
ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 1 / 71

Motion Planning for Dynamic Environments

Part I - Motion Planning: Living in C-Space

Steven M. LaValle

University of Illinois
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Goal

32

1
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7

Given obstacles, a robot, and its motion capabilities, compute

collision-free robot motions from the start to goal.
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The robot and obstacles live in a world or workspace W .

Usually, W = R
2 or W = R

3.

The obstacle region O ⊂ W is a closed set.

The robot A(q) ⊆ W is a closed set.

(placed at configuration q).

Representation issues:

� Can it be obtained automatically or with little processing?

� What is the complexity of the representation?

� Can collision queries be efficiently resolved?

� Can a solid or surface be easily inferred?
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f(x, y) = ax+ by + c Inside: f(x, y) ≤ 0

Intersections make convex polygons or polyhedra.
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Notions of inside and outside are clear.
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Consider primitives of the form:

Hi = {(x, y, z) ∈ W | fi(x, y, z) ≤ 0},

which is a half-space is fi is linear.

Now let fi be any polynomial, such as f(x, y) = x2 + y2 − 1.

Obstacles can be formed from finite intersections:

O = H1 ∩H2 ∩H3 ∩H4.

And from finite unions of those:

O = O1 ∪ O2 ∪ · · · ∪ On.

O could then become any semi-algebraic set.
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In CAD models inside-outside may not be clearly defined

Throw it all into a collision checker and hope for the best...

A typical representation: Triangle strips and fans



Geometric Models: Point Clouds

Geometric Models

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 8 / 71

The most natural: Take data straight from range sensors

See the Point Cloud Library.

Problem: Hard to define and test for “collision”
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May be rigid, articulated, deformable, reconfigurable, ...

The degrees of freedom is important.
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Consider W = R
2 and A ⊂ R

2.

Moving
the Robot

Moving the
Coordinate
Frame

Translation of the robot Translation of the frame

Translation:
Translate A by xt ∈ R and yy ∈ R.

This means for every (x, y) ∈ A, we obtain

(x, y) 7→ (x+ xt, y + yt)

The result is denoted as A(xt, yt).
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Rotation: Rotate A by θ ∈ [0, 2π)

This means for every (x, y) ∈ A, we obtain

(x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ)

The result is A(θ).
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Important: Rotate first, then translate

(x, y) 7→

(

x cos θ − y sin θ + xt
x sin θ + y cos θ + yt

)

The operations can be performed by a matrix:





cos θ − sin θ xt
sin θ cos θ yt
0 0 1









x
y
1



 =





x cos θ − y sin θ + xt
x sin θ + y cos θ + yt

1





Technically: A rigid body transformation is an orientation-preserving,

isometric embedding.
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The 3 by 3 matrix

T (xt, yt, θ) =





cos θ − sin θ xt
sin θ cos θ yt
0 0 1





contains a rotation matrix in the upper left and a translation column vector

on the right.

T (xt, yt, θ) =

(

R(θ) v
0 1

)

in which

R(θ) =

(

x cos θ − y sin θ
x sin θ + y cos θ

)

and v = (xy, yt).
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Now, W = R
3 and A ⊂ R

3.

Translation:
Translate A by xt, yt, zt ∈ R.

This means for every (x, y) ∈ A, we obtain

(x, y) 7→ (x+ xt, y + yt, z + zt)

The result is denoted as A(xt, yt, zt).
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Rotation:

Yaw

z

y

x

PitchRoll

γ

β

α

Yaw: Rotation of α about the z-axis:

Rz(α) =





cosα − sinα 0
sinα cosα 0
0 0 1



 .
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Pitch: Rotation of β about the y-axis:

Ry(β) =





cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ



 .

Roll: Rotation of γ about the x-axis:

Rx(γ) =





1 0 0
0 cos γ − sin γ
0 sin γ cos γ



 .
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Combining them is sufficient to produce any rotation:

R(α,β, γ) = Rz(α)Ry(β)Rx(γ) =
(

cosα cosβ cosα sinβ sin γ − sinα cos γ cosα sinβ cos γ + sinα sin γ

sinα cosβ sinα sinβ sin γ + cosα cos γ sinα sinβ cos γ − cosα sin γ

− sinβ cosβ sin γ cosβ cos γ

)

.

Every rotation matrix must have:

� Unit column vectors

� Pairwise orthogonal columns

� Determinant 1



Transforming Robots: 3D Body

Geometric Models

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 19 / 71

We now obtain a 4 by 4 homogeneous transformation matrix:

T (α, β, α, xt, yt, zt) =

(

R(α, β, γ) v
0 1

)

.
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For n independent bodies, just use n separate homogeneous

transformation matrices.

However, if they are non-rigidly attached:

A1

A2

A1

A2

Revolute Prismatic

then use specialized, chained transformations.
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xi−1

θi

Ai−1

A
i−

2

x i

y i

ai−1

yi−1

A
i

One matrix for each link:

T1 =





cos θ1 − sin θ1 xt
sin θ1 cos θ1 yt
0 0 1





A chain of matrices for the chain of links:

T1T2 · · ·Tm





x
y
1
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In three dimensions, bodies may be non-rigidly attached in many ways:

Revolute Prismatic Screw
1 Degree of Freedom 1 Degree of Freedom 1 Degree of Freedom

Cylindrical Spherical Planar
2 Degrees of Freedom 3 Degrees of Freedom 3 Degrees of Freedom

Nevertheless, systems of parametrizations are developed:

Denavit-Hartenburg, Khalil-Kleinfinger, ...
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Tree of bodies Closed kinematic chains

General idea: Need to find good parametrizations of the freedom of

motion between attached links.

Warning: Extremely hard for closed chains.
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� Path planning becomes a search on a space of transformations

� What does this space look like?

� How should it be represented?

� What alternative representations are allowed and how do they affect

performance?
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Three views of the configuration space:

1. As a topological manifold

2. As a metric space

3. As a differentiable manifold

Number 3 is too complicated! There is no calculus in basic path planning.



Topological Spaces

Geometric Models

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 27 / 71

Start with any set X .

Declare some of the sets in pow(X) to be open sets.

If these hold:

1. The union of any number of open sets is an open set.

2. The intersection of a finite number of open sets is an open set.

3. Both X and ∅ are open sets.

then X is a topological space.

A set C ⊆ X is closed if and only if X \ C is open.

Many subsets of X could be neither open nor closed.
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Although elegant, the previous definition was much too general.

We will only consider spaces of the form X ⊆ R
n.

R
n comes equipped with standard open sets:

A set O is open if every x ∈ O is contained in a ball that is contained in O.

O

x

To get the open sets of X , take every open set O ⊆ R
n and form

O′ = O ∩X .
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x1

U

x3

x2

O2

O1

With respect to a subset U ⊆ X , a point x ∈ X may be:

� a boundary point, as in x1 above,

� an interior point, as in x2,

� or an exterior point, as in x3.
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Let X and Y be any topological spaces.

A function f : X → Y is called continuous if for any open set O ⊆ Y ,

the preimage f−1(O) ⊆ X is an open set.
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A bijection f : X → Y is called a homeomorphism if both f and f−1 are

continuous.

If f exists, then X and Y are homeomorphic.

Example: For X = (−1, 1) and Y = R, let x 7→ 2 tan−1(x)/π
(−1, 1).

R

These are all homeomorphic subspaces of R2.

These are homeomorphic, but not with the ones above them.
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These are all mutually non-homeomorphic
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Let M ⊆ R
m be any set that becomes a topological space using the

subset topology.

M is called a manifold if for every x ∈ M , an open set O ⊂ M exists

such that: 1) x ∈ O, 2) O is homeomorphic to R
n, and 3) n is fixed for all

x ∈ M .

It “feels like” Rn around every x ∈ M .



Manifold or Not?

Geometric Models

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 34 / 71

Subspaces of R2:

Yes

NoYes

Yes

Yes No

Yes No

All it takes is one bad point to fail the manifold test.
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R
n is a distinct manifold for each n

S1 = {(x, y) ∈ R
2 | x2 + y2 = 1} is a circle manifold

Here are some 2D cylinders (all homeomorphic!):

Another one: M = R
2 \ {(0, 0)} (the punctured plane)
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Start with an open square (0, 1)2 ⊂ R
2

Let (x, y) denote a point on the manifold.

Include the x = 0 points and define equivalence relation ∼:

(0, y) ∼ (1, y)

for all y ∈ (0, 1).
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Typical appearance A flat representation

Change the equivalence relation to

(0, y) ∼ (1, 1− y)

for all y ∈ (0, 1).
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Many useful, distinct manifolds can be made by identifying edges of a

polytope.

Plane, R2 Cylinder, R× S1

Möbius band Torus

Klein bottle Projective plane, RP2

Two-sphere, S2 Double torus
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A simple way to describe the manifold of all transformations

T (q) =

(

R v
0 1

)

SE(n) is the group of all (n+ 1) by (n+ 1) dimensional homogeneous

transformation matrices.

Thus, SE(2) is just a subset of R9 and SE(3) is a subset of R16.

But which matrices are allowed? Is there a nice parametrization?
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The configuration space C is the set of all allowable robot transformations.

Translation parameters: xt, yt ∈ R

Rotation parameter: θ ∈ [0, 2π]

Using the homeomorphism θ 7→ (cos θ, sin θ), the space of all rotations

is S1.

The configuration space is C = R
2 × S1.

Note “=” here means “homeomorphic to”
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Recall that R× S1 is a cylinder.

C = R
2 × S1 can be imagined as a “thick” cylinder.

Or a square box with the top and bottom identified:
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Translation parameters: xt, yt, zt ∈ R Rotation parameters:

yaw, pitch, roll?

Gimbal lock problem: An infinite number of YPR parameters map to the

same rotation.

When the pitch is 90◦, yaw and roll become the same.

(First roll, then pitch, then yaw)
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Consider the mapping:

(a, b, c, d) 7→





2(a2 + b2)− 1 2(bc− ad) 2(bd+ ac)
2(bc+ ad) 2(a2 + c2)− 1 2(cd− ab)
2(bd− ac) 2(cd+ ab) 2(a2 + d2)− 1





in which a, b, c, d ∈ R.

Enforce the constraint a2 + b2 + c2 + d2 = 1.

In this case, the mapping above is two-to-one everywhere onto SO(3).
(a, b, c, d) and (−a,−b,−c,−d) map to the same rotation.
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(a, b, c, d) = (cos
θ

2
,

(

v1 sin
θ

2

)

,

(

v2 sin
θ

2

)

,

(

v3 sin
θ

2

)

)

v

θ
2π − θ

−v

These are the same rotation.

If you like algebra, consider (a, b, c, d) as a quaternion.



Representations of SO(3)

Geometric Models

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 46 / 71

Use upper half of S3: d ≥ 0 and a2 + b2 + c2 + d2 = 1

Project down: (a, b, c, d) 7→ (a, b, c, 0).

The result is a 3D ball: B3 = {(a, b, c) ∈ R
3 | a2 + b2 + c2 ≤ 1}.

However, on the boundary of B3 we have (a, b, c) ∼ (−a,−b,−c).
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Stretching B3 out to make a cubes.

Opposite faces are reverse identified; hence, B3 = RP 3.

Alternatively, could stretch S3 out to the faces of the 4-cube.

The 4-cube as 8 faces, but only 4 3D cubes are needed.
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For a rigid body that translates and rotates in R
3:

C = R
3 × RP 3

The R
3 components arise from translation.

The RP 3 component arises from rotation.
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For independent bodies, A1 and A2, take the Cartesian product:

C = C1 × C2

If they are attached to make a kinematic chain, then take the Cartesian

product of their components:

C = R
2 × S1 × S1 × S1
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The case of closed kinematic chains often arises in redundant robots,

manipulation, protein folding, ...

A2

A3

A4

A5

A7

A10

A9

A1

A8

A6

A manifold may result, but it may be difficult to obtain an efficient

parametrization.
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� Convenient parametrizations preferred

� Geometric distortion should be minimized

How should be distortion be described? Metric space.
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Metric Spaces
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A metric space (X, ρ) is a topological space X equipped with a function

ρ : X ×X → R such that for any a, b, c ∈ X :

1. Nonnegativity: ρ(a, b) ≥ 0.

2. Reflexivity: ρ(a, b) = 0 if and only if a = b.

3. Symmetry: ρ(a, b) = ρ(b, a).

4. Triangle inequality: ρ(a, b) + ρ(b, c) ≥ ρ(a, c).

Example: Euclidean distance in R
n

More examples: Lp metrics in R
n
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Map onto a unit circle, and then use Euclidean distance:

Direct comparison of angles in R:

ρ(θ1, θ2) = min
{

|θ1 − θ2|, 2π − |θ1 − θ2|
}

or

ρ(a1, b1, a2, b2) = cos−1(a1a2 + b1b2),

in which ai = cos θi and bi = sin θi.
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Comparing rotations in SO(3) works in a similar way, using the

h = (a, b, c, d) representation:

ρs(h1, h2) = cos−1(a1a2 + b1b2 + c1c2 + d1d2) (1)

However, must consider identification of antipodal points:

ρ(h1, h2) = min
{

ρs(h1, h2), ρs(h1,−h2)
}

. (2)

Other possibilities: Euclidean distance in yaw-pitch-roll space, Euclidean

distance in R
9 (the space of 3 by 3 matrices).

Some metrics are more “natural” than others. How to formalize?
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Let G be a matrix group, such as SO(n) or SE(n).
Let µ be a measure on G. In could, for example, assign volumes by using

the metric function.

If for any measurable subset A ⊆ G, and any element g ∈ G,

µ(A) = µ(gA) = µ(Ag), then µ is called the Haar measure.

The Haar measure exists for any locally compact topological group and is

unique up to scale.

Example for SO(2) using the unit circle S1:
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For 3D rotations, recall the mapping

(a, b, c, d) 7→ SO(3) (3)

The Haar measure for SO(3) is obtained as the standard area (or 3D

volume) on the surface of S3.

Uniform random points on S3 yield uniform random rotations on SO(3)
that are comatible with the Haar measure (it is the right way to sample).
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Let (X, ρx) and (Y, ρy) be two metric spaces.

A metric space for the Cartesian product Z = X × Y is formed as

ρz(z, z
′) = ρz(x, y, x

′, y′) = c1ρx(x, x
′) + c2ρy(y, y

′), (4)

in which c1, c2 are positive constants.

If X = R
2 from translation and Y = S1 from rotation, what should c1

and c2 be?

Perhaps c2 = c1/r, in which r is the point on A that is furthest from the

origin.

What should the constants be for a long kinematic chain?
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Given world W , a closed obstacle region O ⊂ W , closed robot A, and

configuration space C.

Let A(q) ⊂ W denote the placement of the robot into configuration q.

The obstacle region Cobs in C is

Cobs = {q ∈ C | A(q) ∩ O 6= ∅},

which is a closed set.

The free space Cfree is an open subset of C:

Cfree = C \ Cobs

We want to keep the configuration in Cfree at all times!
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Consider Cobs for the case of translation only.

The Minkowski sum of two sets is defined as

X ⊕ Y = {x+ y ∈ R
n | x ∈ X and y ∈ Y } (5)

(from the CGAL manual)
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The Minkowski difference of two sets is defined as

X ⊖ Y = {x− y ∈ R
n | x ∈ X and y ∈ Y } (6)

A one-dimensional example:

-4 -3 -2 -1

A

O

Cobs

−A

6543210

Sometimes called convolution.
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O
A

Cobs O
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A simple algorithm to compute the obstacle.

β1

β2

α1

α3

β4

β3

α2

β4

β1β3

β2

α1

α2

α3

Inward and outward normals Sorted around S1

Cobs O
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a1

a2

A

(−1,−1)
a3

(1, 0)

(0, 1)
b1

b2

b3 b4

(1, 1)(−1, 1)

(1,−1)(−1,−1)

O

Type Vtx. Edge n v Half-Plane

VE a3 b4-b1 [1, 0] [xt − 2, yt] {q ∈ C | xt − 2 ≤ 0}
VE a3 b1-b2 [0, 1] [xt − 2, yt − 2] {q ∈ C | yt − 2 ≤ 0}
EV b2 a3-a1 [1,-2] [−xt, 2− yt] {q ∈ C | − xt + 2yt − 4 ≤ 0}
VE a1 b2-b3 [−1, 0] [2 + xt, yt − 1] {q ∈ C | − xt − 2 ≤ 0}
EV b3 a1-a2 [1, 1] [−1− xt,−yt] {q ∈ C | − xt − yt − 1 ≤ 0}
VE a2 b3-b4 [0,−1] [xt + 1, yt + 2] {q ∈ C | − yt − 2 ≤ 0}
EV b4 a2-a3 [−2, 1] [2− xt,−yt] {q ∈ C | 2xt − yt − 4 ≤ 0}
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What about translation and rotation?

Obtain a 3D subset of R2 × S1.

Two contact types:

A O OA

Type EV Type VE

Equations polynomial in xt, yt, a, b arise.

(a = cos θ and b = sin θ)

Forms the boundary of a 3D semi-algebraic obstacle in C = R
2 × S1
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In 3D, there are three contact types:

O
A

A
O

A

O

Type FV Type VF Type EE

Forms the boundary of a 6D semi-algebraic obstacle in C = R
3 × RP 3

Three different kinds of contacts that each lead to half-spaces in C:

1. Type FV: A face of A and a vertex of O

2. Type VF: A vertex of A and a face of O

3. Type EE: An edge of A and an edge of O .
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For the case of two-links, C = S1 × S1, but the obstacle region can

quickly become strange and complicated:
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Given robot A and obstacle O models, C-space C, and qI , qG ∈ Cfree.

Cobs

qI

qG

Cfree

Cobs

Cobs

Automatically compute a path τ : [0, 1] → Cfree so that τ(0) = qI and

τ(1) = qG.



Summary of Part I

Geometric Models

Transforming Robots

Topology

C-Spaces

Metric Spaces

C-Space Obstacles

ICRA 2012 Tutorial - Motion Planning - 14 May 2012 – 70 / 71

� Geometric representations are an important first step.

� Planning is a search on the space of transformations.

� Think like a topologist when it comes to C-space.

More details: Planning Algorithms, Chapters 3 and 4.
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A car driving on a gigantic sphere:

S2

The sphere is large enough so that the car does not wobble.

The car can achieve any position and orientation on the sphere.

What is the C-space?
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