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Motion Planning for Dynamic Environments

Part II: Motion Planning: Finding the Path
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A car driving on a gigantic sphere:

S2

The C-space is:
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A car driving on a gigantic sphere:

S2

The C-space is: SO(3) = RP 3

To see it, imagine car is painted on S2 and rotate S2 about its center.

It is not S2 × S1: Cartesian product vs. fiber bundle (Hopf fibration)
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Given robotA and obstacleO models, C-space C, and qI , qG ∈ Cfree.

Cobs

qI

qG

Cfree

Cobs

Cobs

Automatically compute a path τ : [0, 1]→ Cfree so that τ(0) = qI and

τ(1) = qG.
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� Combinatorial planning
(exact planning)

� Sampling-based planning
(probabilistic planning, randomized planning)

The methods differ in the philosophy they use to discretize the problem.

Also: Approximate cell decompositions
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A planning algorithm may be:

� Complete: If a solution exists, it finds one; otherwise, it reports

failure.

� Semi-complete: If a solution exists, it finds one; otherwise, it may

run forever.

� Resolution complete: If a solution exists, it finds one; otherwise, it

terminates and reports that no solution within a specified resolution

exists.

� Probabilistically complete: If a solution exists, the probability that

it will be found tends to one as the number of iterations tends to

infinity.
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� Mostly developed in the 1980s

� Influence from computational geometry and computational real

algebraic geometry

� All algorithms are complete

� Usually produce a roadmap in Cfree

� Extremely efficient for low-dimensional problems

� Some are difficult to implement (numerical issues)
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Methods produce a topological graph G:

� Each vertex is a configuration q ∈ Cfree.

� Each edge is a path τ : [0, 1]→ Cfree for which τ(0) and τ(1) are

vertices.

Sometimes, Cfree may be replaced by cl(Cfree)
(include the boundary of Cfree).

This allows the robot to “scrape” the obstacles.
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A roadmap is a topological graph G with two properties:

1. Accessibility: From anywhere in Cfree it is trivial to compute a path

that reaches at least one point along any edge in G.

2. Connectivity-preserving: If there exists a path through Cfree from

qI to qG, then there must also exist one that travels through G.
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Assume that Cobs (and Cfree) are piecewise linear.

Could be a point robot among polygonal obstacles.

Could be a polygonal, translating robot among polygonal obstacles.

The methods tend to extend well to a disc robot.

Use clever data structures to encode vertices, edges, regions

Example: Doubly connected edge list
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We consider four methods:

� Trapezoidal decomposition

� Triangulation

� Maximum-clearance roadmap (retraction method)

� Shortest-path roadmap (reduced visibility graph)
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Try to extend a ray above or below every vertex.

There are four cases:



Trapezoidal Decomposition

Combinatorial Planning

Sampling-Based
Planning

Differential Constraints

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 13 / 72

� Use the plane sweep principle to efficiently determine where the

rays terminate.

� Sort vertices by x coordinate.

� Handle extensions from left to right, while maintaining a vertically

sorted list of edges.

� Leads to O(n lg n) running time. Easy to implement.
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The resulting roadmap G:
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Solving a query: Get from qI to qG.

qI

qG
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Compute triangulation:

O(n2) time naive, O(n) optimal, O(n lg n) a good tradeoff.

Build easy roadmap from the triangulation:
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One closest
point

Two closest
points

One closest
point

Imagine obtaining a skeleton by gradually thinning Cfree.

Based on deformation retract from topology.

Also is a kind of generalized Voronoi diagram.

O’Dunlaing, Yap, 1983
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Three cases contribute to the roadmap:

Edge-Edge Vertex-Vertex Vertex-Edge

O(n4) time naive, O(n lg n) optimal.

Picture from Latombe, 1991
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Optimal planning is easy in polygonal environments.

The shortest-path roadmap contains all vertices and edges that optimal

paths follow when obstructed.

Imagine pulling a string tight between qI and qG.
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Every reflex vertex (interior angle > π) is a roadmap vertex.

Edges in the roadmap correspond to two cases:

1. Consecutive reflex vertices

2. Bitangent edges

p1 p3

p4p6

p5

p2

A bitangent edge is needed when this is true:

(

fl(p1, p2, p5)⊕ fl(p3, p2, p5)
)

∨
(

fl(p4, p5, p2)⊕ fl(p6, p5, p2)
)

,

in which fl is a left-turn predicate.
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To solve a query, connect qI and qG to the roadmap:

qG

qI
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Use Dijkstra’s algorithm to search for a shortest path.

qG

qI
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If C is 3 or more dimensions, most methods do not extend.

Optimal path planning for 3D polyhedra is NP-hard.

Maximal clearance roadmaps become disconnected in 3D.

Trapezoidal decomposition extends:

y y y

z z z

y

z

x
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� Specialized decompositions: ladder, rigid planar robot, discs

� Cylindrical algebraic decomposition (Schwartz, Sharir, 1983)

� Canny’s roadmap algorithm (1987)

Rearranging a bunch of rectangles is PSPACE-hard:
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v1

e3

e2

e1

R7

R5

e3

e2

x2

x1

e4

e1

R10

R9

R8

R13

R11

R12

R2 R3
R1 R6

R4

O(n5) time and space

Schwartz, Sharir, 1983
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Folding over Intersection

Developed by Collins to decide Tarski sentences

3
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34
2

35

30

364
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31

R

Doubly exponential time and space.

Schwartz, Sharir, 1983
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x1

x3

x2

Singly exponential time.

Canny, 1987

See Algorithms in Real Algebraic Geometry by Basu, Pollack, Roy, 2003.

More recently: Generalizations to o-minimal structures.
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Sampling−Based
Motion Planning AlgorithmCollision

Detection
Geometric
Models

Discrete
Searching

C−Space
Sampling

� Use collision detector to separate planning from input geometry

� Systematically sample (random vs. deterministic) the free space

� Single-query: Incremental sampling and searching

� Multiple-query: Precompute a sampling-based roadmap
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In topology, a set U is called dense in V if cl(U) = V .

Implication: Every open subset of V contains at least one point in U .

Example: The rational numbers Q are dense in R

(every open interval contains some fractions)

If U is dense and countable, then a dense sequence can be formed:

α : N→ U

This imposes a linear ordering on U : α(1), α(2), . . .

Example: A random sequence is dense with probability one.
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Uniform random samples seem easy to produce.

Statistical independence makes it easy to combine sample sets.

In reality, note that pseudo-random sequences are generated.
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Be careful in curved spaces!

To generate a random point on Sn: Generate n Guassian iid samples and

normalize.

Uniform random rotation in SO(3):
Choose three points u1, u2, u3 ∈ [0, 1] uniformly at random.
(a, b, c, d) =

(
√
1− u1 sin 2πu2,

√
1− u1 cos 2πu2,

√
u1 sin 2πu3,

√
u1 cos 2πu3).

S2
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Naive Reverse Van der
i Sequence Binary Binary Corput Points in [0, 1]/ ∼
1 0 .0000 .0000 0
2 1/16 .0001 .1000 1/2
3 1/8 .0010 .0100 1/4
4 3/16 .0011 .1100 3/4
5 1/4 .0100 .0010 1/8
6 5/16 .0101 .1010 5/8
7 3/8 .0110 .0110 3/8
8 7/16 .0111 .1110 7/8
9 1/2 .1000 .0001 1/16
10 9/16 .1001 .1001 9/16
11 5/8 .1010 .0101 5/16
12 11/16 .1011 .1101 13/16
13 3/4 .1100 .0011 3/16
14 13/16 .1101 .1011 11/16
15 7/8 .1110 .0111 7/16
16 15/16 .1111 .1111 15/16
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Let P be a finite set of points in metric space (X, ρ).
The dispersion of P is:

δ(P ) = sup
x∈X

{

min
p∈P

{

ρ(x, p)
}}

.

L2 dispersion L∞ dispersion

In a bounded space, a dense sequence drives the dispersion to zero.
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van der Corput is asymptotically optimal in terms of dispersion

Halton: Generalize van der Corput by using relatively prime bases

(2, 3, 5, 7, 11, ...) for each coordinate.

More uniform than random (which needs O((lg n)1/d) times as many

samples needed to produce the same expected dispersion).

Other sequences produce better constants, and optimize discrepancy.
See Random Number Generation and Quasi-Monte-Carlo Methods, Niederreiter,
1992.
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Sukharev theorem:

For any set P of k samples in [0, 1]d:

δ(P ) ≥ 1

2
⌊

k
1

d

⌋

, (1)

in which δ is the L∞ dispersion.

The best possible placement of k points:

Think: “points per axes” for any sample set

Holding the dispersion fixed requires exponentially many points in

dimension.
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Maybe you didn’t need all of those dimensions anyway...

Pick any positive ǫ < 1 and any set P of k points in Rn, there exists a

function f : Rn → Rm so that for all x, y ∈ P ,

(1− ǫ)‖x− y‖2 ≤ ‖f(x)− f(y)‖2 ≤ (1 + ǫ)‖x− y‖2,

and m = 4 lnn/(ǫ2/2− ǫ3/3).

In other words, a low-distortion, low-dimensional embedding exists.

The basis of many dimensionality reduction methods, in machine learning,

compressed sensing, computational geometry, ...
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1. Random sample sequence – can these really be generated?

2. Pseudo-random sequence

3. Low-dispersion sequence

4. Multiresolution grid
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196 points in each square region:

Pseudo-random points Pseudo-random points Halton points

Hammersley points Lattice points Sukharev grid
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Maintain a hierarchy of bounding regions

Two opposing criteria:

1. The region should fit the intended body points as tightly as possible.

2. The intersection test for two regions should be as efficient as

possible.

Popular packages from UNC: PQP, I-Collide, ...
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V

V

V

E

E

E

V

E

E

V

� Vertex-Vertex Each point of the closest pair is a vertex of a polygon.

� Edge-Vertex One point of the closest pair lies on an edge, and the

other lies on a vertex.

� Edge-Edge Each point of the closest pair lies on an edge. In this

case, the edges must be parallel.
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How many collision checks should be performed along an edge?
q

q
′

Using workspace distance information, may be able to guarantee

collision-free segments.

A x

y

ar

r

Let a(q) ∈ A(q) denote a point on the robot.

Find a constant c > 0 so that

‖a(q)− a(q′)‖ < c‖q − q′‖ (3)

over robot points and configuration pairs q, q′.
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Given a single query: qI , qG ∈ Cfree

1. Initialization: Form G(V,E) with vertices qI , qG and no edges.

2. Vertex Selection Method (VSM): Choose a vertex qcur ∈ V for
expansion.

3. Local Planning Method (LPM): For some qnew ∈ Cfree, attempt to
construct a path τs : [0, 1]→ Cfree such that τ(0) = qcur and
τ(1) = qnew.

4. Insert an Edge in the Graph: Insert τs into E, as an edge from qcur to
qnew. If qnew is not already in V , then it is inserted.

5. Check for a Solution: Determine whether G encodes a solution path.

6. Return to Step 2: Iterate unless a solution has been found or the
algorithm reports failure.
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A convenient way to express the challenges of incremental sampling and

searching

qI qG

qI qG

qG
qI qG

qI
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Barraquand, Latombe, 1989

Use BFS on an implicit, high resolution grid. Use random walks to escape

local minima.

Random Walk BacktrackBest First

Stuck and i < K

Stuck
and i=K

Reset i to 1

Increment i

Initialization (i=1)

It was able to solve high dimensional problems, but required too much

parameter tuning.

qG

qI
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Connect qI and qG to the grid.

Apply classical grid search: BFS, DFS, Dijkstra, A∗
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� Ariadne’s clew algorithm (Mazer et al. 1992)

� Expansive space planner (Hsu et al., 1997)

� Rapidly exploring Random Trees (LaValle, Kuffner, 1998)

� SBL planning (Sanchez, Latombe, 2001)

� Adaptive random walk planner (Carpin, Pillonetto, 2005)
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Suppose X = [−25, 25]2 and qI = (0, 0).
Pick a vertex a random, extend one unit in a random direction repeat, ...

What happens?
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Suppose X = [−25, 25]2 and qI = (0, 0).
Pick a vertex a random, extend one unit in a random direction repeat, ...

What happens?
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By changing the vertex selection method, we obtain this:

Rather than pick a vertex at random, pick a configuration at random.
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SIMPLE RRT(q0)
1 G.init(q0);

2 for i = 1 to k do
3 qr ← RandomConf(i);
3 G.add vertex(qr);

4 qn ← NEAREST(S(G), qr);

5 G.add edge(qn, qr);

SIMPLE RRT(q0)

To bias toward the goal, qG can be substituted for RandomConf(i) in

some (e.g., every 100) iterations.

RandomConf(i) can be replaced by any dense sequence α(i) to obtain

Rapidly exploring Dense Trees (RDTs).
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Extend the nearest vertex (using the metric!) to the random point:

q0

qn

α(i)

q0

If there is an obstacle, then stop short:

qn

q0

Cobs

qs

α(i)
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If the nearest RRT point lies in an edge, it is better to extend from there:

qn

α(i)q0

45 iterations 2345 iterations
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An approximate solution: Insert intermediate vertices.

qn

q0 α(i)
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For large RRTs (thousands of nodes), nearest-neighbor requests

dominate.

In some settings, Kd-trees can dramatically improve performance.
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To solve a qI , qG query with RRTs.

Grow two trees: 1) Ti from qI and 2) Tg from qG.

Repeat the following four steps:

1. Extend Ti using α(i), making qnew.

2. Extend Tg using qnew. If connected, then solution found.

3. Extend Tg using α(i+ 1), making qnew.

4. Extend Ti using qnew. If connected, then solution found.
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If there are multiple queries in the same Cfree, then precomputing a

roadmap may pay off.

BUILD ROADMAP
1 G.init(); i← 0;
2 while i < N
3 if α(i) ∈ Cfree then
4 G.add vertex(α(i)); i← i+ 1;
5 for each q ∈ NEIGHBORHOOD(α(i),G)
6 if ((not G.same component(α(i), q)) and CONNECT(α(i), q)) then
7 G.add edge(α(i), q);

α(i)

Cobs

Cobs
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Connection rules:

� Nearest K: The K closest points to α(i) are considered. This

requires setting the parameter K (a typical value is 15).

� Component K: Try to obtain up to K nearest samples from each

connected component of G.

� Radius: Take all points within a ball of radius r centered at α(i).

� Visibility: Try connecting α to all vertices in G.

Sampling strategies: Gaussian, medial axis, bridge-test, ...

See Karaman, Frazzoli, IJRR 2011 for PRM connection theory.



Visibility PRM

Combinatorial Planning

Sampling-Based
Planning

Differential Constraints

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 58 / 72

V (q)

q

Visibility definition (b) Visibility roadmap

Simeon, Laumond, Nissoux, 2000

Define two different kinds of vertices in G:

Guards: To become a guard, a vertex, q must not be able to see

other guards.

Connectors: To become a connector, a vertex, q, must see at least

two guards.



Differential Constraints

Combinatorial Planning

Sampling-Based
Planning

Differential Constraints

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 59 / 72



Planning Under Differential Constraints

Combinatorial Planning

Sampling-Based
Planning

Differential Constraints

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 60 / 72

Due to robot kinematics and dynamics, most systems are locally

constrained, in addition to global obstacles.

Let q̇ represent the C-space velocity.

In ordinary planning, any “direction” is allowed and the magnitude does not

matter.

Thus, we could say

q̇ = u (4)

and u ∈ Rn may be any velocity vector so that ‖u‖ ≤ 1.
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More generally, a control system (or state transition equation) constrains

the velocity:

q̇ = f(q, u)

and u belongs to some set U (usually bounded).

A function ũ : T → U is applied over a time interval T = [0, tf ] and the

configuration q(t) at time t is given by the state at time t is given by

q(t) = q(0) +

∫ t

0

f(q(t′), ũ(t′))dt′.

in which q(0) is the initial configuration.
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This car drives forward only:

L

ρ

φ

θ

(x, y)

C = R2 × S1.

Let u = (us, uφ) and U = [0, 1]× [−φmax, φmax].
Control system of the form q̇ = f(q, u):

ẋ = cos θ

ẏ = sin θ

θ̇ =
us
L

tanuφ.

(5)
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Stepping forward in the Dubins car

Two stages Four stages
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Handling higher order derivatives on C allows dynamical system models.

This includes accelerations, momentum, drift.

Let X be a state space (or phase space).

Typically, X = C × Rn, in which n is the dimension of C.

Each x ∈ X represents a 2n dimensional vector x = (q, q̇).

A control system then becomes

ẋ = f(x, u)

Note that ẋ includes q̈ components (hence, acceleration constraints).
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The obstacle region in X is usually:

Xobs = {x ∈ X | κ(x) ∈ Cobs},

This has cylindrical structure:

Cobs

Xobs

X

C
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Discretize time and action space:

T

U

T

U

A trajectory in U A trajectory in Ud
Using countability to try all sequences:

1

2

3

4

5

6

∆t 1

2
∆t 1

4
∆t 1

8
∆t 1

16
∆t 1

32
∆t 1

64
∆t

It
er

at
io

n

Time step
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System
Simulatorũt

x(0)

t

x̃t

Two-Point
Boundary-Value
Solver

ũt

xI

xG

Easy Usually Hard
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XGxI
xI

xG

BVP

No BVP One BVP

xI

xG
BVP xG

xI

BVP

One BVP One BVP
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Four stages for Dubins Limiting one vertex per cell

Barraquand, Latombe, 1993
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For an RRT, just replace the “straight line” connection with a local planner.

SIMPLE RRT WITH DIFFERENTIAL CONSTRAINTS(x0)
1 G.init(x0);

2 for i = 1 to k do
3 xn ← NEAREST(S(G), α(i));
4 (ũp, xr)← LOCAL PLANNER(xn, α(i));
5 G.add vertex(xr);

6 G.add edge(ũp);

Apply some ũ
p

xn

α(i)

Problems: Need good metrics and primitives
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� Combinatorial vs. sampling based.

� For some problems, combinatorial is far superior.

� For most “industrial problems” sampling-based works well.

� Weaker notions of completeness are tolerated.

� Dimensionality always an issue (Sukharev).

More details: Planning Algorithms, Chapters 5 and 6.
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For an infinite sample sequence α : N→ X , let αk denote the first k
samples.

Find a metric space X ⊆ Rn and α so that:

1. The dispersion of αk is∞ for all k.

2. The dispersion of α is 0.

Hint: Do not make it too complicated.
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