AMIRKABIR WINTER SCHOOL **Minimalism in Robotics:From Sensing to Filtering to PlanningPART 3: FILTERING**

Steven M. LaValle

March 3, 2012

Amirkabir Winter School 2012 (Esfand 1390) – ¹ / 96

Overview of Topics

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

There are two general kinds of filters:

- 1.**Spatial:** Combining simultaneous observations from multiple sensors.
- 2. **Temporal:** Incrementally incorporating observations from ^a sensor at discrete stages.

Of course, we can make spatio-temporal filters.

General [temporal](#page-12-0) filters

State [transition](#page-32-0) models

Filters with [actions](#page-37-0)

[Nondeterministic](#page-43-0) filters

[Trajectory](#page-46-0) space filters

[Bayesian](#page-51-0) filters

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Spatial filters

NOIS UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIG

Amirkabir Winter School 2012 (Esfand 1390) – 3 / 96

Triangulation: An Ancient Idea

Triangulation: Intersection of Preimages

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)Gap [navigation](#page-91-0) trees

Consider any n sensor mappings $h_i: X \rightarrow Y_i$ for i from 1 to $n.$

The *triangulation* of a set of the observations y_1,\dots,y_n n is:

$$
\Delta(y_1,\ldots,y_n)=h_1^{-1}(y_1)\cap h_2^{-1}(y_2)\cap\cdots\cap h_n^{-1}(y_n),
$$

which is a subset of X_\cdot

Stereo Vision

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Observation: Object location in image plane

Preimages: Infinite rays

Triangulation: $\Delta(y_1,y_2)$ is a point.

Amirkabir Winter School 2012 (Esfand 1390) – 6 / 96

Ancient Triangulation: Greeks, Egyptians, Chinese

Trilateration

Observations: Distance to ^a landmark (based on TOA)

Preimages: Circles (or spheres in \mathbb{R}^3)

Triangulation: $\Delta(y_1,y_2,y_3)$ is a point.

Hyperbolic Positioning

Triangulation: $\Delta(y_1,y_2,y_3)$ is a point.

Relation to Linear Algebra

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Precisely how does information improve from multiple observations?

```
Linear case: y_i = C_i x, with Y=\mathbb{R}^{m_i} and X=\mathbb{R}^nAssume C_i has rank k.
.
```
Each h^{-1}_\cdot $_i^{-1}(y_i)$ is a n k -dimensional hyperplane through the origin of $X.$

 $\Delta(y_1,\ldots,y_n)$ is the intersection of hyperplanes.

Preimage dimension and linear independent are crucial.

Nonlinear case: Similar, but tricky due to geometry.

Handling Disturbances

[Bayesian](#page-51-0) filters

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Nondeterministic disturbances:

Probabilistic disturbances:

$$
p(x|y_1,\ldots,y_n) = \frac{p(y_1|x)p(y_2|x)\cdots p(y_n|x)p(x)}{p(y_1,\ldots,y_n)}
$$

The *least squares* optimization problem:

$$
\min_{\hat{x}\in X} \sum_{i=1}^{n} d_i^2(\hat{x}, y_i)
$$

Amirkabir Winter School 2012 (Esfand 1390) – ¹¹ / 96

Over State-Time Space

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)Gap [navigation](#page-91-0) trees

```
Recall state-time space Z = X \times T.
```

```
A sensor is h:Z\to Y.
```
Triangulation intersects chunks of state-time space:

$$
\Delta(y_1,\ldots,y_n)=h_1^{-1}(y_1)\cap h_2^{-1}(y_2)\cap\cdots\cap h_n^{-1}(y_n),
$$

Important example: GPS simultaneously estimates position and time.

Amirkabir Winter School 2012 (Esfand 1390) – ¹² / 96

General [temporal](#page-12-0) filters

State [transition](#page-32-0) models

Filters with [actions](#page-37-0)

[Nondeterministic](#page-43-0) filters

[Trajectory](#page-46-0) space filters

[Bayesian](#page-51-0) filters

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

General temporal filters

Amirkabir Winter School 2012 (Esfand 1390) – 13 / 96

Temporal Filters: Fundamental Questions

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beams

Gap [navigation](#page-91-0) trees

Shadow [I-spaces](#page-77-0)

```
Given state space X and sensor h: X \to Y .
```
Let $\tilde{x} : [0,t] \to X$ be a state trajectory.

Let $\tilde{y}:[0,t]\rightarrow Y$ be an observation history.

When presented with $\widetilde{y},$ there are two fundamental questions:

- 1. What is the set of state trajectories $\tilde{x}:[0,t]\rightarrow X$ that might have occurred?
- 2. What is the set of possible current states, $\tilde{x}(t)$?

Time Parameterized Sensor Mapping

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Apply
$$
h: X \to Y
$$
 for every $t' \in [0, t]$.

Every $t'\in[0,t]$ yields some observation $\tilde{y}(t')=h(\tilde{x}(t')).$

Let \tilde{X} be all state trajectories.

Let \tilde{Y} be all possible observation histories.

Applying h over $[0,t],$ we obtain the induced map:

 $H : \tilde{X}$ $\rightarrow \tilde{Y}$

Answering the Fundamental Questions

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)

This preimage answers 1st question:

$$
H^{-1}(\tilde{y}) = \{ \tilde{x} \in \tilde{X} \mid \tilde{y} = H(\tilde{x}) \}
$$

"all state trajectories that could have produced \widetilde{y} "

Answer to 2nd question:

$$
\{x \in X \mid \exists \tilde{x} \in H^{-1}(\tilde{y}) \text{ such that } \tilde{x}(t) = x\}
$$

"all possible current states, considering the history \widetilde{y} "

Gap [navigation](#page-91-0) trees

A Simple Example

- Using \tilde{y} , the possible edges are narrowed down.
- E Due to \tilde{y} , the precise timing is known.
- E $H^{-1}(\tilde{y})$ becomes finite.

Amirkabir Winter School 2012 (Esfand 1390) – ¹⁷ / 96

Discretely Indexed Histories

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Rather than $\tilde{y}:[0,t]\rightarrow Y$, observations are obtained at discrete *stages*.

$$
h: X \to Y \text{ is a sequence } \tilde{y} = (y_1, \ldots, y_k).
$$

Between stage i and $i + 1$, there are *no* observations.

For temporal filters:

- 1. Observations arrive incrementally; filter information is thereforeupdated incrementally.
- 2. Need to model how the state might change over time, when noobservations are available.

The Structure of Temporal Filters

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters

[Trajectory](#page-46-0) space filters

[Bayesian](#page-51-0) filters

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Let $\mathcal I$ be any set, and call it an *information space*.

Let ι_0 be called the *initial I-state*.

Transition function (filter):

$$
\iota_k = \phi(\iota_{k-1}, y_k)
$$

Sometimes it is shifted to $\iota_{k+1}=\phi(\iota_k,y_{k+1}).$

[Spatial](#page-2-0) filters

General [temporal](#page-12-0) filters

 ι_0 is given.

State [transition](#page-32-0) models

Filters with [actions](#page-37-0)

[Nondeterministic](#page-43-0) filters

[Trajectory](#page-46-0) space filters

[Bayesian](#page-51-0) filters

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

 ι_0 is given.

Г y_1 is received.

- $\blacksquare\quad$ ι_0 is given.
- y_1 is received.
- $\qquad \qquad \blacksquare \quad \iota_1=\phi(\iota_0,y_1)$ is computed.
- y_2 is received.
- $\qquad \qquad \blacksquare \quad \iota_2=\phi(\iota_1,y_2)$ is computed.
- y_3 is received.
- $\qquad \qquad \blacksquare \quad \iota_3=\phi(\iota_2,y_3)$ is computed.
- y_4 is received.
- $\qquad \qquad \blacksquare \quad \iota_4=\phi(\iota_3,y_4)$ is computed.
- y_5 is received.
- $\qquad \qquad \blacksquare \quad \iota_5=\phi(\iota_4,y_5)$ is computed.
- y_6 is received.
- $\blacksquare\quad$ $\iota_6=\phi(\iota_5,y_6)$ is computed.
- y_7 is received.
- $\qquad \qquad \blacksquare \quad \iota_7=\phi(\iota_6,y_7)$ is computed.
- y_8 is received.
- $\qquad \qquad \blacksquare \quad \iota_8=\phi(\iota_7,y_8)$ is computed.

Some Generic Filter Examples

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters

[Kalman](#page-57-0) filter

[Bayesian](#page-51-0) filters

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Stage counter: $\mathcal{I}=$ $\{0,1,2,3,\ldots\}$

History I-space transitions: $\mathcal{I}=\tilde{Y}$

```
State estimator: \mathcal{I}=X
```


Sensor Feedback Filter

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)Gap [navigation](#page-91-0) trees

l-space:
$$
\mathcal{I} = Y
$$

Initial I-state: Not needed

Filter:
$$
\iota_k = \phi(\iota_{k-1}, y_k) = y_k
$$

Reactive planning: Actions depend only on y_k .

Stage Counter Filter

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)Gap [navigation](#page-91-0) treesFilter:

$$
\text{I-space: } \mathcal{I} = \mathbb{N} \cup \{0\}
$$

Initial I-state: $\iota_0=0$

Filter:
$$
\iota_k = \phi(\iota_{k-1}, y_k) = \iota_{k-1} + 1
$$

"open loop": Actions depend only on time or the stage index.

Tricky: Filter ignores observations, but are sensors need to know when the next stage occurs?

History I-Space Transition Filter

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)Gap [navigation](#page-91-0) treesl-space: $\mathcal{I}=\tilde{Y}$ Initial I-state: ι_0 $_{0} = ()$ Filter: $(y_1,\ldots,y_k) = \phi(\iota_{k-1},y_k) = \phi((y_1,\ldots,y_{k-1}),y_k)$ This is simple concatenation onto the history.

$$
\boxed{\prod_{\text{unversity of library (P. LLIMOS AT UBAANACIIAMPAIGN) }}}
$$

Amirkabir Winter School 2012 (Esfand 1390) – ²⁴ / 96

State Estimator

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

l-space: $\mathcal{I} = X$

Initial I-state: $\iota_0 = x_0$

Generic filter: $\iota_k = \phi(\iota_{k-1}, y_k) = x_k$

"closed loop": Actions depend only on state

Gap [navigation](#page-91-0) treesProblem: How did we determine x_k from ι_{k-1} and y_k ? Crucial issue: Must have enough information to compute transitions.

Simple State Estimator

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

How did the last filter work? Usually need a model of how X changes.
Oktober 2008 $X = \mathbb{R}^2$ State space: $X=\mathbb{R}^2$

History-based sensor: $y_k = h(x_k, x_{k-1}) = x_k - x_{k-1}$

Filter: $\iota_k = \iota_{k-1} + y_k$

 x_k is recovered from a telescoping sum.

This example is nice, but too simple.

We usually need a model of how X changes.

Life in the New I-Space

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)Gap [navigation](#page-91-0) trees

Once a filter ϕ is defined, we "live" in $\mathcal{I}.$

Given ι_0 , ϕ , and $\tilde{y}_k = (y_1,\ldots,y_k)$ we can obtain ι_k by iterating ϕ :

$$
\iota_k = \phi(\phi(\cdots \phi(\iota_0, y_1), y_2), \ldots, y_k)
$$

We can always construct an *information mapping*:

$$
\kappa: \mathcal{I} \times \tilde{Y} \to \mathcal{I}
$$

 $\iota_k = \kappa(\iota_0, \tilde{y}_k)$

Applying it:

Amirkabir Winter School 2012 (Esfand 1390) – ²⁷ / 96

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

State transition models

Ensuring Transition Functions

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)Gap [navigation](#page-91-0) trees

We want to make a filter:

$$
\iota_k = \phi(\iota_{k-1}, y_k)
$$

How do we know that ι_k can be computed from ι_{k-1} and y_k ?

We can use every preimage h^{-1} $\perp(y_k) \subseteq X$.

We also define *motion models* to model state change *between stages*.

Warning: Perhaps the mapping ϕ exists, but is not efficiently computable.

Including Motion Models

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)Gap [navigation](#page-91-0) trees

How does the state change when not being observed?

Predictable state transitions:

 $x_{k+1} = f(x_k)$

If the state is only known to be in $X_k\subseteq X,$ then

$$
X_{k+1}(X_k) = \{x_{k+1} \in X \mid x_k \in X_k \text{ and } x_{k+1} = f(x_k)\}.
$$

This is ^a forward projection.

Simple enough, but states are usually not predictable.

Nondeterministic Motion Models

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Nondeterministic state transitions:

$$
F:X\to\mathrm{pow}(X),
$$

yielding $X_{k+1}=F(x_k)\subseteq X.$

The forward projection is

$$
X_{k+1}(X_k) = \{x_{k+1} \in X \mid x_k \in X_k \text{ and } x_{k+1} \in F(x_k)\}.
$$

Example: Bodies must move on ^a continuous path.
Probabilistic Motion Models

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)

Probabilistic state transitions:

The forward projection is

 $p(x_{k+1}|x_k)$

[Nondeterministic](#page-43-0) filters

[Trajectory](#page-46-0) space filters

[Bayesian](#page-51-0) filters

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Filters with actions

Amirkabir Winter School 2012 (Esfand 1390) – 33 / 96

Introducing Actions

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Bodies may choose actions, which affect state transitions.

Example: Controlling ^a robot.

Passive: We do not choose actions, but receive them**Active:** We get to chose the actions.

Whether passive or active, filtering is the same.

Let U be an *action space*.

Let $u_k \in U$ be the action applied at stage $k.$

Amirkabir Winter School 2012 (Esfand 1390) – 34 / 96

Transition Models

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)Gap [navigation](#page-91-0) trees

Predictable state transitions:

$$
x_{k+1} = f(x_k, u_k)
$$

Nondeterministic state transitions:

$$
F: X \times U \to \text{pow}(X)
$$

Probabilistic state transitions:

$$
p(x_{k+1}|x_k, u_k)
$$

These are all the same as before, but now depend on actions.

Expanding the History

General [temporal](#page-12-0) filters

[Spatial](#page-2-0) filters

State [transition](#page-32-0) models

Filters with [actions](#page-37-0)

[Nondeterministic](#page-43-0) filters

[Trajectory](#page-46-0) space filters

[Bayesian](#page-51-0) filters

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

$$
\tilde{u}_k=(u_1,\ldots,u_k)
$$

General filter template:

$$
\iota_k = \phi(\iota_{k-1}, u_{k-1}, y_k)
$$

The Full History I-Space Filter

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)

[Nondeterministic](#page-43-0) filters

[Trajectory](#page-46-0) space filters

[Bayesian](#page-51-0) filters

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

History I-state: η_k $y_k = (\tilde{y})$ $_{k},\tilde{u}_{k-1})$

History I-space: \mathcal{I}_{hist} is all possible η_k for all k

A trivial filter:

$$
\eta_k = \phi(\eta_{k-1}, u_{k-1}, y_k)
$$

Simply concatenation, once again.

Two Important Generic Filters

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Based on the type of uncertainty, we get two alternatives;

- 1. Nondeterministic filter, with $\mathcal{I}_{ndet} = \text{pow}(X)$
- 2. Probabilistic filter (Bayesian filter), with \mathcal{I}_{prob}
	- Special case: Kalman filter, with $\mathcal{I}_{gauss} \subset \mathcal{I}_{prob}$

Bayesian (including Kalman) are extremely popular in robotics. Localization, mapping, SLAM, ...

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Nondeterministic filters

Nondeterministic Filters

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Models:
$$
h: X \to \text{pow}(Y)
$$
 and $F(x_k, u_k) \subseteq X$
The I-space: $\mathcal{I}_{ndet} = \text{pow}(X)$
Initial I-state: $X_1 \subseteq X$

The filter:

 $X_{k+1}(\eta_{k+1}) = \phi(X_k(\eta_k), u_k, y_{k+1})$

After first observation y_1 :

$$
X_1(\eta_1) = X_1(y_1) = X_1 \cap h^{-1}(y_1)
$$

(Intersect initial constraint with observation preimage.)

Operation of Nondeterministic Filters

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)Gap [navigation](#page-91-0) trees

Inductively, $X_k(\eta_k)$ is given.

 x_k \bullet

Determine $X_{k+1}(\eta_{k+1})$ using $X_k(\eta_k)$, u_k , and $y_{k+1}.$

Using $u_k,$

$$
X_{k+1}(\eta_k, u_k) = \bigcup_{x_k \in X_k(\eta_k)} F(x_k, u_k).
$$

Using $y_{k+1},$

$$
X_{k+1}(\eta_{k+1}) = X_{k+1}(\eta_k, u_k, y_{k+1}) = X_{k+1}(\eta_k, u_k) \cap h^{-1}(y_{k+1}).
$$

Amirkabir Winter School 2012 (Esfand 1390) – ⁴¹ / 96

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Trajectory space filters

 $\mathsf L$

Let
$$
Z = X \times T
$$
 with $T = [0, t_f]$ and *final time* t_f .

A complete trajectory is $\tilde{x}:T\rightarrow X.$ A partial trajectory is $\tilde{x}:[0,t]\rightarrow X$ for any $t\in[0,t_f).$

Let \tilde{X}_c denote the set of complete trajectories.

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Consider a set of sensors of the form $h_i: Z \rightarrow Y$.

Particularly, let $y_i = h_i(x_i,t_i) = (y'_i)$ standard sensor mapping. $i'_i,t_i)$, in which $y'_i=h'_i(x)$ is a

Suppose that n observations, $y_1, \, \ldots, \, y_n$ Each y_i is obtained from $y_i=h_i(\tilde{x}(t_i),t_i).$ n are obtained.

What is the set of possible trajectories?

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Consider the preimage over \tilde{X}_c :

$$
\tilde{h}_i^{-1}(y_i) = \{ \tilde{x} \in \tilde{X}_c \mid \tilde{x}(t_i) = h_i(x_i, t_i) \},
$$

The filter is a form of triangulation on \tilde{X}_c :

$$
\tilde{\triangle}(y_1,\ldots,y_n)=\tilde{h}_1^{-1}(y_1)\cap \tilde{h}_2^{-1}(y_2)\cap\cdots\cap \tilde{h}_n^{-1}(y_n),
$$

Amirkabir Winter School 2012 (Esfand 1390) – 46 / 96

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Bayesian filters

Probabilistic Filters

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Models: $p(y_k|x_k)$ and $p(x_{k+1}|x_k,u_k)$

The I-space: \mathcal{I}_{prob} , all pdfs over X

Initial I-state: $p(x_1)$, a prior pdf

The filter:

 $p(x_{k+1}|\eta_{k+1}) = \phi(p(x_k|\eta_k), u_k, y_{k+1}),$

After first observation y_1 :

$$
p(x_1|\eta_1) = p(x_1|y_1) = \frac{p(y_1|x_1)p(x_1)}{\sum_{x_k} p(y_1|x_1)p(x_1)}
$$

Amirkabir Winter School 2012 (Esfand 1390) – 48 / 96

Operation of Probabilistic Filters

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Determine $p(x_{k+1}|\eta_{k+1})$ using $p(x_k|\eta_k)$, u_k , and $y_{k+1}.$

Using $u_k,$

$$
p(x_{k+1}|\eta_k, u_k) = \sum_{x_k \in X} p(x_{k+1}|x_k, u_k, \eta_k) p(x_k|\eta_k)
$$

=
$$
\sum_{x_k \in X} p(x_{k+1}|x_k, u_k) p(x_k|\eta_k).
$$

Using $y_{k+1},$

$$
p(x_{k+1}|y_{k+1}, \eta_k, u_k) = \frac{p(y_{k+1}|x_{k+1}, \eta_k, u_k)p(x_{k+1}|\eta_k, u_k)}{\sum_{x_{k+1}\in X} p(y_{k+1}|x_{k+1}, \eta_k, u_k)p(x_{k+1}|\eta_k, u_k)}.
$$

Amirkabir Winter School 2012 (Esfand 1390) – 49 / 96

Particle Filters

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Often it is intractible to compute the posteriors over $X.$ Sampling-based methods have been developed.

For some large number, m , of iterations, perform the following:

- 1. Select a state $x_k \in S_k$ according to the distribution $P_k.$
- 2. Generate a new sample, x_{k+1} , for S_{k+1} by generating a single sample according to the density $P(x_{k+1} \vert x_k,u_k).$
- 3. Assign the weight, $w(x_{k+1}) = P(y_{k+1}|x_{k+1})$.

After the m iterations have completed, the weights over S_{k+1} are
necessarized to obtain a valid probability distribution. D normalized to obtain a valid probability distribution, P_{k+1} .

Particle filters are used throughout robotics for localization and mapping.

Particle Filter For Localization

Fox, Thrun, Burgard, Delaert, 2001

SLAM Example

[Bayesian](#page-51-0) filters

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Hähnel, Fox, Burgard, Thrun, 2003

[Spatial](#page-2-0) filters

[Bayesian](#page-51-0) filters

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

NOIS ...
UNIVERSITY OF ILLINOIS AT URBANA-CHAMF

Kalman filter

Bayesian Special Case: Kalman Filter

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

State space: $X=\mathbb{R}^n$ Action space: $U=\mathbb{R}^m$ [.] Disturbance space: $\Theta=\mathbb{R}^\ell$

Linear state transition equation:

$$
x_{k+1} = A_k x_k + B_k u_k + G_k \theta_k
$$

Example:

$$
x_{k+1} = \begin{pmatrix} 0 & \sqrt{2} & 1 \\ 1 & -1 & 4 \\ 2 & 0 & 1 \end{pmatrix} x_k + \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} u_k + \begin{pmatrix} 1 & 1 \\ 0 & -1 \\ 0 & 1 \end{pmatrix} \theta_k
$$

Kalman Filter

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

 Σ_{ψ} .

$$
y_k = C_k x_k + H_k \psi_k
$$

 θ_k and ψ_k are zero-mean Gaussians with covariance matrices Σ_{θ} and

Amirkabir Winter School 2012 (Esfand 1390) – ⁵⁵ / 96

Kalman Filter: Linear Algebra Gore

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

First step (starting from
$$
\mu_0
$$
, Σ_0):
\n
$$
\mu_1 = \mu_0 + L_1(y_1 - C_1\mu_0) \text{ and } \Sigma_1 = (I - L_1C_1)\Sigma_0
$$
\nin which $L_1 = \Sigma_0 C_1^T (C_1\Sigma_0 C_1^T + H_1\Sigma_\psi H_1)^{-1}$

Mean update:

 $\mu_{k+1}=A_k\mu_k+B_ku_k+L_{k+1}(y_{k+1} C_{k+1}(A_k\mu_k+B_ku_k))$

Covariance update: $\Sigma_{k+1}^{\prime}=A_{k}\Sigma_{k}A_{k}^{T}$ $\Sigma_{k+1} = (I - L_{k+1}C_{k+1})\Sigma'_{k+1}$ $\frac{T}{k}+G_k\Sigma_\theta G_k^T$ \boldsymbol{k} in which $L_k = \Sigma_k' C_k^T \big(C_k \Sigma_k' C_k^T\big)$ $\frac{T}{k}\big(C_k \Sigma_k^\prime C_k^T\big)$ $\frac{T}{k}+H_k\Sigma_\psi H_k\big)^{-1}$ 1

Kalman Filter Summary

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)Gap [navigation](#page-91-0) trees

I-space: \mathcal{I}_{gauss} , the set of all Gaussian pdfs

The linear algebra gore basically says:

$$
(\mu_{k+1}, \Sigma_{k+1}) = \phi((\mu_k, \Sigma_k), u_k, y_{k+1})
$$

Closure under Gaussians is ^a good thing:

Gaussian ⁺ action ⁺ sensor reading ⁼ Gaussian

The Kalman filter is used almost everywhere in engineering! Extended Kalman filter: Keep approximating by Gaussians, even when themodel is wrong.

Summary of General Filters

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)Gap [navigation](#page-91-0) trees

E

Г

Г

The updates expressions are closely related:

- Nondeterministic: Set union and set intersection
- Probabilistic: Marginalization and Bayes rule

Both involve considerable computational challenges in practiceOptions:

- Get ^a bigger computer
- Г Resort to sampling-based, particle filtering techniques
	- Compute approximations (for example, EKF)
- **Use the task and model structure to reduce complexity**

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Combinatorial filters

Combinatorial Filters

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Now we attempt to reduce filter complexity.

Introducing combinatorial filters

Three examples:

- 1. Obstacles and beams
- 2. Shadow information spaces
- 3. Gap navigation trees

Many, many more should be possible from the numerous virtual sensormodels already given.

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Obstacles and beams

Cbstacles and Beams

A point body moves in ^a known environment. $X=E\subset\mathbb{R}^2$ and $\tilde{y}=cbabdeeefe$ What state trajectories are possible?

Virtual Beams

Remember: Virtual sensor models

Crossing pairs of landmarks Towers passing south

The obstacles and beams abstraction itself is important.

Beam Regions

A set of 3 two-dimensional regions $R = \{r_1, r_2, r_3\}$

Amirkabir Winter School 2012 (Esfand 1390) – 64 / 96

A Simple Region Filter

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Assumptions:

E

■ Every beam either touches ∂E at each end or shoots off to infinity \blacksquare

- Г Every beam is uniquely labeled
- No pair of beams intersects

Let $\mathcal{I} = R$ and $\iota_0 = r_0$ (initial region known).

SIMPLE REGION FILTER:

$$
r_k = \phi(r_{k-1}, y_k)
$$

Using y_k and r_{k-1} , only one possibility exists for r_k .

Beam Properties

nore complicated scenario:

- 1. Beams may or may not be *distinguishable*.
- 2. Beams may or may not be *disjoint*.
- 3. Beams may or may not be *directed*.

Beam Regions

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)Gap [navigation](#page-91-0) trees

With more complicated beams:

8 regions $R = \{r_1, \ldots, r_8\}$

Construct ^a Multigraph

Let G be a multigraph:

E

Г

- There is one vertex for every $r \in R$.
- A *directed edge* is made from $r_1 \in R$ to $r_2 \in R$ if and only if the body can cross a single beam to go from r_1 to r_2 .
	- Each edge is labeled with the beam label and the direction, if needed.

Nondeterministic Region Filter

General [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters

[Trajectory](#page-46-0) space filters

[Bayesian](#page-51-0) filters

[Kalman](#page-57-0) filter

[Spatial](#page-2-0) filters

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Let $\mathcal{I} = \operatorname{pow}(R)$ and $\iota_0=R_0$, an initial region set.

Filter:

$$
R_{k+1} = \phi(R_k, y_{k+1})
$$

In particular:

- 1. Let $k=0$ and $R_k=R_0$.
- 2. Let $R_{k+1}=\emptyset$.
- 3. For vertex in R_k and outgoing edge that matches y_{k+1} , insert the destination vertex/region into $R_{k+1}.$
- 4. Increment k , and go to Step $2.$

What About Two Bodies?

In a given annulus E , we have two bodies, yielding $X = E^2 \subset \mathbb{R}^4$.

There are three disjoint, distinguishable, undirected beams $a,\,b,\,c.$

There are 3 regions, and nine combinations: $(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2)$, and $(3,3)$

Amirkabir Winter School 2012 (Esfand 1390) – 70 / 96

Multiple Body Filter

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

What if more than one body move around?For n bodies, $X \subseteq \mathbb{R}^{2n}$.

Let $R^n = R \times R \times \cdots \times R$

l-space: $\mathcal{I} = \text{pow}(R^n)$

Compute the multigraph G , and form a product G^n .

Vertices of G^n are region assignments $(r_1,\ldots,r_n).$ Edges of $Gⁿ$ correspond to possible transitions.

Extend the one-body filter directly to $G^n.$ Problem: Number of vertices is exponential in $n.$

Two-Bit Filter

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)Gap [navigation](#page-91-0) trees

All of the region filters are special cases of nondeterministic filters. Can wesimplify further?

Task: Determine whether the bodies in a room *together*?

The previous I-space would have 511 I-states. Here, the I-space is: $\mathcal{I} = \{T, D_a, D_b, D_c\}$ Filter: $\iota_k = \phi(\iota_{k-1}, y_k)$

Amirkabir Winter School 2012 (Esfand 1390) – ⁷² / 96 Recall Myhill-Nerode and DFA minimization...

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

NOIS UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIG

Shadow I-spaces

Shadow Information Spaces

Gap [navigation](#page-91-0) trees

Keep track of bodies out of view–in the shadows.

How many are there? What kinds are there?

Amirkabir Winter School 2012 (Esfand 1390) – ⁷⁴ / 96

Detection and Shadow Regions

Component Events

 q changes, there are *critical events* for $S(q)$:

- **Disappear:** ^A shadow component vanishes, which eliminates ^a hidinglace for the bodies.
- **Appear:** ^A shadow component appears, which introduces ^a newiding place for the bodies.
- **Split:** ^A shadow component splits into multiple shadow components.
- **Merge:** Multiple shadow components merge into one shadowomponent.

ake appropriate general position assumptions.

Appear and Disappear

Gap [navigation](#page-91-0) trees

INIVERSITY OF ILLINOIS AT URBANA-CH

Amirkabir Winter School 2012 (Esfand 1390) – ⁷⁷ / 96

Split and Merge

Amirkabir Winter School 2012 (Esfand 1390) – 78 / 96

Be Careful About Holes

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

What Information Do We Have?

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)

[Nondeterministic](#page-43-0) filters

[Trajectory](#page-46-0) space filters

[Bayesian](#page-51-0) filters

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Set of shadows at stage $k\mathrm{:}$

$$
S_k = \{s_1, s_2, \ldots, s_n\}
$$

Transition from S_k to S_{k+1} :

- 1.. $\,$ Disappear: $S_{k+1}=S_k$ $\{s\}$ for some $s.$
- **Appear:** $S_{k+1} = S_k \cup \{s\}$ 2. $\mathcal{S}_k \cup \{s\}$ for some new $s.$
- **Split:** Split relation, $S(s, s', s'')$, meaning s splits to form s' and s'' . 3.
- . Merge: Merge relation, $M(s,s',s'')$, meaning s and s' merge to form 4. $s^{\prime\prime}.$

Example

Each stage is the interval of time between events.

Pursuit-Evasion Filter

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsE E

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Is there an evader in $S(q)$? Used in several visibility-based pursuit-evasion algorithms.

Keep ^a status bit for each component:

 $b_k : S_k \to \{0, 1\}$

The filter needs only to maintain ^a single bit per component:

- "0" means that there is definitely no body in s_1
- "1" means that could be a body in s_1

Pursuit-Evasion Filter

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters[Obstacles](#page-65-0) and beamsShadow [I-spaces](#page-77-0)Gap [navigation](#page-91-0) trees1.2.3.4.

Update rules when going from S_k to S_{k+1} :

- **Disappear:** Nothing to update.
- **Appear:** $b_{k+1}(s) = 0$.
- **Split:** $b_{k+1}(s') = b_k(s)$ and $b_{k+1}(s'') = b_k(s)$.
- **Merge:** $b_{k+1}(s) = 0$ if and only if $b_k(s') = 0$ and $b_k(s'') = 0$
- Note: Split and merge relations are used.

Count-Bounding Filter

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Gap [navigation](#page-91-0) trees

Shadow [I-spaces](#page-77-0)

How many bodies in each component of $S_k(q)$? Keep nonnegative integers or ∞ for each component.

Lower bound:

$$
\ell_k : S_k \to \mathbb{N} \cup \{0, \infty\}
$$

Upper bound:

$$
u_k: S_k \to \mathbb{N} \cup \{0, \infty\}
$$

Naive update rules when going from S_k to S_{k+1} :

- 1.**Disappear:** Nothing to update.
- 2. **Appear:** $\ell_{k+1}(s) = u_{k+1}(s) = 0.$
- 3. **Split:** $\ell_{k+1}(s') = 0$, $\ell_{k+1}(s'') = 0$, $u_{k+1}(s') = u_k(s)$, and $u_{k+1}(s'') = u_k(s).$
- 4. **Merge:** $\ell_{k+1}(s'') = \ell_k(s) + \ell_k(s')$ and $u_{k+1}(s'') = u_k(s) + u_k(s').$

Amirkabir Winter School 2012 (Esfand 1390) – 84 / 96

Count-Bounding Filter

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters[Kalman](#page-57-0) filter[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Let $c, \, c',$ and c'' be the actual number of bodies in $s, \, s',$ and $s'''.$ If $S(s,s',s'')$, then $c=c'+c''$. if $M(s,s',s'')$, then $c+c'=c''$.

Interpretation: The I-state is ^a polytope on an integer lattice.

Let $|S_k| = m$, and consider integer lattice \mathbb{Z}^m .

Consider all constraints due to

- $\ell_k(s)$ for all $s \in S_k$.
- $u_k(s)$ for all $s \in S_k$.
- **All equations of the form** $c = c' + c''$ and $c + c' = c''$.

The polytope can be efficiently queried to get count estimates.

Count-Bounding For Teams

- Extend to teams of partially distinguishable bodies
- Efficient max-flow algorithms compute I-states
- See Yu, LaValle, ICRA 2008.
	- Open problem: Planning using these filters.

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Gap navigation trees

Gap Navigation Trees

$$
y = (g_1, g_2, g_3, g_4, g_5)
$$

What happens as q varies? The same 4 critical events!

 g_5

Gap Navigation Trees

[Spatial](#page-2-0) filtersGeneral [temporal](#page-12-0) filtersState [transition](#page-32-0) modelsFilters with [actions](#page-37-0)[Nondeterministic](#page-43-0) filters[Trajectory](#page-46-0) space filters[Bayesian](#page-51-0) filters

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

Set of gaps at stage k :

$$
G_k = \{g_1, g_2, \ldots, g_n\}
$$

I-space: A set of trees, \mathcal{I}_{trees} .

For each event, perform tree surgery:

- 1.**Disappear:** Delete corresponding leaf.
- 2.**Appear:** Insert new leaf from root.
- 3.**Split:** Delete child of root, raise children.
- 4.**Merge:** Insert child of root, lower children.

Appear and Disappear

Gap [navigation](#page-91-0) trees

Split and Merge

[Kalman](#page-57-0) filter

[Combinatorial](#page-63-0) filters

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

What the Filter Encodes

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

A piece of the shortest-path graph, as viewed from sensor position. See shortest-path trees in Ghosh's 2007 book.

Possible Current States

Gap [navigation](#page-91-0) trees

Many configuraton-environment pairs have the same tree.

The robot does not have to distinguish!

How the Tree Is Updated

JNIVERSITY OF ILLINOIS AT URBANA-CH

(d) Split $\frac{1}{90} - 94 / 96$

The Robot Can Learn ^a "Complete" Map

[Obstacles](#page-65-0) and beams

Shadow [I-spaces](#page-77-0)

Gap [navigation](#page-91-0) trees

We prove that the shortest-path (visibility) graph is essentially recovered.

Amirkabir Winter School 2012 (Esfand 1390) – 95 / 96

Part 3 Summary

- Spatial filters vs. temporal filters
- Generalized triangulaion principle: Intersect preimages
- Preimages from observation histories to state trajectory space
- Temporal filters generally walk through an I-space
- Nondeterministic vs. probabilistic vs. combinatorial filters
- Obstacles and beams, shadow I-spaces, gap trees

By defining virtual sensors and studying preimages carefully, educed-complexity filters can be developed.