Motion Planning for Dynamic EnvironmentsPart I - Motion Planning: Living in C-Space

Steven M. LaValleUniversity of Illinois

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – ¹ / ⁷¹

The Basic Path Planning Problem

Given obstacles, ^a robot, and its motion capabilities, computecollision-free robot motions from the start to goal.

[C-Space](#page-58-0) Obstacles

Geometric Models

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 3 / ⁷¹

Geometric Models

[C-Space](#page-58-0) Obstacles

The robot and obstacles live in a *world* or *workspace* $\mathcal W.$ Usually, $\mathcal{W} = \mathbb{R}^2$ or $\mathcal{W} = \mathbb{R}^3.$ The *obstacle region (* $\Omega \subset \mathcal{W}$ *is* The *obstacle region* $\mathcal{O}\subset\mathcal{W}$ *is a closed set.*
The *robot* $A(\alpha)\subset M$ *) is a closed set* The *robot* $\mathcal{A}(q) \subseteq \mathcal{W}$ *is a closed set.*
(placed at configuration q) (placed at configuration q).

Representation issues:

- Can it be obtained automatically or with little processing?
- What is the complexity of the representation?
- Can collision queries be efficiently resolved?
- Can ^a solid or surface be easily inferred?

Geometric Models: Linear Primitives

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – ⁵ / ⁷¹

Geometric Models: Semi-Algebraic Sets

[Geometric](#page-2-0) Models[Transforming](#page-8-0) Robots[Topology](#page-23-0)[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Consider primitives of the form:

$$
H_i = \{(x, y, z) \in \mathcal{W} \mid f_i(x, y, z) \leq 0\},\
$$

which is a *half-space* is f_i is linear.

Now let f_i be any polynomial, such as $f(x,y) = x$ 2 ^2+y 2 $^2-1.$

Obstacles can be formed from finite intersections:

 $\mathcal{O}=H_1\cap H_2\cap H_3\cap H_4.$

And from finite unions of those:

$$
\mathcal{O} = \mathcal{O}_1 \cup \mathcal{O}_2 \cup \cdots \cup \mathcal{O}_n.
$$

 O could then become any semi-algebraic set.

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 6 / ⁷¹

Geometric Models: Polygon Soup

In CAD models inside-outside may not be clearly defined

Throw it all into ^a collision checker and hope for the best...

A typical representation: Triangle strips and fans

Geometric Models: Point Clouds

[C-Space](#page-58-0) Obstacles

The most natural: Take data straight from range sensors

See the Point Cloud Library.

Problem: Hard to define and test for "collision"

[Transforming](#page-8-0) Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Transforming Robots

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 9 / ⁷¹

Transforming Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

May be rigid, articulated, deformable, reconfigurable, ... The *degrees of freedom* is important.

Transforming Robots: Planar Rigid Body

[C-Space](#page-58-0) Obstacles

Translation of the robot Translation of the frame

Translation:

Translate ${\mathcal A}$ by $x_t\in{\mathbb R}$ and $y_y\in{\mathbb R}.$ This means for every $(x,y)\in\mathcal{A}$, we obtain

$$
(x, y) \mapsto (x + x_t, y + y_t)
$$

The result is denoted as $\mathcal{A}(x_t, y_t).$

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – ¹¹ / ⁷¹

Transforming Robots: Planar Rigid Body

[Geometric](#page-2-0) Models[Transforming](#page-8-0) Robots[Topology](#page-23-0)[C-Spaces](#page-38-0)Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

This means for every $(x,y)\in\mathcal{A}$, we obtain

$$
(x, y) \mapsto (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta)
$$

The result is $\mathcal{A}(\theta).$

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – ¹² / ⁷¹

Combining Translation and Rotation

[Geometric](#page-2-0) Models

[Transforming](#page-8-0) Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Important: Rotate first, then translate

$$
(x, y) \mapsto \begin{pmatrix} x\cos\theta - y\sin\theta + x_t\\ x\sin\theta + y\cos\theta + y_t \end{pmatrix}
$$

The operations can be performed by ^a matrix:

$$
\begin{pmatrix}\n\cos \theta & -\sin \theta & x_t \\
\sin \theta & \cos \theta & y_t \\
0 & 0 & 1\n\end{pmatrix}\n\begin{pmatrix}\nx \\
y \\
1\n\end{pmatrix} =\n\begin{pmatrix}\nx\cos \theta - y\sin \theta + x_t \\
x\sin \theta + y\cos \theta + y_t \\
1\n\end{pmatrix}
$$

Technically: A rigid body transformation is an orientation-preserving, isometric embedding.

Homogeneous Transformation Matrix

[Geometric](#page-2-0) Models

[Transforming](#page-8-0) Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

The 3 by 3 matrix

$$
T(x_t, y_t, \theta) = \begin{pmatrix} \cos \theta & -\sin \theta & x_t \\ \sin \theta & \cos \theta & y_t \\ 0 & 0 & 1 \end{pmatrix}
$$

contains ^a rotation matrix in the upper left and ^a translation column vectoron the right.

$$
T(x_t, y_t, \theta) = \begin{pmatrix} R(\theta) & v \\ 0 & 1 \end{pmatrix}
$$

in which

$$
R(\theta) = \begin{pmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{pmatrix}
$$

and $v = (x_y, y_t)$.

[Geometric](#page-2-0) Models

[Transforming](#page-8-0) Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Now, $\mathcal{W} = \mathbb{R}^3$ and $\mathcal{A} \subset \mathbb{R}^3$.

Translation:

Translate ${\mathcal A}$ by $x_t,y_t,z_t\in{\mathbb R}.$ This means for every $(x,y)\in\mathcal{A}$, we obtain

 $(x, y) \mapsto (x + x_t, y + y_t, z + z_t)$

The result is denoted as $\mathcal{A}(x_t,y_t,z_t)$.

Yaw: Rotation of α about the z -axis:

$$
R_z(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}.
$$

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 16 / ⁷¹

[Geometric](#page-2-0) Models[Transforming](#page-8-0) Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Pitch: Rotation of β about the y -axis:

$$
R_y(\beta) = \begin{pmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{pmatrix}.
$$

Roll: Rotation of γ about the x -axis:

$$
R_x(\gamma) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \gamma & -\sin \gamma \\ 0 & \sin \gamma & \cos \gamma \end{pmatrix}.
$$

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – ¹⁷ / ⁷¹


```
C-Space Obstacles
```

```
Combining them is sufficient to produce any rotation:
```

```
R(\alpha,\beta,\gamma)=R_z(\alpha)\,R_y(\beta)\,R_x(\gamma)=\begin{cases} \cos\alpha\cos\beta & \cos\alpha\sin\beta\sin\gamma - \sin\beta\\ \sin\alpha\cos\beta & \sin\alpha\sin\beta\sin\gamma + \cos\beta\\ -\sin\beta & \cos\beta\sin\gamma \end{cases}-\sin\alpha\cos\gamma cos
                                                                                                                                                                                  \alpha \sin \beta \cos \gamma + \sin \alpha \sin \gamma \ \alpha \sin \beta \cos \gamma - \cos \alpha \sin \gamma \ \cos \beta \cos \gamma\alpha \sin \beta \cos \gamma - \cos \alpha \sin \gammasin\begin{array}{lll} \n\frac{\alpha \cos \beta}{}& \sin \alpha \sin \beta \sin \gamma + \cos \alpha \cos \gamma & \sin \alpha \sin \beta \cos \beta & \cos \beta \sin \gamma & \cos \alpha \end{array}β cos γ
```
Every rotation matrix must have:

- Unit column vectors
- Pairwise orthogonal columns
- E **Determinant 1**

.

[Geometric](#page-2-0) Models[Transforming](#page-8-0) Robots[Topology](#page-23-0)[C-Spaces](#page-38-0)Metric [Spaces](#page-51-0)[C-Space](#page-58-0) Obstacles

We now obtain a 4 by 4 homogeneous transformation matrix:

$$
T(\alpha, \beta, \alpha, x_t, y_t, z_t) = \begin{pmatrix} R(\alpha, \beta, \gamma) & v \\ 0 & 1 \end{pmatrix}
$$

Transforming Robots: Multiple Bodies

[Geometric](#page-2-0) Models[Transforming](#page-8-0) Robots[Topology](#page-23-0)[C-Spaces](#page-38-0)Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

For n independent bodies, just use n separate homogeneous transformation matrices.

However, if they are non-rigidly attached:

then use specialized, chained transformations.

Transforming Robots: Multiple Bodies

One matrix for each link:

$$
T_1 = \begin{pmatrix} \cos \theta_1 & -\sin \theta_1 & x_t \\ \sin \theta_1 & \cos \theta_1 & y_t \\ 0 & 0 & 1 \end{pmatrix}
$$

A chain of matrices for the chain of links:

$$
T_1 T_2 \cdots T_m \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}
$$

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – ²¹ / ⁷¹

Transforming Robots: Multiple Bodies

Transforming Robots: Trees and Loops

General idea: Need to find good parametrizations of the freedom of motion between attached links.

Warning: Extremely hard for closed chains.

[Transforming](#page-8-0) Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Topology

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – ²⁴ / ⁷¹

The Space of All Transformations

- Path planning becomes ^a search on ^a space of transformations
- What does this space look like?
- How should it be represented?
- E What alternative representations are allowed and how do they affect performance?

The C-Space

Three views of the configuration space:

- 1. As ^a topological manifold
- 2. As ^a metric space
- 3. As ^a differentiable manifold

Number 3 is too complicated! There is no calculus in basic path planning.

Topological Spaces

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Start with any set X .

Declare some of the sets in $\operatorname{pow}(X)$ to be *open* sets. If these hold:

- 1. The union of **any number** of open sets is an open set.
- 2. The intersection of ^a **finite number** of open sets is an open set.
- 3. Both X and \emptyset are open sets.

then X is a *topological space.*

A set $C \subseteq X$ is closed if and only if $X \setminus C$ is open.

Many subsets of X could be neither open nor closed.

What Topology to Use?

[C-Space](#page-58-0) Obstacles

Although elegant, the previous definition was much too general.

We will only consider spaces of the form $X\subseteq \mathbb{R}^n$.

 \mathbb{R}^n comes equipped with standard open sets:

 \mathbb{R}^n

A set O is open if every $x\in O$ is contained in a ball that is contained in $O.$

To get the open sets of X , take every open set $O\subseteq \mathbb{R}^n$ and form $O'=O\cap X$.

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 28 / ⁷¹

Interior, Exterior, Boundary

With respect to a subset $U\subseteq X$, a point $x\in X$ may be:

- a *boundary point*, as in x_1 above,
- \blacksquare an *interior point*, as in $x_2,$
- \blacksquare or an *exterior point*, as in $x_3.$

Continuous Functions

[Geometric](#page-2-0) Models[Transforming](#page-8-0) Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Let X and Y be any topological spaces.

A function $f: X \to Y$ is called *continuous* if for any open set $O \subseteq Y,$ the preimage $f^{-1}(O) \subset X$ is an open set the preimage $f^{-1}(O) \subseteq X$ is an open set.

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 30 / ⁷¹

[Geometric](#page-2-0) Models

[Transforming](#page-8-0) Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

 $(-1,1).$

A bijection $f: X \to Y$ is called a *homeomorphism* if both f and f^{-1} are
continuous continuous.

If f exists, then X and Y are homeomorphic.
Example: Ear $X=(1,1)$ and $X=\mathbb{D}$. Let a Example: For $X = (-1,1)$ and $Y = \mathbb{R}$, let $x \mapsto 2\tan^{-1}(x)/\pi$

These are all homeomorphic subspaces of \mathbb{R}^2 .

These are homeomorphic, but not with the ones above them.

Homeomorphism Examples

These are all mutually non-homeomorphic

[Geometric](#page-2-0) Models[Transforming](#page-8-0) Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Let $M\subseteq \mathbb{R}^m$ be any set that becomes a topological space using the
subset topology subset topology.

 M is called a *manifold* if for every $x \in M$, an open set $O \subset M$ exists
such that: 1) $x \in O$ 3) O is homoomorphic to \mathbb{P}^n , and 3) v is fixed fo such that: 1) $x\in O$, 2) O is homeomorphic to \mathbb{R}^n , and 3) n is fixed for all $x \in M$.

It "feels like" \mathbb{R}^n around every $x\in M.$

Manifold or Not?

Yes

Yes

No

All it takes is one bad point to fail the manifold test.

No

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 34 / ⁷¹

Manifold Examples

[Geometric](#page-2-0) Models[Transforming](#page-8-0) Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

 \mathbb{R}^n is a distinct manifold for each n

$$
S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}
$$
 is a circle manifold

Here are some 2D cylinders (all homeomorphic!):

Another one: $M=\mathbb{R}^2\setminus\{(0,0)\}$ (the punctured plane)

Let $\left(x,y\right)$ denote a point on the manifold.

Include the $x=0$ points and define equivalence relation \sim :

$$
(0,y) \sim (1,y)
$$

for all $y \in (0,1)$.

Flat Mobius Band ¨

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Change the equivalence relation to

$$
(0,y) \sim (1,1-y)
$$

for all $y \in (0,1)$.

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 37 / ⁷¹

More Flat Manifolds

listinct manifolds can be made by identifying edges of a

[Transforming](#page-8-0) Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

C-Spaces

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 39 / ⁷¹

C-Spaces for Rigid Bodies

[Geometric](#page-2-0) Models[Transforming](#page-8-0) Robots[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

A simple way to describe the manifold of all transformations

$$
T(q) = \begin{pmatrix} R & v \\ 0 & 1 \end{pmatrix}
$$

 $SE(n)$ is the group of all $(n+1)$ by $(n+1)$ dimensional homogeneous transformation matrices.

Thus, $SE(2)$ is just a subset of \mathbb{R}^9 and $SE(3)$ is a subset of $\mathbb{R}^{16}.$ But which matrices are allowed? Is there ^a nice parametrization?

C-Space for 2D Rigid Body

The *configuration space* $\mathcal C$ is the set of all allowable robot transformations.

Translation parameters: $x_t, y_t \in \mathbb{R}$ Rotation parameter: $\theta \in [0,2\pi]$

Using the homeomorphism $\theta\mapsto (\cos\theta,\sin\theta)$, the space of all rotations
is S^1 is $S^1.$

The configuration space is $\mathcal{C}=\mathbb{R}^2$ $^2 \times S^1$.

Note "=" here means "homeomorphic to"

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – ⁴¹ / ⁷¹

Alternative Representations

[Geometric](#page-2-0) Models[Transforming](#page-8-0) Robots[Topology](#page-23-0)[C-Spaces](#page-38-0)Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Recall that $\mathbb{R}\times S^1$ is a cylinder. $\mathcal{C}=\mathbb{R}^2\times S^1$ ca $^2 \times S^1$ can be imagined as a "thick" cylinder.

Or ^a square box with the top and bottom identified:

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – ⁴² / ⁷¹

C-Space for 3D Rigid Body

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Translation parameters: $x_t, y_t, z_t \in \mathbb{R}$ Rotation parameters: yaw, pitch, roll?

Gimbal lock problem: An infinite number of YPR parameters map to the same rotation.

When the pitch is 90° , yaw and roll become the same. (First roll, then pitch, then yaw)

The Space of 3D Rotations

[Geometric](#page-2-0) Models

[Transforming](#page-8-0) Robots

[Topology](#page-23-0)[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Consider the mapping:

$$
(a, b, c, d) \mapsto \begin{pmatrix} 2(a^2 + b^2) - 1 & 2(bc - ad) & 2(bd + ac) \\ 2(bc + ad) & 2(a^2 + c^2) - 1 & 2(cd - ab) \\ 2(bd - ac) & 2(cd + ab) & 2(a^2 + d^2) - 1 \end{pmatrix}
$$

in which $a, b, c, d \in \mathbb{R}$.

Enforce the constraint a 2 $^{2}+b^{2}$ $^{2}+c$ 2 $t^2 + d^2 = 1.$

In this case, the mapping above is two-to-one everywhere onto $SO(3).$ (a, b, c, d) and $(-a, -b, -c, -d)$ map to the same rotation.

Geometric Interpretation

[Geometric](#page-2-0) Models[Transforming](#page-8-0) Robots[Topology](#page-23-0)[C-Spaces](#page-38-0)Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

$$
(a, b, c, d) = (\cos\frac{\theta}{2}, \left(v_1 \sin\frac{\theta}{2}\right), \left(v_2 \sin\frac{\theta}{2}\right), \left(v_3 \sin\frac{\theta}{2}\right))
$$

These are the same rotation.

If you like algebra, consider (a,b,c,d) as a *quaternion*.

Representations of SO(3)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Use upper half of
$$
S^3
$$
: $d \ge 0$ and $a^2 + b^2 + c^2 + d^2 = 1$

Project down: $(a, b, c, d) \mapsto (a, b, c, 0)$.

The result is a 3D ball: $B_3 = \{(a, b, c) \in \mathbb{R}^3 \mid a^2 + b^2 + c^2 \le 1\}.$

However, on the boundary of B_3 we have $(a, b, c) \sim (-a, -b, -c).$

Representations of SO(3)

Stretching B_3 out to make a cubes.

Opposite faces are reverse identified; hence, $B_3=\mathbb{R}P^3$.

Alternatively, could stretch S^3 out to the faces of the 4-cube. The 4-cube as 8 faces, but only $4\,3D$ cubes are needed.

The C-Space for Rigid Bodies

[Geometric](#page-2-0) Models

[Transforming](#page-8-0) Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

For a rigid body that translates and rotates in \mathbb{R}^3 $\ddot{}$:

$$
\mathcal{C} = \mathbb{R}^3 \times \mathbb{R}P^3
$$

The \mathbb{R}^3 components arise from translation. The $\mathbb{R}P^{3}$ component arises from rotation.

The C-Space for Multiple Bodies

[Geometric](#page-2-0) Models[Transforming](#page-8-0) Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

For independent bodies, \mathcal{A}_1 and \mathcal{A}_2 , take the Cartesian product:

$$
\mathcal{C} = \mathcal{C}_1 \times \mathcal{C}_2
$$

If they are attached to make ^a kinematic chain, then take the Cartesianproduct of their components:

$$
\mathcal{C} = \mathbb{R}^2 \times S^1 \times S^1 \times S^1
$$

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 49 / ⁷¹

The C-Space for Closed Kinematic Chains

[Geometric](#page-2-0) Models[Transforming](#page-8-0) Robots[Topology](#page-23-0)[C-Spaces](#page-38-0)Metric [Spaces](#page-51-0)[C-Space](#page-58-0) Obstacles

The case of closed kinematic chains often arises in redundant robots, manipulation, protein folding, ...

A manifold may result, but it may be difficult to obtain an efficient parametrization.

Comparing Representations

- **Convenient parametrizations preferred**
- E Geometric distortion should be minimized

How should be distortion be described? Metric space.

[Transforming](#page-8-0) Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Metric Spaces

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 52 / ⁷¹

Metric Spaces

[Geometric](#page-2-0) Models[Transforming](#page-8-0) Robots[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

A *metric space* (X, ρ) is a topological space X equipped with a function $\rho: X \times X \to \mathbb{R}$ such that for any $a,b,c \in X$:

- 1. **Nonnegativity:** $\rho(a, b) \geq 0$.
- 2. **Reflexivity:** $\rho(a, b) = 0$ if and only if $a = b$.
- 3. **Symmetry:** $\rho(a, b) = \rho(b, a)$.
- 4. **Triangle inequality:** $\rho(a, b) + \rho(b, c) \ge \rho(a, c)$.

Example: Euclidean distance in \mathbb{R}^n More examples: L_p metrics in \mathbb{R}^n

$\mathsf{Distances} \textbf{ in } SO(2)$

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 54 / ⁷¹

$\mathsf{Distances} \textbf{ in } SO(3)$

[Geometric](#page-2-0) Models[Transforming](#page-8-0) Robots[Topology](#page-23-0)[C-Spaces](#page-38-0)Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Comparing rotations in $SO(3)$ works in a similar way, using the $h = (a, b, c, d)$ representation:

$$
\rho_s(h_1, h_2) = \cos^{-1}(a_1 a_2 + b_1 b_2 + c_1 c_2 + d_1 d_2)
$$
 (1)

However, must consider identification of antipodal points:

$$
\rho(h_1, h_2) = \min \{ \rho_s(h_1, h_2), \rho_s(h_1, -h_2) \}.
$$
 (2)

Other possibilities: Euclidean distance in yaw-pitch-roll space, Euclideandistance in \mathbb{R}^9 (the space of 3 by 3 matrices).

Some metrics are more "natural" than others. How to formalize?

Haar Measure

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Let G be a matrix group, such as $SO(n)$ or $SE(n).$ Let μ be a *measure* on $G.$ In could, for example, assign volumes by using the metric function.

If for any measurable subset $A\subseteq G,$ and any element $g\in G,$ ^µ(A) ⁼ ^µ(gA) ⁼ ^µ(Ag), then ^µ is called the Haar measure. The Haar measure exists for any locally compact topological group and isunique up to scale.

Example for $SO(2)$ using the unit circle $S^1\!\!:$

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 56 / ⁷¹

[Geometric](#page-2-0) Models

[Transforming](#page-8-0) Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

For 3D rotations, recall the mapping

$$
(a, b, c, d) \mapsto SO(3)
$$
 (3)

The Haar measure for $SO(3)$ is obtained as the standard area (or 3D $\,$ volume) on the surface of S^3 .

Uniform random points on S^3 yield uniform random rotations on $SO(3)$ that are comatible with the Haar measure (it is the right way to sample).

Comparing Rotations to Translations

[Geometric](#page-2-0) Models[Transforming](#page-8-0) Robots[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Let (X, ρ_x) and (Y, ρ_y) be two metric spaces. A metric space for the Cartesian product $Z=X\times Y$ is formed as

$$
\rho_z(z, z') = \rho_z(x, y, x', y') = c_1 \rho_x(x, x') + c_2 \rho_y(y, y'), \qquad (4)
$$

in which c_1, c_2 are positive constants.

If $X=\mathbb{R}^2$ from translation and $Y=S^1$ from rotation, what should c_1 and c_2 be?

Perhaps $c_2=c_1/r$, in which r is the point on ${\mathcal A}$ that is furthest from the origin.

What should the constants be for ^a long kinematic chain?

[Transforming](#page-8-0) Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

C-Space Obstacles

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 59 / ⁷¹

Obstacle Region

[Geometric](#page-2-0) Models[Transforming](#page-8-0) Robots[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Given world $\mathcal W$, a closed obstacle region $\mathcal O\subset\mathcal W$, closed robot $\mathcal A$, and configuration space $\mathcal C.$

Let $\mathcal{A}(q)\subset\mathcal{W}$ denote the placement of the robot into configuration $q.$

The *obstacle region* \mathcal{C}_{obs} *in* $\mathcal C$ *is*

$$
\mathcal{C}_{obs} = \{q \in \mathcal{C} \mid \mathcal{A}(q) \cap \mathcal{O} \neq \emptyset\},\
$$

which is ^a closed set.

The *free space* \mathcal{C}_{free} is an open subset of \mathcal{C} :

$$
\mathcal{C}_{free} = \mathcal{C} \setminus \mathcal{C}_{obs}
$$

We want to keep the configuration in \mathcal{C}_{free} at all times!

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 60 / ⁷¹

Minkowski Sum

[Geometric](#page-2-0) Models[Transforming](#page-8-0) Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

Consider \mathcal{C}_{obs} for the case of translation only.

The Minkowski sum of two sets is defined as

$$
X \oplus Y = \{x + y \in \mathbb{R}^n \mid x \in X \text{ and } y \in Y\}
$$
 (5)

(from the CGAL manual)

Minkowski Sum

[Geometric](#page-2-0) Models

[Transforming](#page-8-0) Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

The Minkowski difference of two sets is defined as

$$
X \ominus Y = \{x - y \in \mathbb{R}^n \mid x \in X \text{ and } y \in Y\}
$$
 (6)

A one-dimensional example:

Sometimes called convolution.

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 62 / ⁷¹

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 63 / ⁷¹

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 64 / ⁷¹

[Geometric](#page-2-0) Models

[Transforming](#page-8-0) Robots

[Topology](#page-23-0)

[C-Spaces](#page-38-0)

Metric [Spaces](#page-51-0)

[C-Space](#page-58-0) Obstacles

 $(a = \cos \theta \text{ and } b = \sin \theta)$

Forms the boundary of a 3D semi-algebraic obstacle in $\mathcal{C} = \mathbb{R}^2 \times S^1$

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 66 / ⁷¹

Forms the boundary of a 6D semi-algebraic obstacle in $\mathcal{C} = \mathbb{R}^3 \times \mathbb{R}P^3$

Three different kinds of contacts that each lead to half-spaces in \mathcal{C} :

- 1. **Type FV:** A face of $\mathcal A$ and a vertex of $\mathcal O$
- 2. **Type VF:** A vertex of $\mathcal A$ and a face of $\mathcal O$
- 3. **Type EE:** An edge of $\mathcal A$ and an edge of $\mathcal O$.

The Obstacles in C-Space Can Be Complicated

[Geometric](#page-2-0) Models[Transforming](#page-8-0) Robots[Topology](#page-23-0)[C-Spaces](#page-38-0)Metric [Spaces](#page-51-0)[C-Space](#page-58-0) Obstacles

For the case of two-links, $\mathcal{C}=S^1$ quickly become strange and complicated: $^1 \times S^1$, but the obstacle region can

Basic Motion Planning Problem

ICRA 2012 Tutorial - Motion Planning - ¹⁴ May 2012 – 69 / ⁷¹

Summary of Part I

- Geometric representations are an important first step.
- E Planning is ^a search on the space of transformations.
- E Think like ^a topologist when it comes to C-space.

More details: Planning Algorithms, Chapters 3 and 4.

Homework 1: Solve During Coffee Break

