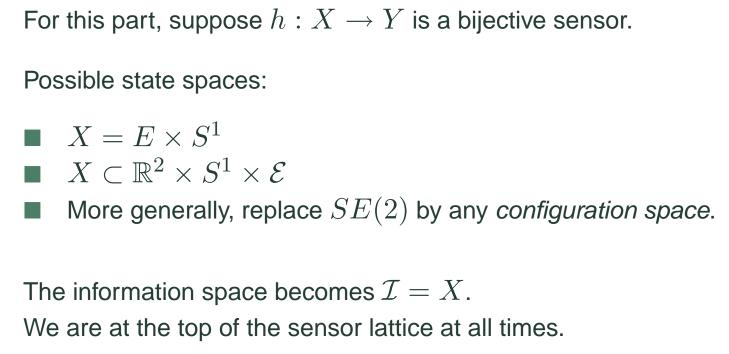


Steven M. LaValle

March 3, 2012

Amirkabir Winter School 2012 (Esfand 1390) - 1 / 61

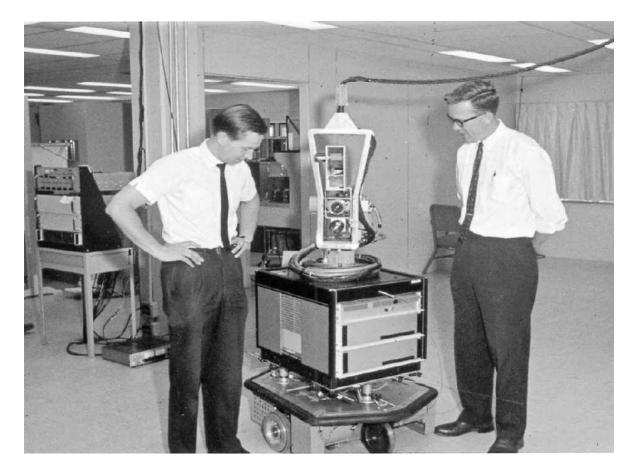
Perfect Sensing



There is no uncertainty with respect to sensing.

Once *h* is given, sensing is *trivialized*!

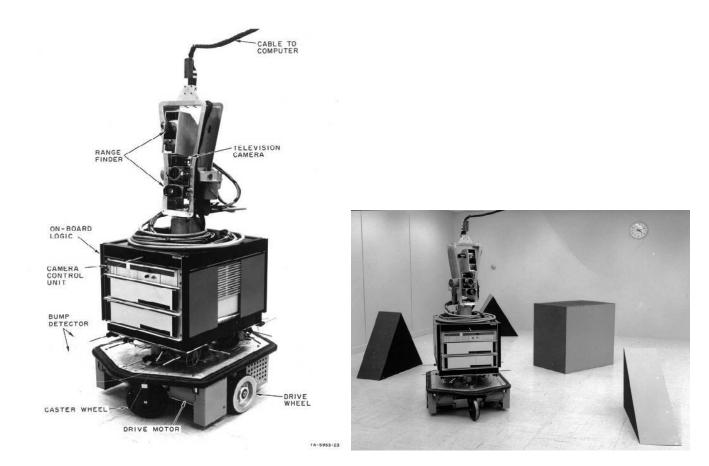
Historical Perspective



Nilsson, Stanford, late 1960s: Shakey, A^* , visibility graphs, STRIPS What is planning? Automated sequential decision making with heavy emphasis on algorithms and computation.

Amirkabir Winter School 2012 (Esfand 1390) - 3 / 61

In the beginning (1960s)...



Clear challenges: sensing, mapping, planning, ...

Amirkabir Winter School 2012 (Esfand 1390) - 4 / 61

The world is more or less continuous. Computation is discrete.

- 1970s: Grids, logic-based planning
- 1980s: Combinatorial motion planning
- 1990s: Sampling-based motion planning

Planning problems are *implicitly* encoded.

Even with a complete model and perfect sensing, the space in which to search is much larger than the input representation.

The *configuration space* (C-space) is the set of all geometric transformations that can be applied to a robot.

It is usually defined as a *topological manifold*, C, which can be considered as an m dimensional surface embedded in \mathbb{R}^n for some $m \leq n$.

The dimension of C corresponds to the number of *degrees of freedom* of the robot.

For a planar mobile robot:

 $\mathcal{C} = SE(2) \text{ or } \mathcal{C} = \mathbb{R}^2 \times S^1.$

 $\ensuremath{\mathcal{C}}$ has three dimensions.

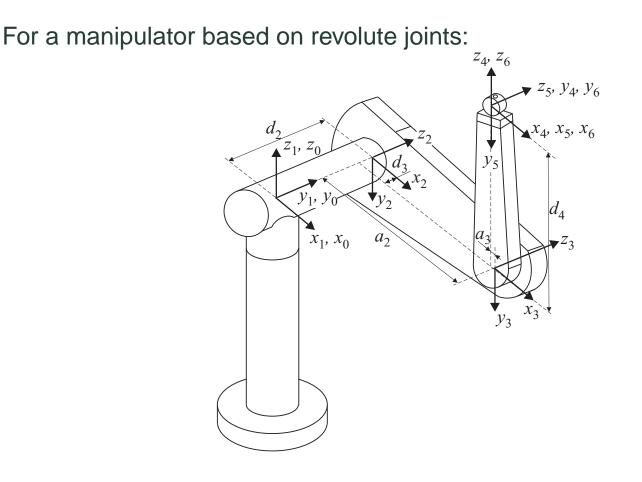
Amirkabir Winter School 2012 (Esfand 1390) - 7 / 61

For a 3D rigid body:

$$\mathcal{C} = SE(3) \text{ or } \mathcal{C} = \mathbb{R}^3 \times \mathbb{R}P^3.$$

 \mathcal{C} has six dimensions.

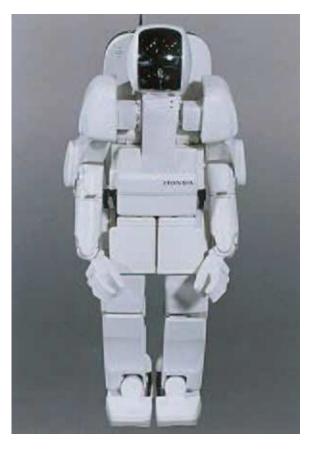
Amirkabir Winter School 2012 (Esfand 1390) - 8 / 61



 \mathcal{C} is the Cartesian product of copies of \mathbb{R} or S^1 . The dimension of \mathcal{C} is the number of joints.

Amirkabir Winter School 2012 (Esfand 1390) - 9 / 61

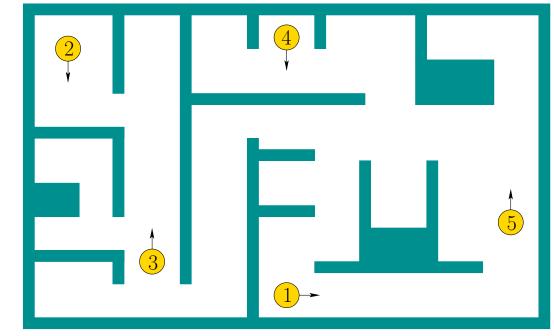
For a humanoid robot:



Components of C depend on joint types. C has dozens of dimensions (for example, 80).

Amirkabir Winter School 2012 (Esfand 1390) - 10 / 61

For multiple robots:

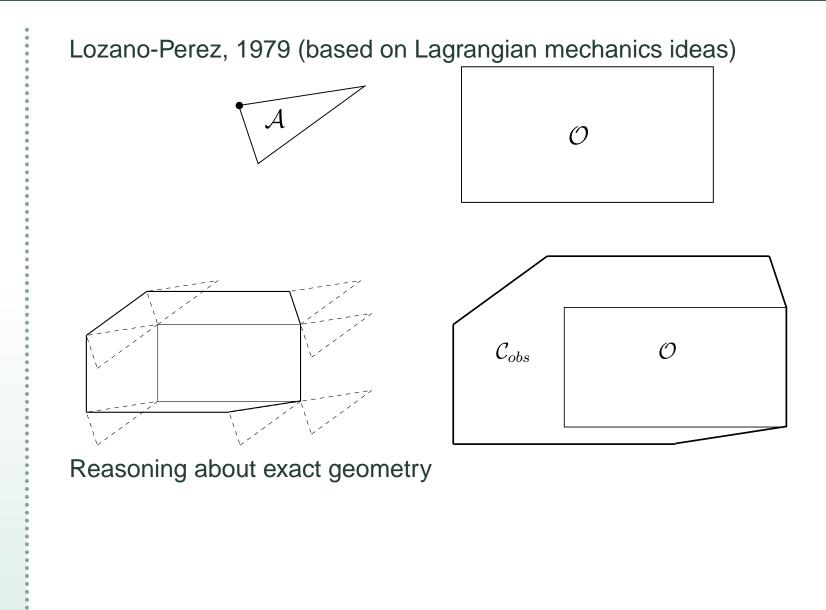


$$\mathcal{C} = \mathcal{C}_1 \times \cdots \times \mathcal{C}_n$$

With n planar robots, the dimension of C is 3n.

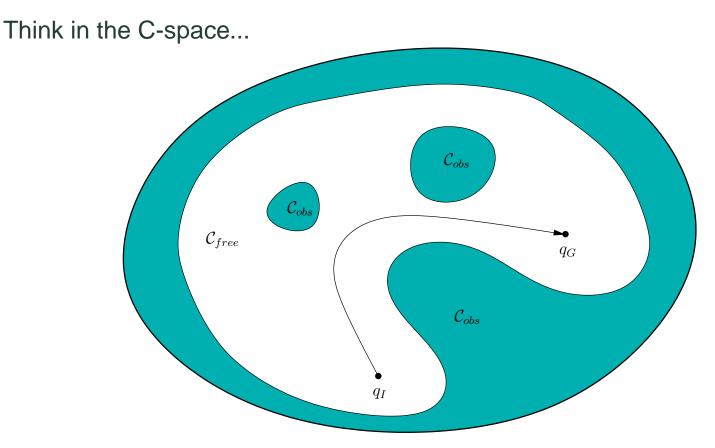
Amirkabir Winter School 2012 (Esfand 1390) - 11 / 61

The C-Space Obstacles



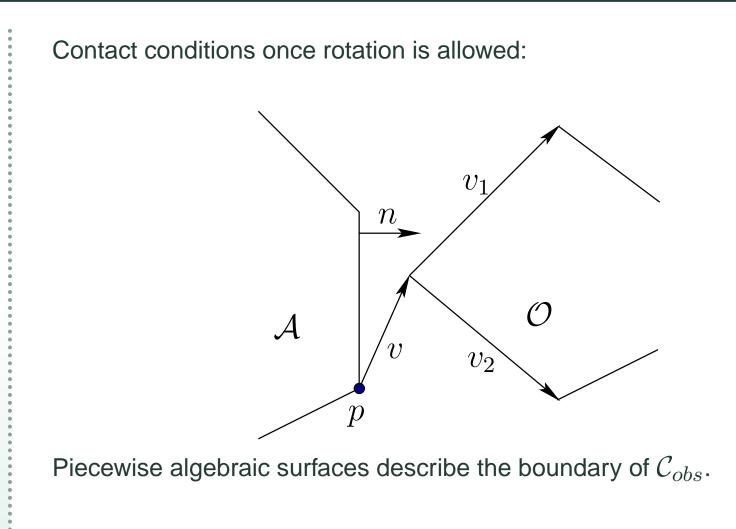
Amirkabir Winter School 2012 (Esfand 1390) - 12 / 61

The C-Space Obstacles

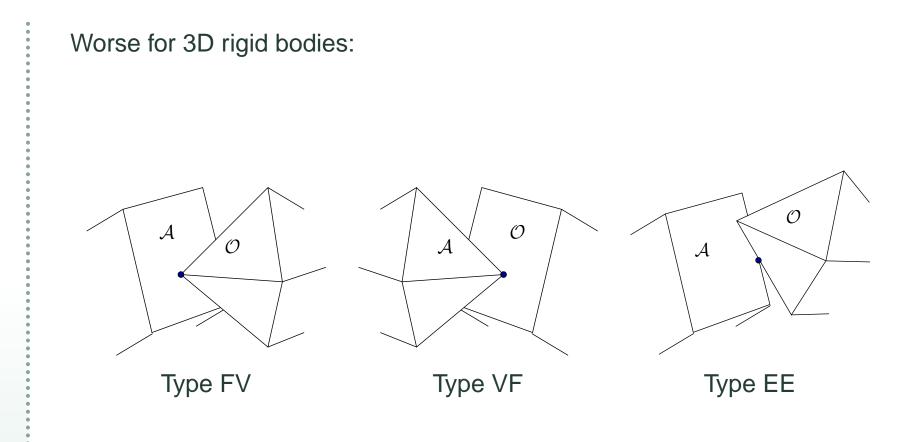


Motion planning progressed after identifying the right spaces.

Amirkabir Winter School 2012 (Esfand 1390) - 13 / 61

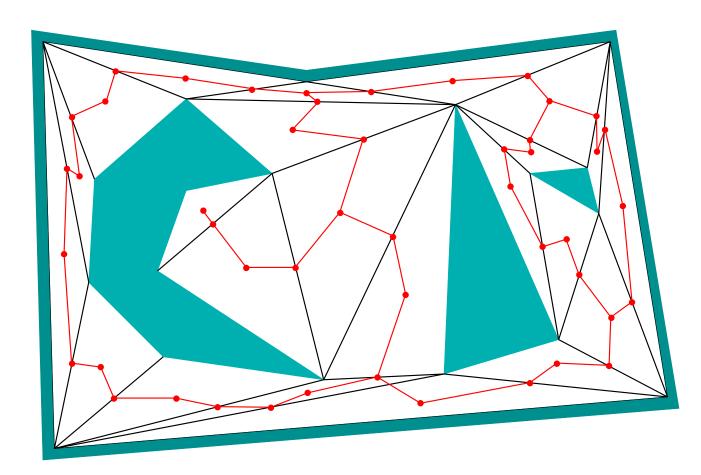


Exact Characterization: High Complexity



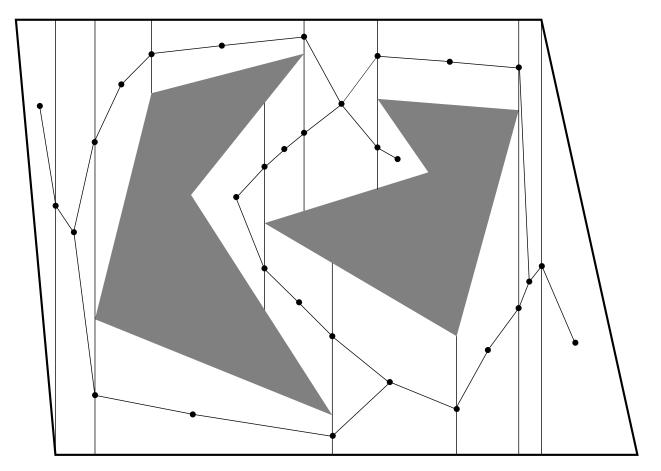
Imagine what happens for humanoid robots!

Amirkabir Winter School 2012 (Esfand 1390) - 15 / 61



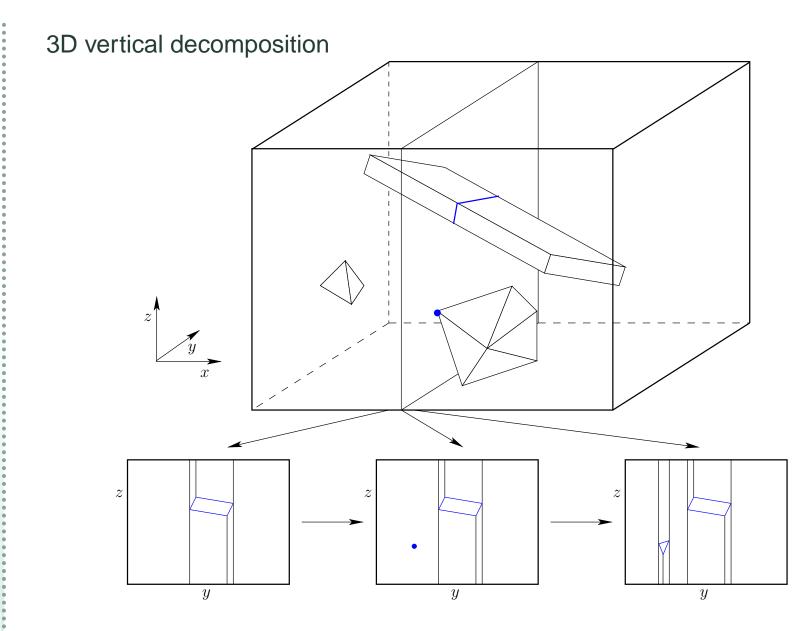
Triangulation

Amirkabir Winter School 2012 (Esfand 1390) - 16 / 61

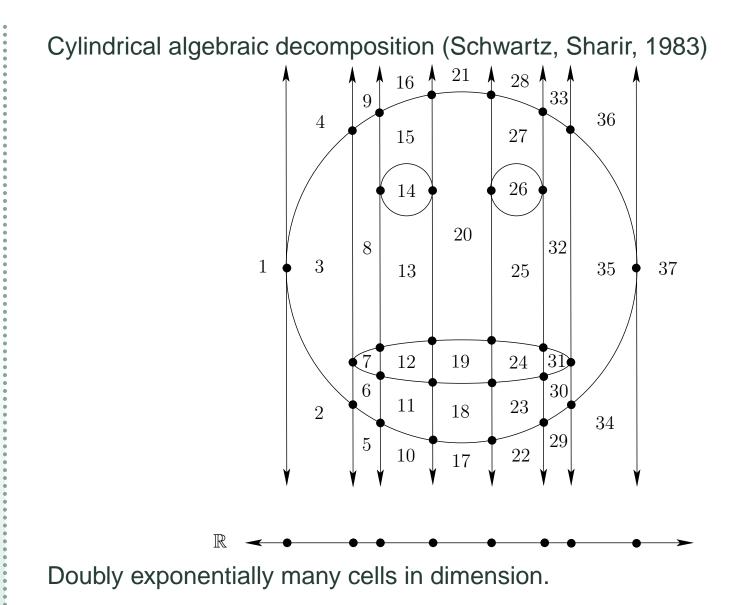


Vertical decomposition

Amirkabir Winter School 2012 (Esfand 1390) - 17 / 61

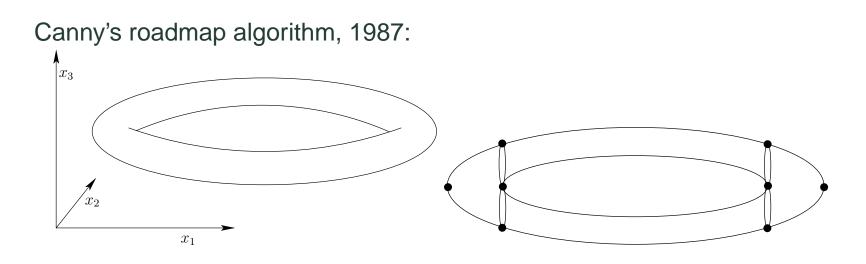


Amirkabir Winter School 2012 (Esfand 1390) - 18 / 61



TH ILLINOIS AT URBANA-CHAMPAIGN

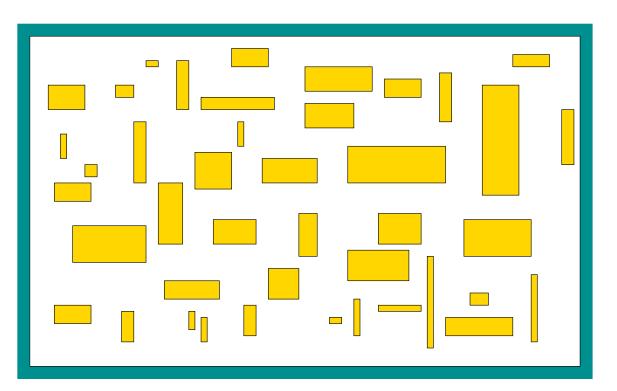
Amirkabir Winter School 2012 (Esfand 1390) - 19 / 61



- Solves general motion planning problem.
- Complexity is close to optimal.
- Never implemented?

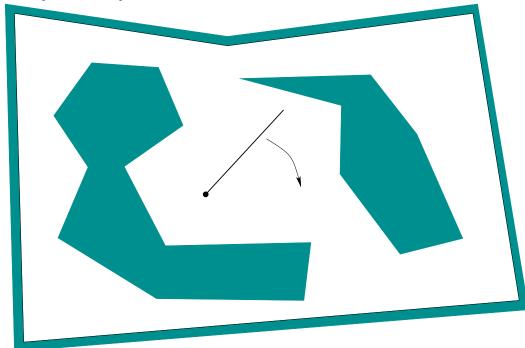
Don't be harsh on combinatorial planning methods.

Reif, 1979; Hopcroft, Schwartz, Sharir, 1983: PSPACE-hardness

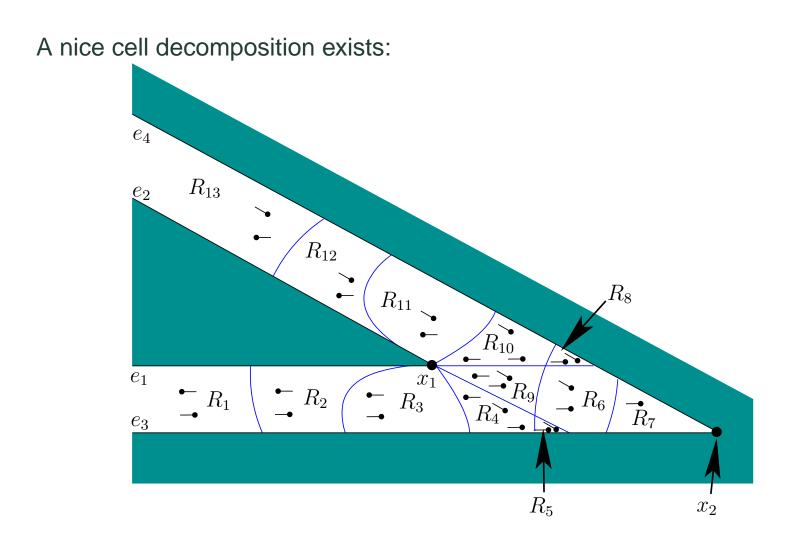


Even translating a bunch of rectangles inside of a rectangle is PSPACE-hard.

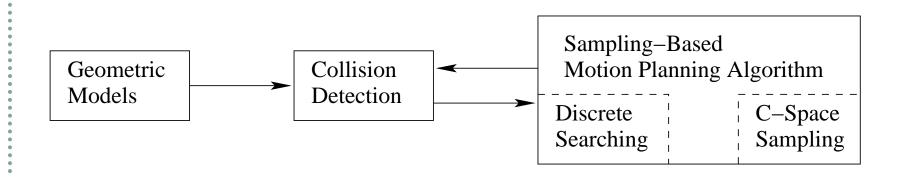
Careful! Some specific problems are easier:



Motion planning for a "ladder" Levin, Sharir, 1987; Ke, O'Roarke, 1988; Banon, 1990



Sampling-Based Motion Planning



Collision detection algorithms enabled a new abstraction.

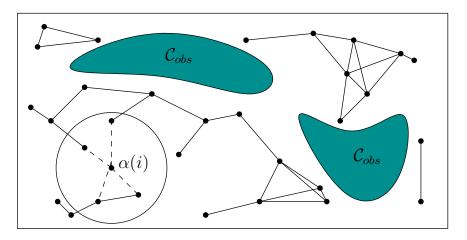
- Incremental sampling and searching.
- Resolution or probabilistic complete.
- The methods are practical and widely used.

Sampling-Based Motion Planning

1984	Donald	grid search with heuristics based on C-constraints
1987	Faverjon, Tournassoud	distance computation, hierarchical CAD models
1989	Paden, Mees, Fisher	uses GTK algorithm, distance comp., 2^d tree
1989	Kondo	grid search, lazy collision checking
1990	Lengyel, Reichert, Donald, Greenberg	search bitmap of C-obstacles
1990	Barraquand, Latombe	randomized potential field, implicit grid
1990	Glavina	sample all of free space, connect with local planner
1992	Chen, Hwang	multiresolution grid search
1992	Mazer, Talbi, Ahuatzin, Bessiere	Ariadne's clew algorithm
1994	Kavraki, Svestka, Overmars, Latombe	Probabilistic Roadmaps (PRMs); multiple query
1997	Hsu, Latombe, Motwani	Expansive planner, single-query, tree search
1999	LaValle, Kuffner	Rapidly-exploring Random Trees (RRTs)

Collision detection: Gilbert, Johnson, Keerthi, 1988; Lin, Canny, 1991; Quinlan, 1994; Gottschalk, Lin and Manocha, 1996; Mirtich, 1997, etc.

Multiple Query: Sampling-Based Roadmaps (PRMs)



- Use sampling to build a roadmap
- Search roadmap for paths
- PRM-based methods: PRM (Kavraki, Latombe, Overmars, Svestka, 1994); Obstacle-Based PRM (Amato, Wu, 1996); Sensor-based PRM (Yu, Gupta, 1998); Gaussian PRM (Boor, Overmars, van der Stappen, 1999); Medial axis PRMs (Wilmarth, Amato, Stiller, 1999; Pisula, Hoff, Lin, Manocha, 2000; Kavraki, Guibas, 2000); Contact space PRM (Ji, Xiao, 2000); Closed-chain PRMs (LaValle, Yakey, Kavraki, 1999; Han, Amato 2000); Lazy PRM (Bohlin, Kavraki, 2000); PRM for changing environments (Leven, Hutchinson, 2000); Visibility PRM (Simeon, Laumond, Nissoux, 2000), ...

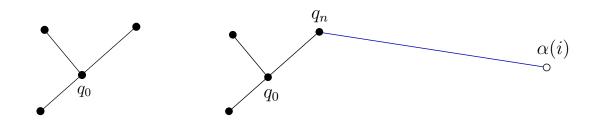
Amirkabir Winter School 2012 (Esfand 1390) – 26 / 61

Single Query: Search Tree Methods

Donald, 1984

- Grid search over 6D C-space
- □ Search guided by heuristics based directly on C-constraints
- Barraquand, Latombe, 1990 (randomized potential field)
 - Implicit grid search guided by potential field and random walks
 - Direct use of collision detector to validate motions
- Mazer, Talbi, Ahuatzin, Bessiere, 1992 (Ariadne's clew)
 - □ Search trees based on self avoidance
 - Node placement obtained by genetic algorithm
- Hsu, Latombe, Motwani, 1997 (expansive space planner)
 - □ Also based on self avoidance
 - Node placement biased toward low-density regions
- LaValle, Kuffner, 1999 (Rapidly-exploring Random Trees RRTs)
 - □ Search tree based on Voronoi bias
 - □ Growth obtained by sampling and nearest-neighbor searching

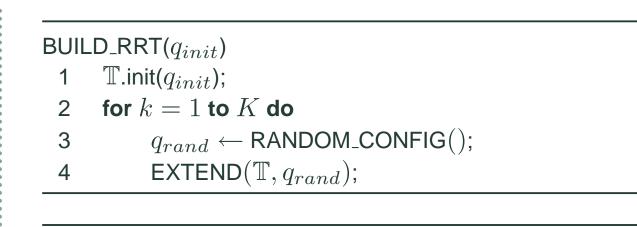
Rapidly Exploring Random Trees (RRTs)



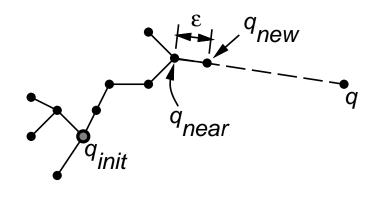
Introduced by LaValle and Kuffner, 1999.

- Applied, adapted, and extended in many works: Frazzoli, Dahleh, Feron, 2000; Toussaint, Basar, Bullo, 2000; Vallejo, Jones, Amato, 2000; Strady, Laumond, 2000; Mayeux, Simeon, 2000; Karatas, Bullo, 2001; Li, Chang, 2001; Kuffner, Nishiwaki, Kagami, Inaba, Inoue, 2000, 2001; Williams, Kim, Hofbaur, How, Kennell, Loy, Ragno, Stedl, Walcott, 2001; Carpin, Pagello, 2002; ...
- Also, applications to biology, computational geography, verification, virtual prototyping, architecture, solar sailing, computer graphics, ...
- In IEEE ICRA 2011 Proceedings, "RRT" occurs 928 times.

The RRT Construction Algorithm



 $\mathsf{EXTEND}(\mathbb{T}, q_{rand})$

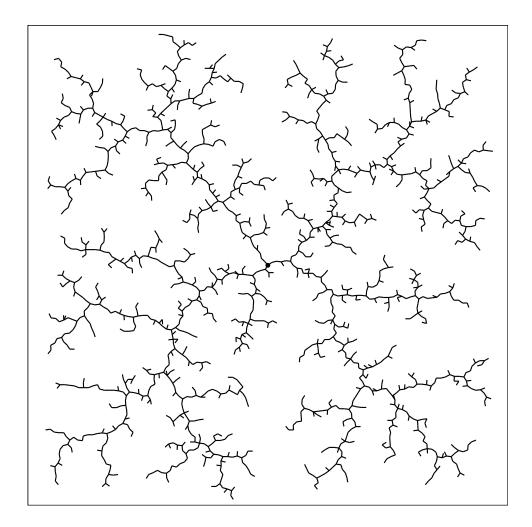


Metric on \mathcal{C} : $\rho : \mathcal{C} \times \mathcal{C} \to [0, \infty)$

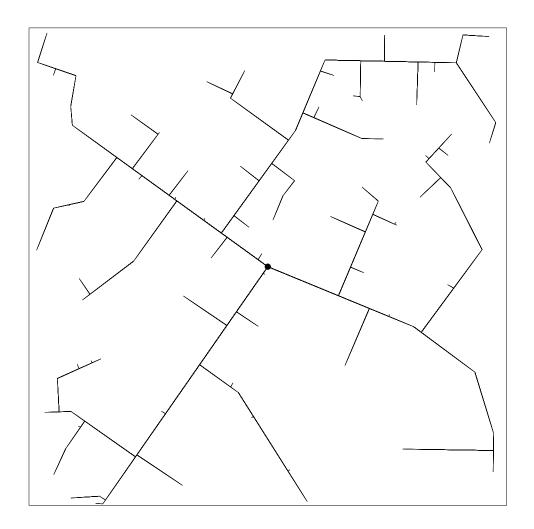
Nearest neighbors: Yershova [Atramentov], LaValle, 2002; Arya, Mount, 1997 Incremental collision detection: Lin, Canny, 1991; Mirtich, 1997

Amirkabir Winter School 2012 (Esfand 1390) - 29 / 61

A Rapidly-Exploring Random Tree (RRT)

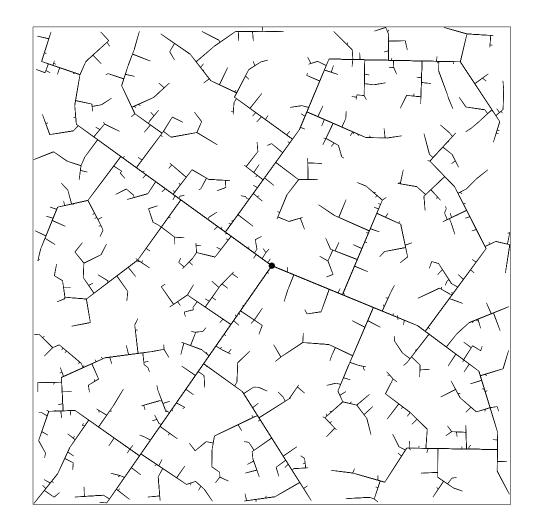


Segment-Based RRT

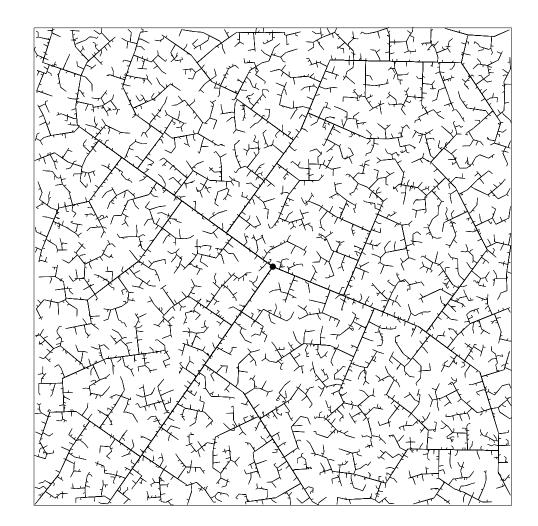


Amirkabir Winter School 2012 (Esfand 1390) – 31 / 61

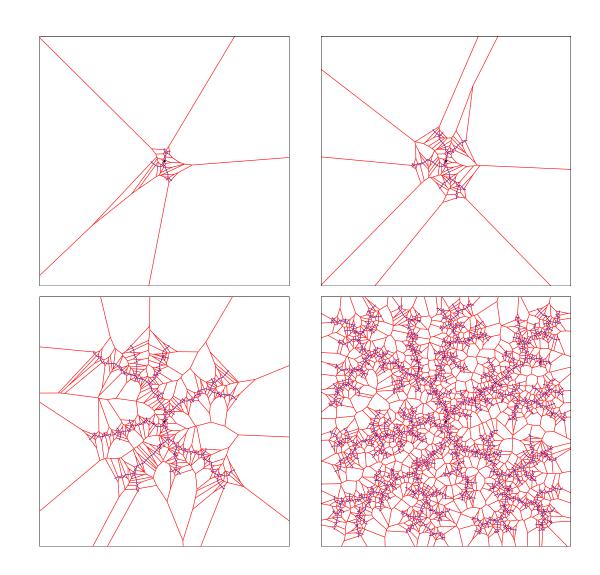
Segment-Based RRT



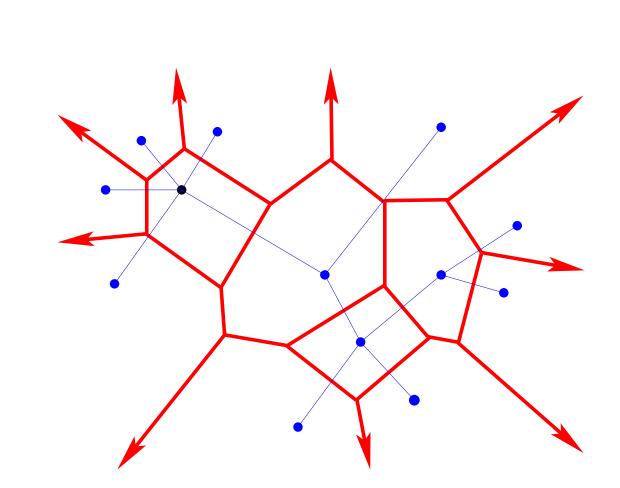
Segment-Based RRT



Voronoi-Biased Exploration



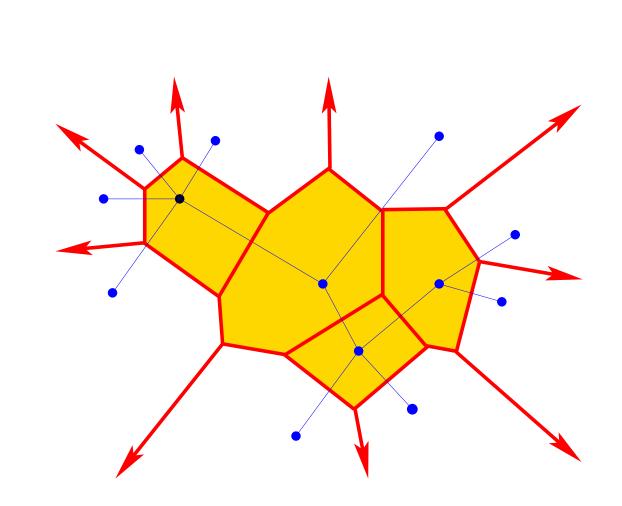
Voronoi Diagram in \mathbb{R}^2



Think about: Where is the nearest subway station?

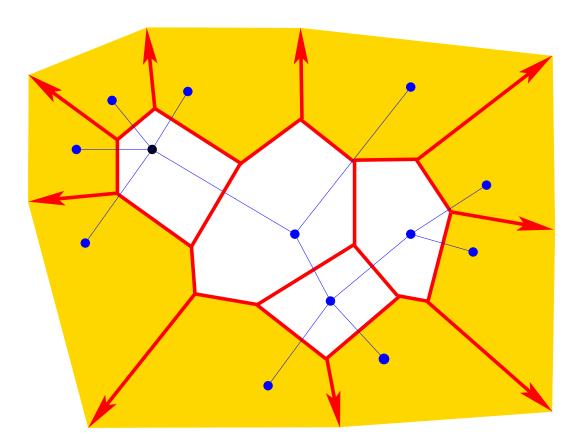
Amirkabir Winter School 2012 (Esfand 1390) - 35 / 61

Voronoi Diagram in \mathbb{R}^2



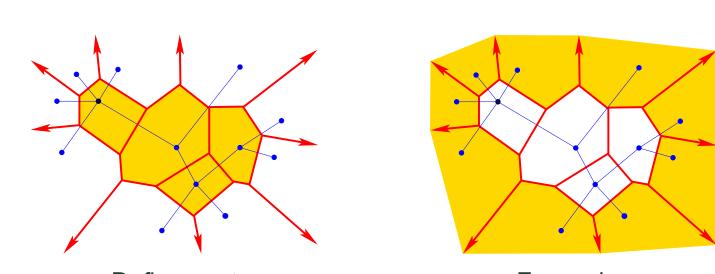
Amirkabir Winter School 2012 (Esfand 1390) – 36 / 61

Voronoi Diagram in \mathbb{R}^2



Amirkabir Winter School 2012 (Esfand 1390) – 37 / 61

Refinement vs. Expansion



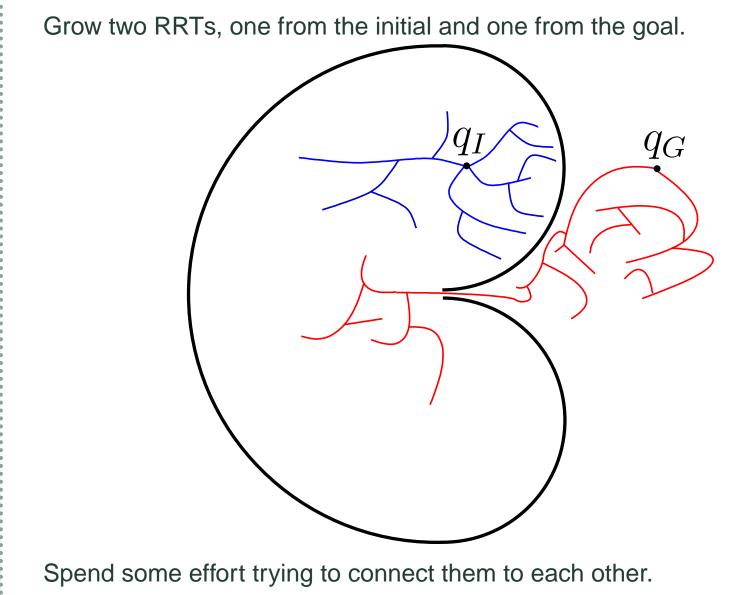
Refinement

Expansion

Where will the random sample fall?

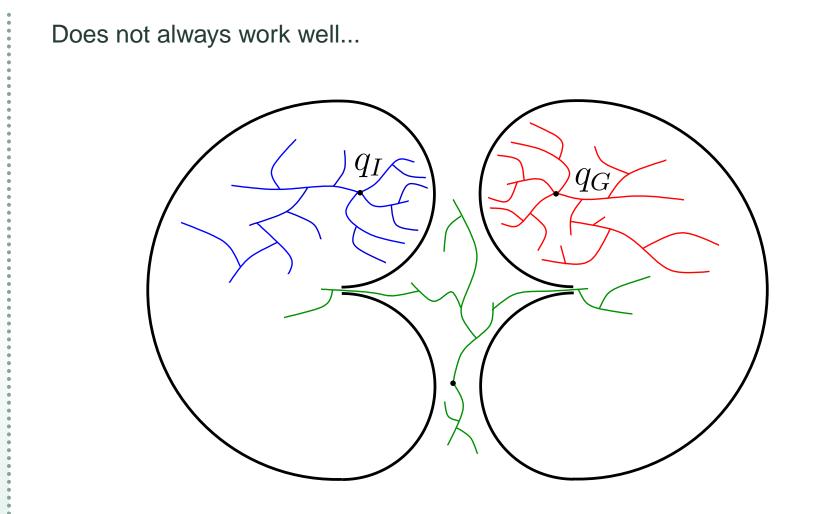
Amirkabir Winter School 2012 (Esfand 1390) - 38 / 61

Bidirectional Search



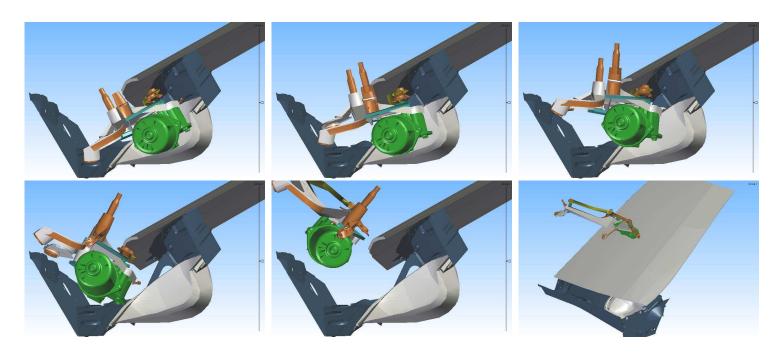
Amirkabir Winter School 2012 (Esfand 1390) - 39 / 61

Bidirectional Search



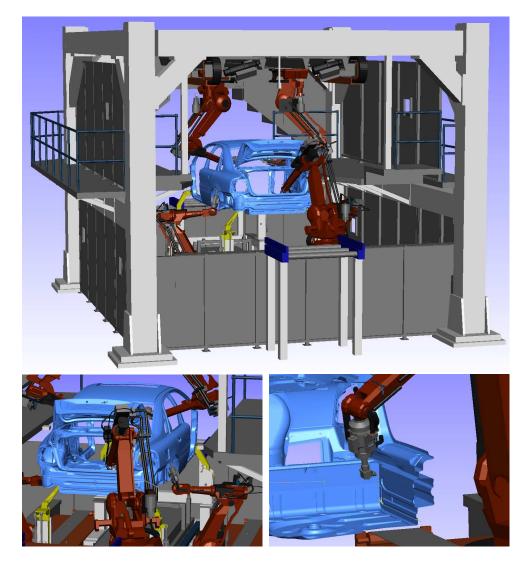
Amirkabir Winter School 2012 (Esfand 1390) - 40 / 61

Wiper Motor Assembly



Kineo CAM and LAAS/CNRS, Toulouse, France Integrated into Robcad (eM-Workplace) Add-ons for 3D Studio Max, Solidworks Direct users: Renault, Airbus, Ford, Optivus, ...

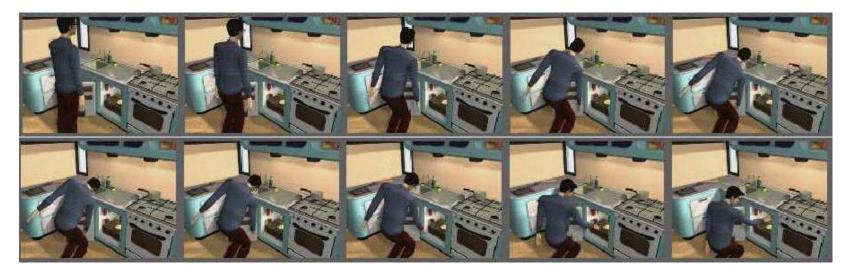
Sealing Cracks at Volvo Cars



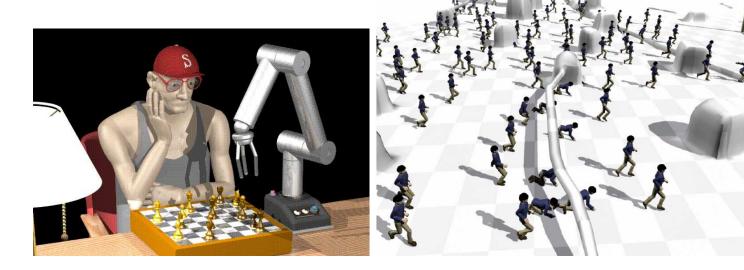
Fraunhofer Chalmers Centre and Volvo Cars, Sweden

Amirkabir Winter School 2012 (Esfand 1390) - 42 / 61

Virtual Humans



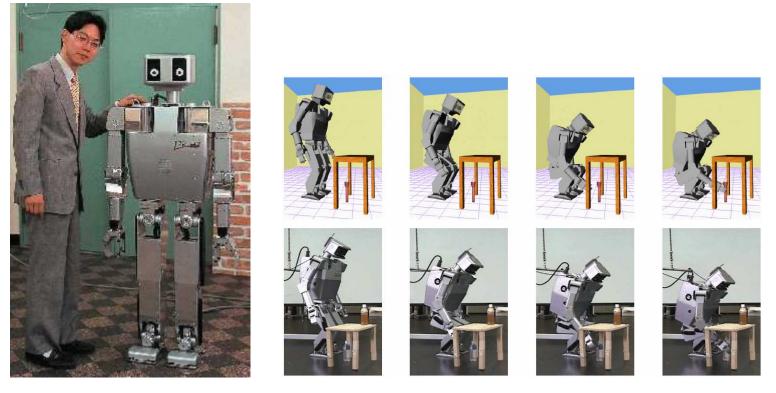
Marcelo Kallman, UC Merced



James Kuffner, CMU

Amirkabir Winter School 2012 (Esfand 1390) - 43 / 61

Humanoid Robots

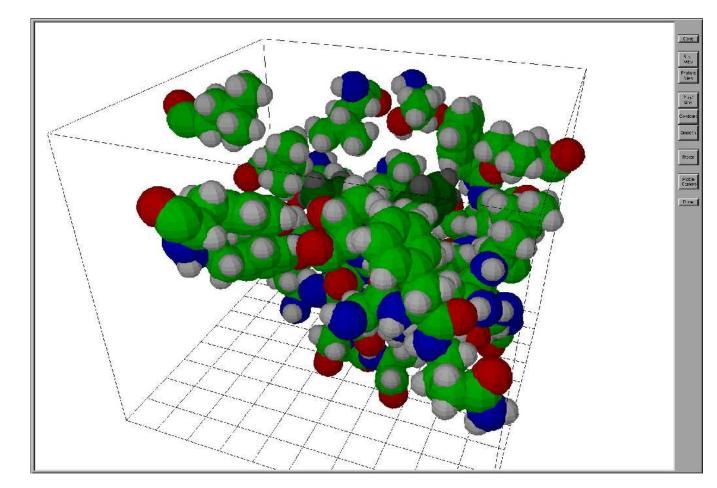


Kagami and H7

University of Tokyo and AIST

Amirkabir Winter School 2012 (Esfand 1390) - 44 / 61

Molecules, Etc.



From Nic Simeon, LAAS/CNRS

Amirkabir Winter School 2012 (Esfand 1390) - 45 / 61

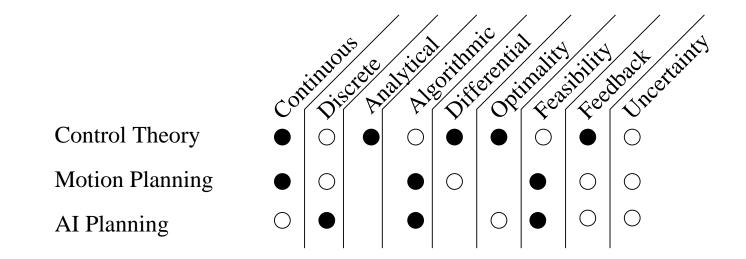
Beyond Basic Path Planning

- Need to broaden the focus of planning.
- Better unification of ideas.
- Need to address important concerns: feedback, differential constraints, sensing, uncertainty.

Fundamental: Information comes from sensors, not the Turing tape.

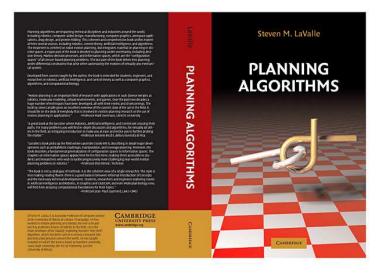
Separate Histories, Common Goals

- Control theory: analytical, continuous, differential, feedback, optimality
- Motion planning: algorithmic, continuous, paths, feasibility
- Al planning: algorithms, discrete, logic, feasibility



These days, people are interested in the same issues. Is it planning algorithms? Algorithmic control theory?

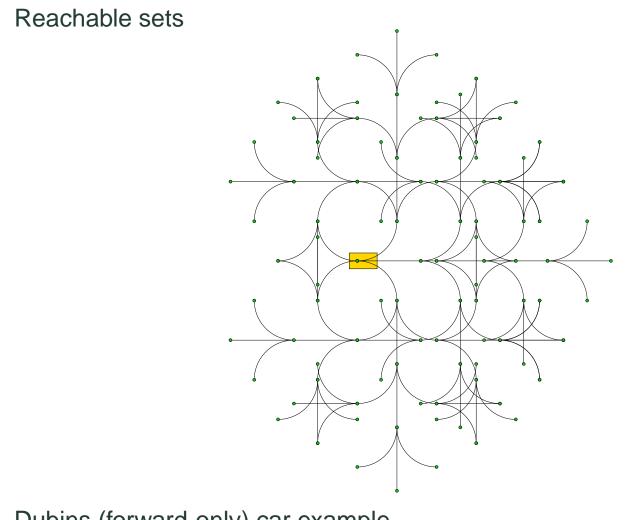
After painfully putting together a landscape of literature, several enormous holes were visible.



The hardest chapters to write:

- Motion planning under differential constraints (Ch 14)
- Feedback motion planning (Ch 8)
- Information spaces and sensing (Ch 11,12)

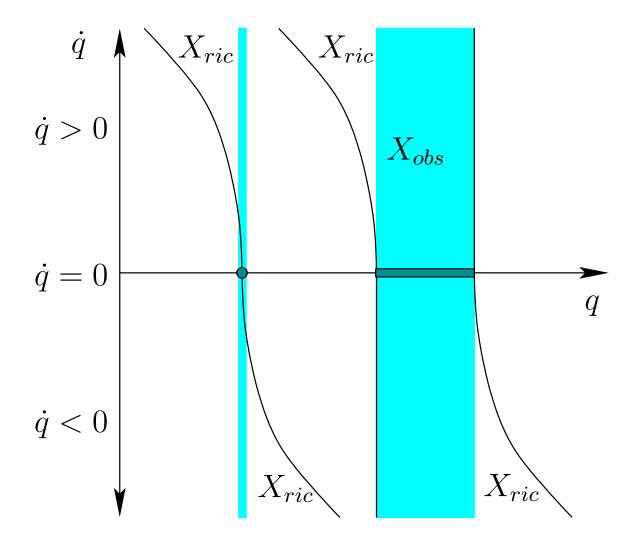
Motion Planning with Differential Constraints



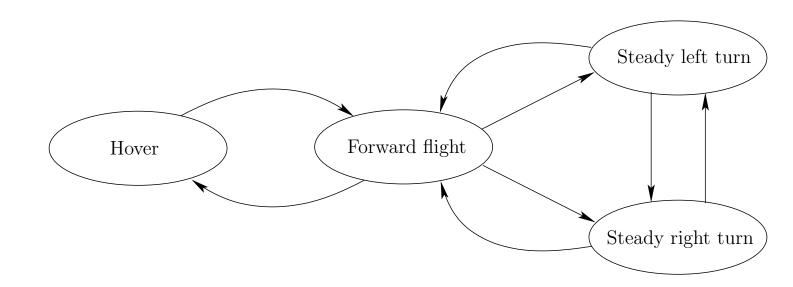
Dubins (forward-only) car example

Motion Planning with Differential Constraints

Obstacles in the phase space grow with speed.



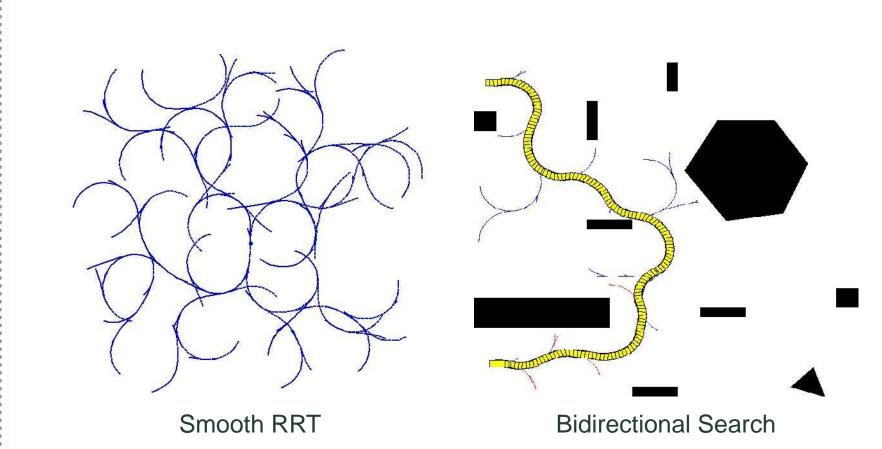
Motion Planning with Differential Constraints



Motion primitive problem (Frazzoli, Egerstedt, Pappas, Murphey, Belta)

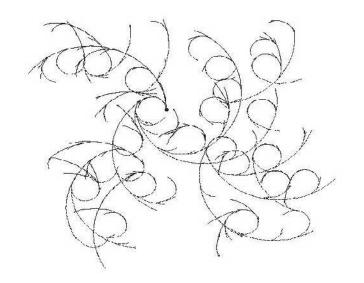
Amirkabir Winter School 2012 (Esfand 1390) - 51 / 61

Adding Differential Constraints to RRTs

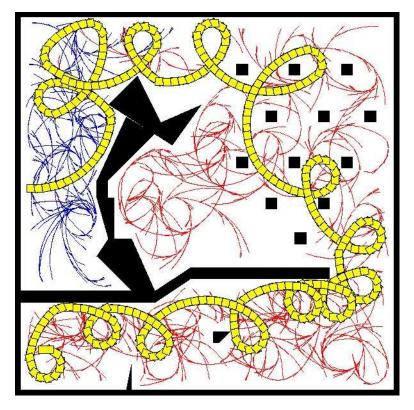


Amirkabir Winter School 2012 (Esfand 1390) - 52 / 61

The Left-Forward-Only Car



Left-Forward RRT



Bidirectional Search

Amirkabir Winter School 2012 (Esfand 1390) - 53 / 61

Future states (or configurations) are not necessarily predictable.

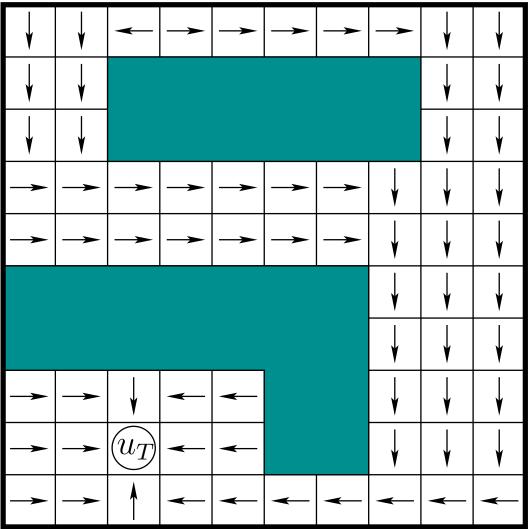
Need to compute a feedback plan $\pi : X \to U$ Here, U is a set of actions or system inputs. Might have a control system: $\dot{x} = f(x(t), u(t)$

During execution, a sample path is generated.

Note: Powerful sensing is assumed because the state $x \in X$ is known at all times!

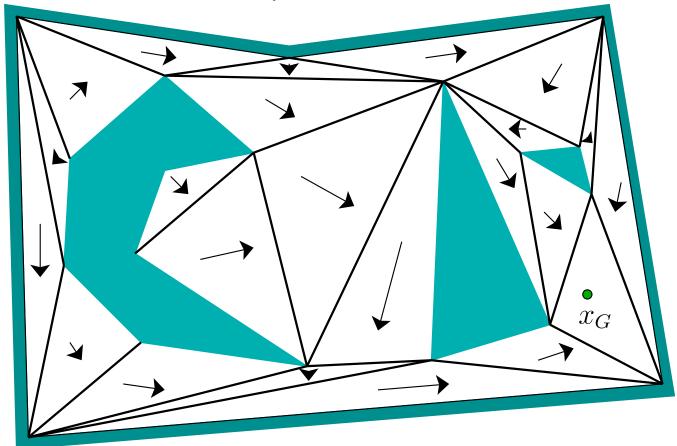
Feedback Motion Planning

A discrete grid example:



Feedback Motion Planning

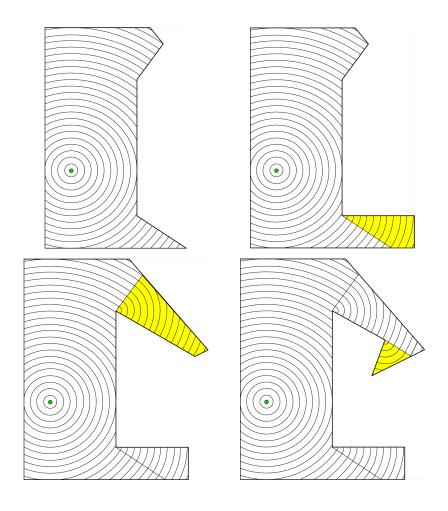
A nonsmooth continuous example:



Amirkabir Winter School 2012 (Esfand 1390) - 56 / 61

Feedback Motion Planning

Navigation function:



Arrive in the goal by gradient descent.

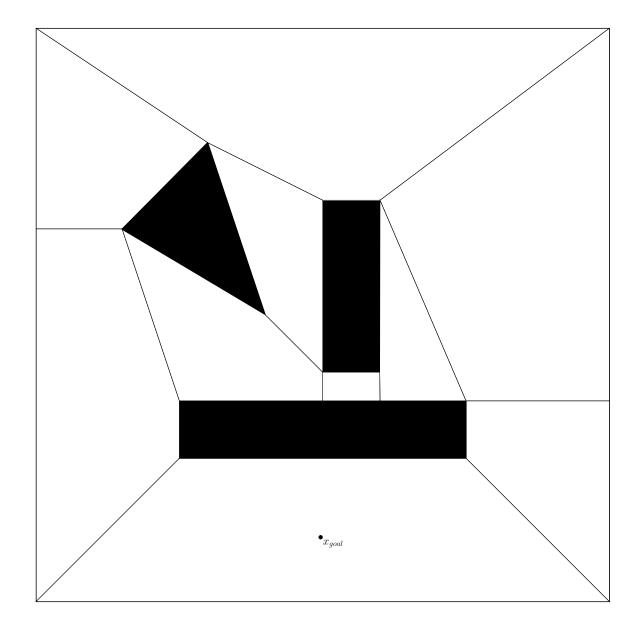
Lindemann, LaValle, IJRR 2009.

Instead of using the gradient of a navigation function as the vector field, we construct one directly. We do this as follows:

Partition the space into simple cells.

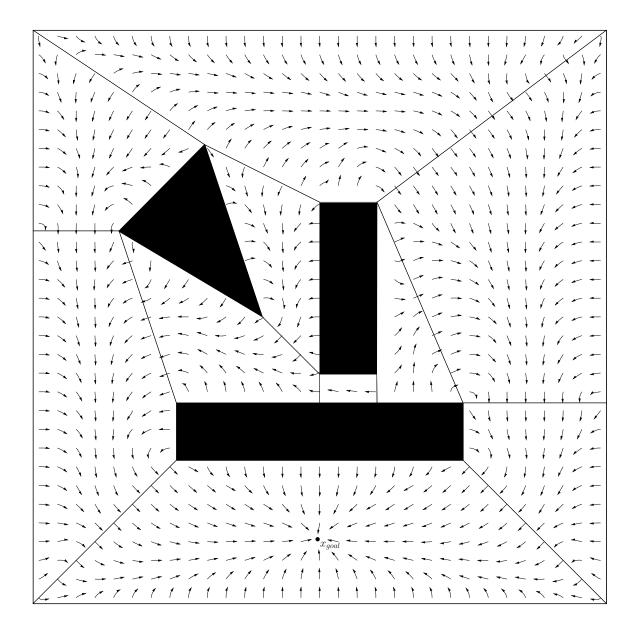
- Use the cell connectivity graph to determine a high-level motion plan.
- Define local vector fields on each cell which are compatible with the motion plan.
- Appropriately blend the vector fields together to obtain a global vector field.

Decomposition



Amirkabir Winter School 2012 (Esfand 1390) – 59 / 61

Computing Smooth Flows



Amirkabir Winter School 2012 (Esfand 1390) - 60 / 61

I-Spaces: The Next Generation of C-Spaces

Problem! It may be expensive or impossible to accurately estimate $\tilde{x}(t)$ at all times.

Remember the previous parts: Start with the *task* and design the sensors and filters.

Planning naturally occurs in the resulting *information space*.

Maybe we need to develop:

- Formulations of sensor models, I-spaces
- Models of complexity, computation over I-spaces
- Sampling-based planning methods
- Combinatorial planning methods

For C-spaces, the early steps were already done (Lagrangian mechanics).

