ time and space Schwartz, Sharir, 1983

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 25 / 72

Cylindrical Algebraic Decomposition

Canny's Roadmap Algorithm

See Algorithms in Real Algebraic Geometry by Basu, Pollack, Roy, 2003. More recently: Generalizations to o-minimal structures.

Combinatorial	Planning
---------------	----------

Sampling-Based Planning

Differential Constraints

Sampling-Based Planning

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 28 / 72

Sampling-Based Planning: Philosophy

- Use collision detector to separate planning from input geometry
- Systematically sample (random vs. deterministic) the free space
- Single-query: Incremental sampling and searching
- Multiple-query: Precompute a sampling-based roadmap

Combinatorial Planning

Differential Constraints

Sampling-Based

Planning

Denseness

Combinatorial Planning Sampling-Based Planning

Differential Constraints

In topology, a set U is called *dense in* V if cl(U) = V. Implication: Every open subset of V contains at least one point in U.

Example: The rational numbers \mathbb{Q} are dense in \mathbb{R} (every open interval contains some fractions)

If U is dense and countable, then a dense sequence can be formed:

```
\alpha:\mathbb{N}\to U
```

This imposes a linear ordering on $U: \alpha(1), \alpha(2), \ldots$

Example: A random sequence is dense with probability one.

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 30 / 72

(Pseudo-)Random Sequence

Combinatorial Planning Sampling-Based Planning

Differential Constraints

Uniform random samples seem easy to produce. Statistical independence makes it easy to combine sample sets.

In reality, note that pseudo-random sequences are generated.

(Pseudo-)Random Sequence

Combinatorial Planning Sampling-Based Planning

Differential Constraints

Be careful in curved spaces!

To generate a random point on S^n : Generate n Guassian iid samples and normalize.

Uniform random rotation in SO(3): Choose three points $u_1, u_2, u_3 \in [0, 1]$ uniformly at random. (a, b, c, d) =

 $(\sqrt{1-u_1}\sin 2\pi u_2, \sqrt{1-u_1}\cos 2\pi u_2, \sqrt{u_1}\sin 2\pi u_3, \sqrt{u_1}\cos 2\pi u_3).$

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 32 / 72

Deterministic Alternative: van der Corput sequence

Combinatorial Planning Sampling-Based Planning

Differential Constraints

	Naive		Reverse	Van der	
i	Sequence	Binary	Binary	Corput	Points in $[0,1]/\sim$
1	0	.0000	.0000	0	• • •
2	1/16	.0001	.1000	1/2	o
3	1/8	.0010	.0100	1/4	ooo
4	3/16	.0011	.1100	3/4	○ — ○ — ○
5	1/4	.0100	.0010	1/8	○● ○ ─ ○ ─ ○ ─ ○
6	5/16	.0101	.1010	5/8	<u> </u>
7	3/8	.0110	.0110	3/8	<u> </u>
8	7/16	.0111	.1110	7/8	<u> </u>
9	1/2	.1000	.0001	1/16	000-0-0-0-0-0-0-0
10	9/16	.1001	.1001	9/16	000-0-0-000-0-0-0
11	5/8	.1010	.0101	5/16	000-0•0-000-0-0-0
12	11/16	.1011	.1101	13/16	000-000-000-000-0
13	3/4	.1100	.0011	3/16	000000000000000000000000000000000000000
14	13/16	.1101	.1011	11/16	0000000-0000000-0
15	7/8	.1110	.0111	7/16	000000000000000000000000000000000000000
16	15/16	.1111	.1111	15/16	000000000000000000000000000000000000000

Dispersion

Combinatorial Planning Sampling-Based Planning

Differential Constraints

Let P be a finite set of points in metric space (X, ρ) . The *dispersion* of P is:

$$\delta(P) = \sup_{x \in X} \left\{ \min_{p \in P} \left\{ \rho(x, p) \right\} \right\}.$$

In a bounded space, a dense sequence drives the dispersion to zero.

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 34 / 72

Deterministic Sequences

Combinatorial Planning Sampling-Based Planning

Differential Constraints

van der Corput is asymptotically optimal in terms of dispersion

Halton: Generalize van der Corput by using relatively prime bases (2, 3, 5, 7, 11, ...) for each coordinate.

More uniform than random (which needs $O((\lg n)^{1/d})$ times as many samples needed to produce the same expected dispersion).

Other sequences produce better constants, and optimize discrepancy. See *Random Number Generation and Quasi-Monte-Carlo Methods*, Niederreiter, 1992.

Best Possible Dispersion

(1)

Combinatorial Planning Sampling-Based

Planning

Differential Constraints

Sukharev theorem: For any set P of k samples in $[0, 1]^d$:

$$\delta(P) \ge \frac{1}{2\lfloor k^{\frac{1}{d}} \rfloor},$$

(

in which δ is the L_∞ dispersion.

The best possible placement of k points:

Think: "points per axes" for any sample set Holding the dispersion fixed requires exponentially many points in dimension.

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 36 / 72

Combinatorial Planning Sampling-Based Planning

Differential Constraints

Maybe you didn't need all of those dimensions anyway...

Pick any positive $\epsilon < 1$ and any set P of k points in \mathbb{R}^n , there exists a function $f : \mathbb{R}^n \to \mathbb{R}^m$ so that for all $x, y \in P$,

$$(1-\epsilon)\|x-y\|^2 \le \|f(x) - f(y)\|^2 \le (1+\epsilon)\|x-y\|^2,$$

and
$$m=4\ln n/(\epsilon^2/2-\epsilon^3/3)$$

In other words, a low-distortion, low-dimensional embedding exists.

The basis of many dimensionality reduction methods, in machine learning, compressed sensing, computational geometry, ...

A Spectrum of Sample Sequences

Combinatorial Planning
Sampling-Based
Planning

Differential Constraints

- 1. Random sample sequence can these really be generated?
- 2. Pseudo-random sequence
- 3. Low-dispersion sequence
- 4. Multiresolution grid

Irregularity Does Not Help

Combinatorial Planning
Sampling-Based
Planning

Differential Constraints

196 points in each square region:

Pseudo-random points

Pseudo-random points

Sukharev grid

Collision Detection

Combinatorial Planning
Sampling-Based
Planning

Differential Constraints

Maintain a hierarchy of bounding regions

Two opposing criteria:

- 1. The region should fit the intended body points as tightly as possible.
- 2. The intersection test for two regions should be as efficient as possible.

Popular packages from UNC: PQP, I-Collide, ...

Important Issue: Incremental Methods

Combinatorial Planning Sampling-Based Planning

Differential Constraints

Vertex-Vertex Each point of the closest pair is a vertex of a polygon.

- Edge-Vertex One point of the closest pair lies on an edge, and the other lies on a vertex.
- Edge-Edge Each point of the closest pair lies on an edge. In this case, the edges must be parallel.

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 41 / 72

Important Issue: Collision Checking a Segment

Combinatorial Planning
Sampling-Based
Planning

Flamming

Differential Constraints

How many collision checks should be performed along an edge?

Using workspace distance information, may be able to guarantee collision-free segments.

Let $a(q) \in \mathcal{A}(q)$ denote a point on the robot. Find a constant c>0 so that

$$\|a(q) - a(q')\| < c\|q - q'\|$$
(3)

over robot points and configuration pairs q, q'.

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 42 / 72

Combinatorial	Planning

Sampling-Based	ł
Planning	

Differential Constraints

Given a single query: $q_I, q_G \in \mathcal{C}_{free}$

- 1. Initialization: Form $\mathcal{G}(V, E)$ with vertices q_I, q_G and no edges.
- 2. Vertex Selection Method (VSM): Choose a vertex $q_{cur} \in V$ for expansion.
- 3. Local Planning Method (LPM): For some $q_{new} \in C_{free}$, attempt to construct a path $\tau_s : [0,1] \to C_{free}$ such that $\tau(0) = q_{cur}$ and $\tau(1) = q_{new}$.
- 4. Insert an Edge in the Graph: Insert τ_s into E, as an edge from q_{cur} to q_{new} . If q_{new} is not already in V, then it is inserted.
- 5. Check for a Solution: Determine whether \mathcal{G} encodes a solution path.
- 6. **Return to Step 2:** Iterate unless a solution has been found or the algorithm reports failure.

Bug Traps

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 44 / 72

Randomized Potential Field Planner

Combinatorial Planning Sampling-Based Planning

Differential Constraints

Barraquand, Latombe, 1989

Use BFS on an implicit, high resolution grid. Use random walks to escape local minima.

It was able to solve high dimensional problems, but required too much parameter tuning.

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 45 / 72

Implicit Low Resolution Grid

Combinatorial Planning Sampling-Based Planning

Differential Constraints

Connect q_I and q_G to the grid. Apply classical grid search: BFS, DFS, Dijkstra, A^*

Some Other Incremental Planners

Combinatorial Planning
Sampling-Based
Planning

Differential Constraints

- Ariadne's clew algorithm (Mazer et al. 1992)
- Expansive space planner (Hsu et al., 1997)
- Rapidly exploring Random Trees (LaValle, Kuffner, 1998)
- SBL planning (Sanchez, Latombe, 2001)
- Adaptive random walk planner (Carpin, Pillonetto, 2005)

Making a "Random" Tree

Combinatorial Planning Sampling-Based Planning

Differential Constraints

Suppose $X = [-25, 25]^2$ and $q_I = (0, 0)$.

Pick a vertex a random, extend one unit in a random direction repeat, ... What happens?

Making a "Random" Tree

Combinatorial Planning Suppose $X = [-25, 25]^2$ and $q_I = (0, 0)$. Sampling-Based Pick a vertex a random, extend one unit in a random direction repeat, ... Planning What happens? **Differential Constraints**

Rapidly exploring Random Tree

Combinatorial Planning	By changing the vertex selection method, we obtain this:
Combinatorial Planning Sampling-Based Planning Differential Constraints	By changing the vertex selection method, we obtain this:

Rather than pick a vertex at random, pick a configuration at random.

RRT

Combinatorial Planning Sampling-Based Planning

Differential Constraints

SIMPLE_RRT(q_0)

1 \mathcal{G} .init(q_0);

2 for i = 1 to k do

- 3 $q_r \leftarrow \text{RandomConf}(i);$
- 3 $\mathcal{G}.add_vertex(q_r);$
- 4 $q_n \leftarrow \text{NEAREST}(S(\mathcal{G}), q_r);$
- 5 $\mathcal{G}.add_edge(q_n, q_r);$

 $SIMPLE_RRT(q_0)$

To bias toward the goal, q_G can be substituted for RandomConf(i) in some (e.g., every 100) iterations.

RandomConf(i) can be replaced by any dense sequence $\alpha(i)$ to obtain Rapidly exploring Dense Trees (RDTs).

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 52 / 72

Combinatorial Planning Sampling-Based Planning

Differential Constraints

For large RRTs (thousands of nodes), nearest-neighbor requests dominate.

In some settings, Kd-trees can dramatically improve performance.

Bidirectional Search

Combinatorial Planning
Sampling-Based

Differential Constraints

To solve a q_I , q_G query with RRTs. Grow two trees: 1) T_i from q_I and 2) T_g from q_G .

Repeat the following four steps:

- 1. Extend T_i using $\alpha(i)$, making q_{new} .
- 2. Extend T_g using q_{new} . If connected, then solution found.
- 3. Extend T_g using $\alpha(i+1)$, making q_{new} .
- 4. Extend T_i using q_{new} . If connected, then solution found.

TCRA 2012 Tutorial - Motion Planning - 14 May 2012 - 55 / 72

Single vs. Multiple Query

Combinatorial Planning Sampling-Based Planning

Differential Constraints

If there are multiple queries in the same C_{free} , then precomputing a roadmap may pay off.

BUILD_ROADMAP

- 1 \mathcal{G} .init(); $i \leftarrow 0$;
- 2 while i < N

4

5

6

7

- 3 if $\alpha(i) \in \mathcal{C}_{free}$ then
 - \mathcal{G} .add_vertex(lpha(i)); $i \leftarrow i+1$;
 - for each $q\in$ <code>NEIGHBORHOOD</code>(lpha(i), \mathcal{G})
 - if ((not \mathcal{G} .same_component($\alpha(i), q$)) and CONNECT($\alpha(i), q$)) then \mathcal{G} .add_edge($\alpha(i), q$);

PRM Variants

Combinatorial Planning Sampling-Based Planning

Differential Constraints

Connection rules:

- **Nearest K:** The *K* closest points to $\alpha(i)$ are considered. This requires setting the parameter *K* (a typical value is 15).
- Component K: Try to obtain up to K nearest samples from each connected component of \mathcal{G} .
- **Radius:** Take all points within a ball of radius r centered at $\alpha(i)$.
- **Visibility:** Try connecting α to all vertices in \mathcal{G} .

Sampling strategies: Gaussian, medial axis, bridge-test, ... See Karaman, Frazzoli, IJRR 2011 for PRM connection theory.

Visibility PRM

Combinatorial Planning Sampling-Based Planning

Differential Constraints

Visibility definition

(b) Visibility roadmap

Simeon, Laumond, Nissoux, 2000

Define two different kinds of vertices in \mathcal{G} :

Guards: To become a *guard*, a vertex, q must not be able to see other guards.

Connectors: To become a *connector*, a vertex, q, must see at least two guards.

Combinatorial Planning
Sampling-Based
Planning

Differential Constraints

Differential Constraints

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 59 / 72

Planning Under Differential Constraints

Combinatorial Planning Sampling-Based Planning

Differential Constraints

Due to robot kinematics and dynamics, most systems are *locally* constrained, in addition to *global* obstacles.

Let \dot{q} represent the C-space velocity.

In ordinary planning, any "direction" is allowed and the magnitude does not matter.

Thus, we could say

$$\dot{q} = u \tag{4}$$

and $u \in \mathbb{R}^n$ may be any velocity vector so that $||u|| \leq 1$.

Planning Under Differential Constraints

Combinatorial Planning Sampling-Based Planning

Differential Constraints

More generally, a *control system* (or *state transition equation*) constrains the velocity:

$$\dot{q} = f(q, u)$$

and \boldsymbol{u} belongs to some set \boldsymbol{U} (usually bounded).

A function $\tilde{u}: T \to U$ is applied over a time interval $T = [0, t_f]$ and the configuration q(t) at time t is given by the state at time t is given by

$$q(t) = q(0) + \int_0^t f(q(t'), \tilde{u}(t'))dt'.$$

in which q(0) is the initial configuration.

Dubins Car

(5)

Combinatorial Planning
Sampling-Based
Planning

Differential Constraints

This car drives forward only:

 $C = \mathbb{R}^2 \times S^1$. Let $u = (u_s, u_{\phi})$ and $U = [0, 1] \times [-\phi_{max}, \phi_{max}]$. Control system of the form $\dot{q} = f(q, u)$:

$$\dot{x} = \cos \theta$$

$$\dot{y} = \sin \theta$$

$$\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}.$$

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 62 / 72

Dubins Car

Differential Constraints

Stepping forward in the Dubins car

Combinatorial Planning Sampling-Based Planning

Differential Constraints

Handling higher order derivatives on C allows dynamical system models. This includes accelerations, momentum, drift.

Let X be a state space (or phase space). Typically, $X = \mathcal{C} \times \mathbb{R}^n$, in which n is the dimension of \mathcal{C} . Each $x \in X$ represents a 2n dimensional vector $x = (q, \dot{q})$.

A control system then becomes

$$\dot{x} = f(x, u)$$

Note that \dot{x} includes \ddot{q} components (hence, acceleration constraints).

Moving Into the Phase Space

Combinatorial Planning Sampling-Based

Planning

Differential Constraints

The obstacle region in X is usually:

$$X_{obs} = \{ x \in X \mid \kappa(x) \in \mathcal{C}_{obs} \},\$$

This has cylindrical structure:

Resolution Complete Planning

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 66 / 72

Local Planning

Boundary Value Problems

TH

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 68 / 72

Limiting Vertices Per Cell

Differential Constraints

Four stages for Dubins

Limiting one vertex per cell

Barraquand, Latombe, 1993

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 69 / 72

Incremental Sampling and Searching

Combinatorial Planning
Sampling-Based
Planning

Differential Constraints

For an RRT, just replace the "straight line" connection with a local planner.

SIMPLE_RRT_WITH_DIFFERENTIAL_CONSTRAINTS(x_0)

1 \mathcal{G} .init(x_0);

3

4

5

6

- 2 for i = 1 to k do
 - $x_n \leftarrow \mathsf{NEAREST}(S(\mathcal{G}), \alpha(i));$
 - $(\tilde{u}^p, x_r) \leftarrow \text{local_planner}(x_n, \alpha(i));$
 - \mathcal{G} .add_vertex(x_r);

 ${\cal G}.$ add_edge(${ ilde u}^p$);

Problems: Need good metrics and primitives

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 - 70 / 72
Summary of Part II

Combinatorial Planning
Sampling-Based
Planning

Differential Constraints

- Combinatorial vs. sampling based.
- For some problems, combinatorial is far superior.
- For most "industrial problems" sampling-based works well.
- Weaker notions of completeness are tolerated.
- Dimensionality always an issue (Sukharev).

More details: Planning Algorithms, Chapters 5 and 6.

Homework 2: Solve During Lunch Break

Combinatorial Planning Sampling-Based

Differential Constraints

Planning

For an infinite sample sequence $\alpha : \mathbb{N} \to X$, let α_k denote the first k samples.

Find a metric space $X \subseteq \mathbb{R}^n$ and α so that:

- 1. The dispersion of α_k is ∞ for all k.
- 2. The dispersion of α is 0.

Hint: Do not make it too complicated.

