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Perfect Sensing
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For this part, suppose h : X → Y is a bijective sensor.

Possible state spaces:

� X = E × S1

� X ⊂ R
2 × S1 × E

� More generally, replace SE(2) by any configuration space.

The information space becomes I = X .

We are at the top of the sensor lattice at all times.

There is no uncertainty with respect to sensing.

Once h is given, sensing is trivialized!



Historical Perspective
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Nilsson, Stanford, late 1960s:

Shakey, A∗, visibility graphs, STRIPS

What is planning? Automated sequential decision making with heavy

emphasis on algorithms and computation.



In the beginning (1960s)...
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Clear challenges: sensing, mapping, planning, ...



Algorithms Need Discretizations
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The world is more or less continuous.

Computation is discrete.

� 1970s: Grids, logic-based planning

� 1980s: Combinatorial motion planning

� 1990s: Sampling-based motion planning

Planning problems are implicitly encoded.

Even with a complete model and perfect sensing, the space in which to

search is much larger than the input representation.



The Configuration Space
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The configuration space (C-space) is the set of all geometric

transformations that can be applied to a robot.

It is usually defined as a topological manifold, C, which can be considered

as an m dimensional surface embedded in R
n for some m ≤ n.

The dimension of C corresponds to the number of degrees of freedom of

the robot.



The Configuration Space
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For a planar mobile robot:

C = SE(2) or C = R
2 × S1.

C has three dimensions.



The Configuration Space
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For a 3D rigid body:

C = SE(3) or C = R
3 × RP 3.

C has six dimensions.



The Configuration Space
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For a manipulator based on revolute joints:
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C is the Cartesian product of copies of R or S1.

The dimension of C is the number of joints.



The Configuration Space

Amirkabir Winter School 2012 (Esfand 1390) – 10 / 61

For a humanoid robot:

Components of C depend on joint types.

C has dozens of dimensions (for example, 80).



The Configuration Space
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For multiple robots:
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With n planar robots, the dimension of C is 3n.



The C-Space Obstacles
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Lozano-Perez, 1979 (based on Lagrangian mechanics ideas)

O
A

Cobs O

Reasoning about exact geometry



The C-Space Obstacles
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Think in the C-space...

Cobs

qI

qG

Cfree

Cobs

Cobs

Motion planning progressed after identifying the right spaces.



Exact Characterization: High Complexity
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Contact conditions once rotation is allowed:
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Piecewise algebraic surfaces describe the boundary of Cobs.



Exact Characterization: High Complexity
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Worse for 3D rigid bodies:
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Imagine what happens for humanoid robots!



Combinatorial Motion Planning
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Triangulation



Combinatorial Motion Planning
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Vertical decomposition



Combinatorial Motion Planning
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3D vertical decomposition
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Combinatorial Motion Planning
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Cylindrical algebraic decomposition (Schwartz, Sharir, 1983)
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Doubly exponentially many cells in dimension.



Combinatorial Motion Planning
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Canny’s roadmap algorithm, 1987:

x1

x3

x2

� Solves general motion planning problem.

� Complexity is close to optimal.

� Never implemented?



Combinatorial Motion Planning
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Don’t be harsh on combinatorial planning methods.

Reif, 1979; Hopcroft, Schwartz, Sharir, 1983: PSPACE-hardness

Even translating a bunch of rectangles inside of a rectangle is

PSPACE-hard.



Combinatorial Motion Planning
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Careful! Some specific problems are easier:

Motion planning for a “ladder”

Levin, Sharir, 1987; Ke, O’Roarke, 1988; Banon, 1990



Combinatorial Motion Planning
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A nice cell decomposition exists:

R7

R5

e3

e2

x2

x1

e4

e1

R10

R9

R8

R13

R11

R12

R2 R3
R1 R6

R4



Sampling-Based Motion Planning
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Sampling−Based
Motion Planning AlgorithmCollision

Detection
Geometric
Models

Discrete
Searching

C−Space
Sampling

� Collision detection algorithms enabled a new abstraction.

� Incremental sampling and searching.

� Resolution or probabilistic complete.

� The methods are practical and widely used.



Sampling-Based Motion Planning

Amirkabir Winter School 2012 (Esfand 1390) – 25 / 61

1984 Donald grid search with heuristics based on C-constraints
1987 Faverjon, Tournassoud distance computation, hierarchical CAD models

1989 Paden, Mees, Fisher uses GTK algorithm, distance comp., 2d tree
1989 Kondo grid search, lazy collision checking
1990 Lengyel, Reichert, Donald, Greenberg search bitmap of C-obstacles
1990 Barraquand, Latombe randomized potential field, implicit grid
1990 Glavina sample all of free space, connect with local planner
1992 Chen, Hwang multiresolution grid search
1992 Mazer, Talbi, Ahuatzin, Bessiere Ariadne’s clew algorithm
1994 Kavraki, Svestka, Overmars, Latombe Probabilistic Roadmaps (PRMs); multiple query
1997 Hsu, Latombe, Motwani Expansive planner, single-query, tree search
1999 LaValle, Kuffner Rapidly-exploring Random Trees (RRTs)

Collision detection: Gilbert, Johnson, Keerthi, 1988; Lin, Canny, 1991; Quinlan, 1994; Gottschalk,
Lin and Manocha, 1996; Mirtich, 1997, etc.



Multiple Query: Sampling-Based Roadmaps (PRMs)
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α(i)

Cobs

Cobs

� Use sampling to build a roadmap

� Search roadmap for paths

� PRM-based methods: PRM (Kavraki, Latombe, Overmars, Svestka, 1994);

Obstacle-Based PRM (Amato, Wu, 1996); Sensor-based PRM (Yu, Gupta,

1998); Gaussian PRM (Boor, Overmars, van der Stappen, 1999); Medial axis

PRMs (Wilmarth, Amato, Stiller, 1999; Pisula, Hoff, Lin, Manocha, 2000;

Kavraki, Guibas, 2000); Contact space PRM (Ji, Xiao, 2000); Closed-chain

PRMs (LaValle, Yakey, Kavraki, 1999; Han, Amato 2000); Lazy PRM (Bohlin,

Kavraki, 2000); PRM for changing environments (Leven, Hutchinson, 2000);

Visibility PRM (Simeon, Laumond, Nissoux, 2000), ...



Single Query: Search Tree Methods
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� Donald, 1984

� Grid search over 6D C-space
� Search guided by heuristics based directly on C-constraints

� Barraquand, Latombe, 1990 (randomized potential field)

� Implicit grid search guided by potential field and random walks
� Direct use of collision detector to validate motions

� Mazer, Talbi, Ahuatzin, Bessiere, 1992 (Ariadne’s clew)

� Search trees based on self avoidance
� Node placement obtained by genetic algorithm

� Hsu, Latombe, Motwani, 1997 (expansive space planner)

� Also based on self avoidance
� Node placement biased toward low-density regions

� LaValle, Kuffner, 1999 (Rapidly-exploring Random Trees - RRTs)

� Search tree based on Voronoi bias
� Growth obtained by sampling and nearest-neighbor searching



Rapidly Exploring Random Trees (RRTs)
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� Introduced by LaValle and Kuffner, 1999.

� Applied, adapted, and extended in many works: Frazzoli, Dahleh, Feron,

2000; Toussaint, Basar, Bullo, 2000; Vallejo, Jones, Amato, 2000; Strady,

Laumond, 2000; Mayeux, Simeon, 2000; Karatas, Bullo, 2001; Li, Chang,

2001; Kuffner, Nishiwaki, Kagami, Inaba, Inoue, 2000, 2001; Williams, Kim,

Hofbaur, How, Kennell, Loy, Ragno, Stedl, Walcott, 2001; Carpin, Pagello,

2002; ...

� Also, applications to biology, computational geography, verification,

virtual prototyping, architecture, solar sailing, computer graphics, ...

� In IEEE ICRA 2011 Proceedings, “RRT” occurs 928 times.



The RRT Construction Algorithm

Amirkabir Winter School 2012 (Esfand 1390) – 29 / 61

BUILD RRT(qinit)
1 T.init(qinit);
2 for k = 1 to K do
3 qrand ← RANDOM CONFIG();
4 EXTEND(T, qrand);

EXTEND(T, qrand)

init

near

new
ε

q

q

q

q

Metric on C: ρ : C × C → [0,∞)
Nearest neighbors: Yershova [Atramentov], LaValle, 2002; Arya, Mount, 1997

Incremental collision detection: Lin, Canny, 1991; Mirtich, 1997



A Rapidly-Exploring Random Tree (RRT)
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Segment-Based RRT
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Segment-Based RRT
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Segment-Based RRT
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Voronoi-Biased Exploration
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Voronoi Diagram in R
2
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Think about: Where is the nearest subway station?



Voronoi Diagram in R
2
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Voronoi Diagram in R
2
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Refinement vs. Expansion
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Refinement Expansion

Where will the random sample fall?



Bidirectional Search
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Grow two RRTs, one from the initial and one from the goal.

qI qG

Spend some effort trying to connect them to each other.



Bidirectional Search
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Does not always work well...

qG
qI



Wiper Motor Assembly
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Kineo CAM and LAAS/CNRS, Toulouse, France

Integrated into Robcad (eM-Workplace)

Add-ons for 3D Studio Max, Solidworks

Direct users: Renault, Airbus, Ford, Optivus, ...



Sealing Cracks at Volvo Cars
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Fraunhofer Chalmers Centre and Volvo Cars, Sweden



Virtual Humans
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Marcelo Kallman, UC Merced

James Kuffner, CMU



Humanoid Robots
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Kagami and H7 Planning

University of Tokyo and AIST



Molecules, Etc.
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From Nic Simeon, LAAS/CNRS



Beyond Basic Path Planning
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� Need to broaden the focus of planning.

� Better unification of ideas.

� Need to address important concerns: feedback, differential

constraints, sensing, uncertainty.

Fundamental: Information comes from sensors, not the Turing tape.



Separate Histories, Common Goals
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� Control theory: analytical, continuous, differential, feedback,

optimality

� Motion planning: algorithmic, continuous, paths, feasibility

� AI planning: algorithms, discrete, logic, feasibility

Control Theory

Motion Planning

AI Planning
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These days, people are interested in the same issues.

Is it planning algorithms? Algorithmic control theory?



Three Main Places for Prospecting
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After painfully putting together a landscape of literature, several enormous holes

were visible.

The hardest chapters to write:

� Motion planning under differential constraints (Ch 14)

� Feedback motion planning (Ch 8)

� Information spaces and sensing (Ch 11,12)



Motion Planning with Differential Constraints
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Reachable sets

Dubins (forward-only) car example



Motion Planning with Differential Constraints
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Obstacles in the phase space grow with speed.

q
q̇ = 0

q̇ < 0

q̇ > 0

q̇ Xric

Xric

Xric

Xobs

Xric



Motion Planning with Differential Constraints
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Hover Forward flight

Steady left turn

Steady right turn

Motion primitive problem (Frazzoli, Egerstedt, Pappas, Murphey, Belta)



Adding Differential Constraints to RRTs
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Smooth RRT Bidirectional Search



The Left-Forward-Only Car
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Left-Forward RRT Bidirectional Search



Feedback Motion Planning
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Future states (or configurations) are not necessarily predictable.

Need to compute a feedback plan π : X → U

Here, U is a set of actions or system inputs.

Might have a control system: ẋ = f(x(t), u(t)

During execution, a sample path is generated.

Note: Powerful sensing is assumed because the state x ∈ X is known at

all times!



Feedback Motion Planning
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A discrete grid example:

uT



Feedback Motion Planning
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A nonsmooth continuous example:

xG



Feedback Motion Planning
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Navigation function:

Arrive in the goal by gradient descent.



Our Approach
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Lindemann, LaValle, IJRR 2009.

Instead of using the gradient of a navigation function as the vector field,

we construct one directly. We do this as follows:

� Partition the space into simple cells.

� Use the cell connectivity graph to determine a high-level motion plan.

� Define local vector fields on each cell which are compatible with the

motion plan.

� Appropriately blend the vector fields together to obtain a global vector

field.



Decomposition
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xgoal



Computing Smooth Flows
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xgoal



I-Spaces: The Next Generation of C-Spaces
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Problem! It may be expensive or impossible to accurately estimate x̃(t) at

all times.

Remember the previous parts: Start with the task and design the sensors

and filters.

Planning naturally occurs in the resulting information space.

Maybe we need to develop:

� Formulations of sensor models, I-spaces

� Models of complexity, computation over I-spaces

� Sampling-based planning methods

� Combinatorial planning methods

For C-spaces, the early steps were already done (Lagrangian mechanics).
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