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There are two general kinds of filters:

1. Spatial: Combining simultaneous observations from multiple sensors.

2. Temporal: Incrementally incorporating observations from a sensor at

discrete stages.

Of course, we can make spatio-temporal filters.
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Triangulation: An Ancient Idea
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Triangulation: Intersection of Preimages
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Consider any n sensor mappings hi : X → Yi for i from 1 to n.

The triangulation of a set of the observations y1,. . .,yn is:

∆(y1, . . . , yn) = h−1
1 (y1) ∩ h−1

2 (y2) ∩ · · · ∩ h−1
n (yn),

which is a subset of X .

h−1
3 (y3)

h−1
1 (y1) h−1

2 (y2)



Stereo Vision
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Preimage Object

Plane
Image

Pinhole

One camera Triangulation

Observation: Object location in image plane

Preimages: Infinite rays

Triangulation: ∆(y1, y2) is a point.



Ancient Triangulation: Greeks, Egyptians, Chinese
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y

Landmark

Landmark

Sensor

Preimage

y

Landmark

Landmark

Sensor

Preimage

y1

y2

General preimage Preimage with ordering Triangulation

Observations: Angle between a pair of landmarks

Preimages: Circular arcs

Triangulation: ∆(y1, y2) is a point.



Trilateration
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TowerSensor

Preimage

1

2

3

Observations: Distance to a landmark (based on TOA)

Preimages: Circles (or spheres in R
3)

Triangulation: ∆(y1, y2, y3) is a point.



Hyperbolic Positioning
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Observations: Difference in distance to a pair of landmarks

Preimages: Hyperbolas

Triangulation: ∆(y1, y2, y3) is a point.



Relation to Linear Algebra
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Precisely how does information improve from multiple observations?

Linear case: yi = Cix, with Y = R
mi and X = R

n.

Assume Ci has rank k.

Each h−1
i (yi) is a n− k-dimensional hyperplane through the origin of X .

∆(y1, . . . , yn) is the intersection of hyperplanes.

Preimage dimension and linear independent are crucial.

Nonlinear case: Similar, but tricky due to geometry.



Handling Disturbances
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Nondeterministic disturbances:

Probabilistic disturbances:

p(x|y1, . . . , yn) =
p(y1|x)p(y2|x) · · · p(yn|x)p(x)

p(y1, . . . , yn)

The least squares optimization problem:

min
x̂∈X

n
∑

i=1

d2
i (x̂, yi)



Over State-Time Space
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Recall state-time space Z = X × T .

A sensor is h : Z → Y .

Triangulation intersects chunks of state-time space:

∆(y1, . . . , yn) = h−1
1 (y1) ∩ h−1

2 (y2) ∩ · · · ∩ h−1
n (yn),

h−1
3 (y3)

h−1
1 (y1) h−1

2 (y2)

Z

Important example: GPS simultaneously estimates position and time.



General temporal filters
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Temporal Filters: Fundamental Questions
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Given state space X and sensor h : X → Y .

Let x̃ : [0, t] → X be a state trajectory.

Let ỹ : [0, t] → Y be an observation history.

When presented with ỹ, there are two fundamental questions:

1. What is the set of state trajectories x̃ : [0, t] → X that might have

occurred?

2. What is the set of possible current states, x̃(t)?
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Apply h : X → Y for every t′ ∈ [0, t].

Every t′ ∈ [0, t] yields some observation ỹ(t′) = h(x̃(t′)).

Let X̃ be all state trajectories.

Let Ỹ be all possible observation histories.

Applying h over [0, t], we obtain the induced map:

H : X̃ → Ỹ
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This preimage answers 1st question:

H−1(ỹ) = {x̃ ∈ X̃ | ỹ = H(x̃)}
“all state trajectories that could have produced ỹ”

Answer to 2nd question:

{x ∈ X | ∃x̃ ∈ H−1(ỹ) such that x̃(t) = x}
“all possible current states, considering the history ỹ”
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X

Y

x

a

b

c
d

h(x)

� h−1(y) is a finite set of points.

� On the left, the particular edge is unknown.

� Using ỹ, the possible edges are narrowed down.

� Due to ỹ, the precise timing is known.

� H−1(ỹ) becomes finite.



Discretely Indexed Histories
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Rather than ỹ : [0, t] → Y , observations are obtained at discrete stages.

h : X → Y is a sequence ỹ = (y1, . . . , yk).

Between stage i and i+ 1, there are no observations.

For temporal filters:

1. Observations arrive incrementally; filter information is therefore

updated incrementally.

2. Need to model how the state might change over time, when no

observations are available.



The Structure of Temporal Filters
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Let I be any set, and call it an information space.

Let ι0 be called the initial I-state.

Transition function (filter):

ιk = φ(ιk−1, yk)

Sometimes it is shifted to ιk+1 = φ(ιk, yk+1).



Operation of the Temporal Filter
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� ι0 is given.
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� ι0 is given.

� y1 is received.
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� ι0 is given.

� y1 is received.

� ι1 = φ(ι0, y1) is computed.
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� ι0 is given.

� y1 is received.

� ι1 = φ(ι0, y1) is computed.

� y2 is received.
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� ι0 is given.

� y1 is received.

� ι1 = φ(ι0, y1) is computed.

� y2 is received.

� ι2 = φ(ι1, y2) is computed.



Operation of the Temporal Filter
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� ι0 is given.

� y1 is received.

� ι1 = φ(ι0, y1) is computed.

� y2 is received.

� ι2 = φ(ι1, y2) is computed.

� y3 is received.

� ι3 = φ(ι2, y3) is computed.

� y4 is received.

� ι4 = φ(ι3, y4) is computed.

� y5 is received.

� ι5 = φ(ι4, y5) is computed.

� y6 is received.

� ι6 = φ(ι5, y6) is computed.

� y7 is received.

� ι7 = φ(ι6, y7) is computed.

� y8 is received.

� ι8 = φ(ι7, y8) is computed.

..



Some Generic Filter Examples
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Sensor feedback: I = Y

Stage counter: I = {0, 1, 2, 3, . . .}

History I-space transitions: I = Ỹ

State estimator: I = X



Sensor Feedback Filter
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I-space: I = Y

Initial I-state: Not needed

Filter: ιk = φ(ιk−1, yk) = yk

Reactive planning: Actions depend only on yk.
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I-space: I = N ∪ {0}

Initial I-state: ι0 = 0

Filter: ιk = φ(ιk−1, yk) = ιk−1 + 1

“open loop”: Actions depend only on time or the stage index.

Tricky: Filter ignores observations, but are sensors need to know when the

next stage occurs?



History I-Space Transition Filter
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I-space: I = Ỹ

Initial I-state: ι0 = ()

Filter: (y1, . . . , yk) = φ(ιk−1, yk) = φ((y1, . . . , yk−1), yk)

This is simple concatenation onto the history.



State Estimator
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I-space: I = X

Initial I-state: ι0 = x0

Generic filter: ιk = φ(ιk−1, yk) = xk

“closed loop”: Actions depend only on state

Problem: How did we determine xk from ιk−1 and yk?

Crucial issue: Must have enough information to compute transitions.



Simple State Estimator
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How did the last filter work? Usually need a model of how X changes.

State space: X = R
2

History-based sensor: yk = h(xk, xk−1) = xk − xk−1

Filter: ιk = ιk−1 + yk

xk is recovered from a telescoping sum.

This example is nice, but too simple.

We usually need a model of how X changes.



Life in the New I-Space
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Once a filter φ is defined, we “live” in I .

Given ι0, φ, and ỹk = (y1, . . . , yk) we can obtain ιk by iterating φ:

ιk = φ(φ(· · ·φ(ι0, y1), y2), . . . , yk)

We can always construct an information mapping:

κ : I × Ỹ → I

Applying it:

ιk = κ(ι0, ỹk)
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Ensuring Transition Functions
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We want to make a filter:

ιk = φ(ιk−1, yk)

How do we know that ιk can be computed from ιk−1 and yk?

We can use every preimage h−1(yk) ⊆ X .

We also define motion models to model state change between stages.

Warning: Perhaps the mapping φ exists, but is not efficiently computable.



Including Motion Models
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How does the state change when not being observed?

Predictable state transitions:

xk+1 = f(xk)

If the state is only known to be in Xk ⊆ X , then

Xk+1(Xk) = {xk+1 ∈ X | xk ∈ Xk and xk+1 = f(xk)}.

This is a forward projection.

Simple enough, but states are usually not predictable.



Nondeterministic Motion Models
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Nondeterministic state transitions:

F : X → pow(X),

yielding Xk+1 = F (xk) ⊆ X .

The forward projection is

Xk+1(Xk) = {xk+1 ∈ X | xk ∈ Xk and xk+1 ∈ F (xk)}.

Example: Bodies must move on a continuous path.



Probabilistic Motion Models
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Probabilistic state transitions:

p(xk+1|xk)

The forward projection is

p(xk+1) =
∑

xk∈X

p(xk+1|xk)p(xk)



Filters with actions
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Introducing Actions
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Bodies may choose actions, which affect state transitions.

Example: Controlling a robot.

Passive: We do not choose actions, but receive them

Active: We get to chose the actions.

Whether passive or active, filtering is the same.

Let U be an action space.

Let uk ∈ U be the action applied at stage k.
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Predictable state transitions:

xk+1 = f(xk, uk)

Nondeterministic state transitions:

F : X × U → pow(X)

Probabilistic state transitions:

p(xk+1|xk, uk)

These are all the same as before, but now depend on actions.



Expanding the History
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In addition to ỹ, we now have an action history:

ũk = (u1, . . . , uk)

General filter template:

ιk = φ(ιk−1, uk−1, yk)



The Full History I-Space Filter
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History I-state: ηk = (ỹk, ũk−1)

History I-space: Ihist is all possible ηk for all k

A trivial filter:

ηk = φ(ηk−1, uk−1, yk)

Simply concatenation, once again.



Two Important Generic Filters
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Based on the type of uncertainty, we get two alternatives;

1. Nondeterministic filter, with Indet = pow(X)

2. Probabilistic filter (Bayesian filter), with Iprob
� Special case: Kalman filter, with Igauss ⊂ Iprob

Bayesian (including Kalman) are extremely popular in robotics.

Localization, mapping, SLAM, ...
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Nondeterministic Filters
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Models: h : X → pow(Y ) and F (xk, uk) ⊆ X

The I-space: Indet = pow(X)

Initial I-state: X1 ⊆ X

The filter:

Xk+1(ηk+1) = φ(Xk(ηk), uk, yk+1)

After first observation y1:

X1(η1) = X1(y1) = X1 ∩ h−1(y1)

(Intersect initial constraint with observation preimage.)



Operation of Nondeterministic Filters
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Inductively, Xk(ηk) is given.

Determine Xk+1(ηk+1) using Xk(ηk), uk, and yk+1.

Using uk,

Xk+1(ηk, uk) =
⋃

xk∈Xk(ηk)

F (xk, uk).

��
��
��
��

��
��
��
����

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Xk+1(ηk, uk)
Xk(ηk)F (xk, uk)

xk

Using yk+1,

Xk+1(ηk+1) = Xk+1(ηk, uk, yk+1) = Xk+1(ηk, uk) ∩ h−1(yk+1).
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Let Z = X × T with T = [0, tf ] and final time tf .

A complete trajectory is x̃ : T → X .

A partial trajectory is x̃ : [0, t] → X for any t ∈ [0, tf ).

Let X̃c denote the set of complete trajectories.
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Consider a set of sensors of the form hi : Z → Y .

Particularly, let yi = hi(xi, ti) = (y′i, ti), in which y′i = h′i(x) is a

standard sensor mapping.

Suppose that n observations, y1, . . ., yn are obtained.

Each yi is obtained from yi = hi(x̃(ti), ti).

What is the set of possible trajectories?
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Consider the preimage over X̃c:

h̃−1
i (yi) = {x̃ ∈ X̃c | x̃(ti) = hi(xi, ti)},

The filter is a form of triangulation on X̃c:

△̃(y1, . . . , yn) = h̃−1
1 (y1) ∩ h̃−1

2 (y2) ∩ · · · ∩ h̃−1
n (yn),
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x̃(0)
x̃(tf )

h−1

1
(y1)

x̃

t1 t2 t3

X

Z

T

h−1

3
(y3)h−1

2
(y2)

Each observation is like a new “hoop” through the trajectory must “jump”.
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Models: p(yk|xk) and p(xk+1|xk, uk)

The I-space: Iprob, all pdfs over X

Initial I-state: p(x1), a prior pdf

The filter:

p(xk+1|ηk+1) = φ(p(xk|ηk), uk, yk+1),

After first observation y1:

p(x1|η1) = p(x1|y1) =
p(y1|x1)p(x1)

∑

xk
p(y1|x1)p(x1)
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Inductively, p(xk|ηk) is given.

Determine p(xk+1|ηk+1) using p(xk|ηk), uk, and yk+1.

Using uk,

p(xk+1|ηk, uk) =
∑

xk∈X

p(xk+1|xk, uk, ηk)p(xk|ηk)

=
∑

xk∈X

p(xk+1|xk, uk)p(xk|ηk).

Using yk+1,

p(xk+1|yk+1, ηk, uk) =
p(yk+1|xk+1, ηk, uk)p(xk+1|ηk, uk)

∑

xk+1∈X

p(yk+1|xk+1, ηk, uk)p(xk+1|ηk, uk)
.
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Often it is intractible to compute the posteriors over X .

Sampling-based methods have been developed.

For some large number, m, of iterations, perform the following:

1. Select a state xk ∈ Sk according to the distribution Pk.

2. Generate a new sample, xk+1, for Sk+1 by generating a single

sample according to the density P (xk+1|xk, uk).

3. Assign the weight, w(xk+1) = P (yk+1|xk+1).

After the m iterations have completed, the weights over Sk+1 are

normalized to obtain a valid probability distribution, Pk+1.

Particle filters are used throughout robotics for localization and mapping.
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Fox, Thrun, Burgard, Delaert, 2001
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(a) (b) (c)

(d) (e) (f)

Hähnel, Fox, Burgard, Thrun, 2003
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State space: X = R
n

Action space: U = R
m

Disturbance space: Θ = R
ℓ

Linear state transition equation:

xk+1 = Akxk +Bkuk +Gkθk

Example:

xk+1 =





0
√

2 1
1 −1 4
2 0 1



xk +





1 0
0 1
1 1



uk +





1 1
0 −1
0 1



 θk
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Observation space: Y = R
i

Observation disturbance space: Ψ = R
j

yk = Ckxk +Hkψk

θk and ψk are zero-mean Gaussians with covariance matrices Σθ and

Σψ .
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First step (starting from µ0,Σ0):

µ1 = µ0 + L1(y1 − C1µ0) and Σ1 = (I − L1C1)Σ0

in which L1 = Σ0C
T
1

(

C1Σ0C
T
1 +H1ΣψH1

)

−1

Mean update:

µk+1 = Akµk +Bkuk + Lk+1(yk+1 − Ck+1(Akµk +Bkuk))

Covariance update:

Σ′

k+1 = AkΣkA
T
k +GkΣθG

T
k

Σk+1 = (I − Lk+1Ck+1)Σ
′

k+1

in which Lk = Σ′

kC
T
k

(

CkΣ
′

kC
T
k +HkΣψHk

)

−1
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I-space: Igauss, the set of all Gaussian pdfs

The linear algebra gore basically says:

(µk+1,Σk+1) = φ((µk,Σk), uk, yk+1)

Closure under Gaussians is a good thing:

Gaussian + action + sensor reading = Gaussian

The Kalman filter is used almost everywhere in engineering!

Extended Kalman filter: Keep approximating by Gaussians, even when the

model is wrong.
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The updates expressions are closely related:

� Nondeterministic: Set union and set intersection

� Probabilistic: Marginalization and Bayes rule

Both involve considerable computational challenges in practice

Options:

� Get a bigger computer

� Resort to sampling-based, particle filtering techniques

� Compute approximations (for example, EKF)

� Use the task and model structure to reduce complexity
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Now we attempt to reduce filter complexity.

Introducing combinatorial filters

Three examples:

1. Obstacles and beams

2. Shadow information spaces

3. Gap navigation trees

Many, many more should be possible from the numerous virtual sensor

models already given.
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a

b

e

d

c

f

A point body moves in a known environment.

X = E ⊂ R
2 and ỹ = cbabdeeefe

What state trajectories are possible?
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Remember: Virtual sensor models

Crossing pairs of landmarks Towers passing south

The obstacles and beams abstraction itself is important.



Beam Regions

Spatial filters

General temporal filters

State transition models

Filters with actions

Nondeterministic filters

Trajectory space filters

Bayesian filters

Kalman filter

Combinatorial filters

Obstacles and beams

Shadow I-spaces

Gap navigation trees

Amirkabir Winter School 2012 (Esfand 1390) – 64 / 96

r2

r1
r3

a

b

e

d

c

f

A set of 3 two-dimensional regions R = {r1, r2, r3}
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Assumptions:

� Every beam either touches ∂E at each end or shoots off to infinity

� Every beam is uniquely labeled

� No pair of beams intersects

Let I = R and ι0 = r0 (initial region known).

SIMPLE REGION FILTER:

rk = φ(rk−1, yk)

Using yk and rk−1, only one possibility exists for rk.



Beam Properties

Spatial filters

General temporal filters

State transition models

Filters with actions

Nondeterministic filters

Trajectory space filters

Bayesian filters

Kalman filter

Combinatorial filters

Obstacles and beams

Shadow I-spaces

Gap navigation trees

Amirkabir Winter School 2012 (Esfand 1390) – 66 / 96

A more complicated scenario:

1. Beams may or may not be distinguishable.

2. Beams may or may not be disjoint.

3. Beams may or may not be directed.



Beam Regions

Spatial filters

General temporal filters

State transition models

Filters with actions

Nondeterministic filters

Trajectory space filters

Bayesian filters

Kalman filter

Combinatorial filters

Obstacles and beams

Shadow I-spaces

Gap navigation trees

Amirkabir Winter School 2012 (Esfand 1390) – 67 / 96

With more complicated beams:

r1

r2

a

b

e

d

c

f

r5

r6

r8

r7

r4r3

b

e
a

8 regions R = {r1, . . . , r8}
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Let G be a multigraph:

� There is one vertex for every r ∈ R.

� A directed edge is made from r1 ∈ R to r2 ∈ R if and only if the body

can cross a single beam to go from r1 to r2.

� Each edge is labeled with the beam label and the direction, if needed.

r1

r2
b a

b

r2

a

a b ba′

r1
a′

Two beams The multigraph G
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Let I = pow(R) and ι0 = R0, an initial region set.

Filter:

Rk+1 = φ(Rk, yk+1)

In particular:

1. Let k = 0 and Rk = R0.

2. Let Rk+1 = ∅.

3. For vertex in Rk and outgoing edge that matches yk+1, insert the

destination vertex/region into Rk+1.

4. Increment k, and go to Step 2.
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b

c

a

In a given annulus E, we have two bodies, yielding X = E2 ⊂ R
4.

There are three disjoint, distinguishable, undirected beams a, b, c.

There are 3 regions, and nine combinations:

(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), and (3, 3)
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What if more than one body move around?

For n bodies, X ⊆ R
2n.

Let Rn = R×R× · · · ×R

I-space: I = pow(Rn)

Compute the multigraph G, and form a product Gn.

Vertices of Gn are region assignments (r1, . . . , rn).

Edges of Gn correspond to possible transitions.

Extend the one-body filter directly to Gn.

Problem: Number of vertices is exponential in n.
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All of the region filters are special cases of nondeterministic filters. Can we

simplify further?

Task: Determine whether the bodies in a room together?

b

c

a

Da

Dc Db

a

bc

b c

a

T

The previous I-space would have 511 I-states.

Here, the I-space is: I = {T,Da, Db, Dc}
Filter: ιk = φ(ιk−1, yk)

Recall Myhill-Nerode and DFA minimization...
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Keep track of bodies out of view–in the shadows.

How many are there? What kinds are there?
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V (q) V (q)

S(q)

Detection region Shadow region

S(q) is the union of a finite number of connected components.

Crucial to pursuit-evasion algorithms.



Component Events

Spatial filters

General temporal filters

State transition models

Filters with actions

Nondeterministic filters

Trajectory space filters

Bayesian filters

Kalman filter

Combinatorial filters

Obstacles and beams

Shadow I-spaces

Gap navigation trees

Amirkabir Winter School 2012 (Esfand 1390) – 76 / 96

As q changes, there are critical events for S(q):

1. Disappear: A shadow component vanishes, which eliminates a hiding

place for the bodies.

2. Appear: A shadow component appears, which introduces a new

hiding place for the bodies.

3. Split: A shadow component splits into multiple shadow components.

4. Merge: Multiple shadow components merge into one shadow

component.

We make appropriate general position assumptions.
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What Information Do We Have?
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Set of shadows at stage k:

Sk = {s1, s2, . . . , sn}

Transition from Sk to Sk+1:

1. Disappear: Sk+1 = Sk \ {s} for some s.

2. Appear: Sk+1 = Sk ∪ {s} for some new s.

3. Split: Split relation, S(s, s′, s′′), meaning s splits to form s′ and s′′.

4. Merge: Merge relation, M(s, s′, s′′), meaning s and s′ merge to form

s′′.
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The sequence over 5 stages:
s1 s2 s3 s6s4 s5

s1 s2 s3 s5 s6

s2 s3 s6s5 s7s1

s2 s8 s6s5 s7s9s1

s2 s8 s6s10s1 s7

s7 appears

s4 disappears

s3 splits into s8 and s9

s9 and s5 merge into s10

Each stage is the interval of time between events.
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Is there an evader in S(q)?

Used in several visibility-based pursuit-evasion algorithms.

Keep a status bit for each component:

bk : Sk → {0, 1}

The filter needs only to maintain a single bit per component:

� “0” means that there is definitely no body in s1
� “1” means that could be a body in s1
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Update rules when going from Sk to Sk+1:

1. Disappear: Nothing to update.

2. Appear: bk+1(s) = 0.

3. Split: bk+1(s
′) = bk(s) and bk+1(s

′′) = bk(s).

4. Merge: bk+1(s) = 0 if and only if bk(s
′) = 0 and bk(s

′′) = 0

Note: Split and merge relations are used.
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How many bodies in each component of Sk(q)?

Keep nonnegative integers or ∞ for each component.

Lower bound:

ℓk : Sk → N ∪ {0,∞}

Upper bound:

uk : Sk → N ∪ {0,∞}

Naive update rules when going from Sk to Sk+1:

1. Disappear: Nothing to update.

2. Appear: ℓk+1(s) = uk+1(s) = 0.

3. Split: ℓk+1(s
′) = 0, ℓk+1(s

′′) = 0, uk+1(s
′) = uk(s), and

uk+1(s
′′) = uk(s).

4. Merge: ℓk+1(s
′′) = ℓk(s) + ℓk(s

′) and

uk+1(s
′′) = uk(s) + uk(s

′).
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Let c, c′, and c′′ be the actual number of bodies in s, s′, and s′′.

If S(s, s′, s′′), then c = c′ + c′′.

if M(s, s′, s′′), then c+ c′ = c′′.

Interpretation: The I-state is a polytope on an integer lattice.

Let |Sk| = m, and consider integer lattice Z
m.

Consider all constraints due to

� ℓk(s) for all s ∈ Sk.

� uk(s) for all s ∈ Sk.

� All equations of the form c = c′ + c′′ and c+ c′ = c′′.

The polytope can be efficiently queried to get count estimates.
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� Extend to teams of partially distinguishable bodies

� Efficient max-flow algorithms compute I-states

� See Yu, LaValle, ICRA 2008.

� Open problem: Planning using these filters.
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Gap Navigation Trees
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Recall the gap sensor:

φ

g1

g2

g3

g4

g5

y = (g1, g2, g3, g4, g5)
What happens as q varies? The same 4 critical events!
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Set of gaps at stage k:

Gk = {g1, g2, . . . , gn}

I-space: A set of trees, Itrees.

For each event, perform tree surgery:

1. Disappear: Delete corresponding leaf.

2. Appear: Insert new leaf from root.

3. Split: Delete child of root, raise children.

4. Merge: Insert child of root, lower children.
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Disappear

Appear



Split and Merge
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Merge

Split



What the Filter Encodes

Spatial filters

General temporal filters

State transition models

Filters with actions

Nondeterministic filters

Trajectory space filters

Bayesian filters

Kalman filter

Combinatorial filters

Obstacles and beams

Shadow I-spaces

Gap navigation trees

Amirkabir Winter School 2012 (Esfand 1390) – 92 / 96

1

2 3

4

1

2

3

4 5

5

A piece of the shortest-path graph, as viewed from sensor position.

See shortest-path trees in Ghosh’s 2007 book.
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Many configuraton-environment pairs have the same tree.

The robot does not have to distinguish!
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The Robot Can Learn a “Complete” Map
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We prove that the shortest-path (visibility) graph is essentially recovered.



Part 3 Summary
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� Spatial filters vs. temporal filters

� Generalized triangulaion principle: Intersect preimages

� Preimages from observation histories to state trajectory space

� Temporal filters generally walk through an I-space

� Nondeterministic vs. probabilistic vs. combinatorial filters

� Obstacles and beams, shadow I-spaces, gap trees

By defining virtual sensors and studying preimages carefully,

reduced-complexity filters can be developed.
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