AMIRKABIR WINTER SCHOOL Minimalism in Robotics: From Sensing to Filtering to Planning PART 2: SENSING

Steven M. LaValle

February 29, 2012

Amirkabir Winter School 2012 (Esfand 1390) - 1 / 103

Physical Sensors
Physical state spaces
Sensor mapping
Basic Examples
Depth sensors
Detection sensors
Relational sensors
Gap sensors
Field sensors
Preimages

Sensor lattice

Additional complications

Physical Sensors

What Is a Sensor?

We know it when we see it, but will not try to formally classify.

Amirkabir Winter School 2012 (Esfand 1390) - 3 / 103

Where Might We Want to Use Sensors?

- Physical Sensors
 Physical state spaces
 Sensor mapping
- Basic Examples
- Depth sensors
- Detection sensors
- Relational sensors
- Gap sensors
- Field sensors
- Preimages
- Sensor lattice
- Additional complications

Shopping mall

Control room

Assisted living

Coral reef

Where Might We Want to Use Sensors?

Physical Sensors Physical state spaces Sensor mapping Basic Examples Depth sensors Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

Roomba

CMU Boss

Protein

Amirkabir Winter School 2012 (Esfand 1390) – 5 / 103

What Physical Quantities Are Sensable?

 Physical Sensors

 Physical state spaces

 Sensor mapping

 Basic Examples

 Depth sensors

 Detection sensors

 Relational sensors

 Gap sensors

 Field sensors

 Preimages

Sensor lattice

Additional complications

Spatial: displacement, velocity, acceleration, distance to something, proximity, position, attitude, area, volume, level/tilt, motion detection

Temporal: clock, chronometer (elapsed time), frequency.

Electromagnetic: voltage, current, power, charge, capacitance, inductance, magnetic field, light intensity, color. These may operate within a circuit or within open space.

Mechanical: solid (mass, weight, density, force, strain, torque), fluid (acoustic, pressure, flow, viscosity), thermal (temperature), calories.

Other: chemical (composition, pH, humidity, pollution, ozone), radiation (nuclear), biomedical (blood flow, pressure).

See CRC Measurement, Instrumentation, and Sensors Handbook

What Sensors Are Available?

Amirkabir Winter School 2012 (Esfand 1390) – 7 / 103

What Sensors Are Available?

Depth sensors

Gap sensors

Field sensors

Sensor lattice

Preimages

Safety beam

What Sensors Are Available?

Camera

Pressure mat

Wii remote

SICK laser scanner Amirkabir Winter School 2012 (Esfand 1390) – 9 / 103

Common Sensor Characteristics

Physical Sensors Physical state spaces	Transfer function converts physical phenomenon to sensor reading: $g: \mathbb{R} \to \mathbb{R}$.
Sensor mapping	
Basic Examples	Domain of g may be absolute vs. relative.
Depth sensors	g itself may be <i>linear</i> or <i>nonlinear</i> .
Detection sensors	Resolution is given by set of possible $g(x)$.
Relational sensors	Sensitivity is set of stimuli that produce same reading
Gap sensors	 Denostabilitude producing come readings under come phonomene.
Field sensors	 Repeatability is producing same readings under same phenomena. Calibration eliminates systematic errors.
Preimages	
Sensor lattice	
Additional complications	You will find these notions in sensor handbooks.

Field sensors

Preimages

Sensor lattice

Additional complications

Physical state spaces

Amirkabir Win

Physical Sensors vs. Virtual Sensors

Physical Sensors	Phys
Physical state spaces	
Sensor mapping	
Basic Examples	=
Depth sensors	
Detection sensors	2
Relational sensors	Virtu
Gap sensors	conci
Field sensors	261121
Preimages	
Sensor lattice	Δ virt
Additional complications	imple

Physical sensor: The real thing.

Virtual sensor: Mathematical model of information obtained from a sensing system.

A virtual sensor could have many alternative physical-sensor implementations.

Identifying which *virtual* sensor is required will lead to better filter design and planning algorithms.

Physical State Space to Observation Space

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice

Additional complications

The key idea in this section is to understand how two spaces are related:

- 1. The *physical state space*, in which each physical state is a cartoon-like description of the possible world external to the sensor.
- 2. The *observation space*, which is the set of possible sensor output values or observations.

Physical state \rightarrow a sensor observation

A Mobile Robot Among Polygonal Walls

Physical Sensors	•
Physical state spaces	•
Sensor mapping	•
Basic Examples	•
Depth sensors	•
Detection sensors	•
Relational sensors	•
Gap sensors	•
Field sensors	•
Preimages	•
Sensor lattice	•
Additional complications	•
	•

- Observation: The wall is 3 meters away.
- What possible external physical worlds are consistent with that?

A Common Structure

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice

Additional complications

Localization only: Set of possible configurations Mapping only: Set of possible environments Both: Set of configuration-environment pairs

Let \mathcal{Z} be any set of sets.

Each $Z \in \mathcal{Z}$ is a "map". Each $z \in Z$ is the configuration or "place" in the map.

Unknown configuration and map yields a state space as: All (z, Z) such that $z \in Z$ and $Z \in \mathcal{Z}$.

State Space For a Planar Mobile Robot

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

Without any obstacles:

- Any position $(q_x, q_y) \in \mathbb{R}^2$
- Any orientation $q_{ heta} \in [0, 2\pi)$
- Let state space X be all positions and orientations

Can imagine $X \subset \mathbb{R}^3$; however, for orientation, we have additional topology since $q_{\theta} = 0 = 2\pi$.

Could write $X = \mathbb{R}^2 \times S^1$, in which S^1 is a circle and the set of all orientations.

Could write X = SE(2), set of all 2D rigid-body transformations.

State Space Given a Map

```
      Physical Sensors

      Physical state spaces

      Sensor mapping

      Basic Examples

      Depth sensors

      Detection sensors

      Relational sensors

      Gap sensors

      Field sensors
```

Preimages

Sensor lattice

Additional complications

Suppose $E \subset \mathbb{R}^2$ is known to be the set of allowable positions. Must have $(q_x, q_y) \in E$.

State space: $X = E \times S^1$

State Space For One of Several Maps

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

Given a set of k possible maps:

$$\mathcal{E} = \{E_1, E_2, \dots, E_k\}$$

For example, could be given 5 maps:

$$\mathcal{E} = \{E_1, E_2, E_3, E_4, E_5\}$$

X is all (q, E_i) in which $(q_x, q_y) \in E_i$ and $E_i \in \mathcal{E}$.

Recall the common structure.

Amirkabir Winter School 2012 (Esfand 1390) - 18 / 103

State Space For Unknown Map

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

Given an infinite map family, \mathcal{E} , of environments.

Examples:

- The set of all connected, bounded polygonal subsets that have no interior holes (formally, they are simply connected).
- The previous set expanded to include all cases in which the polygonal region has a finite number of polygonal holes.
- All subsets of \mathbb{R}^2 that have a finite number of points removed.
- All subsets of \mathbb{R}^2 that can be obtained by removing a finite collection of nonoverlapping discs.
- All subsets of \mathbb{R}^2 obtained by removing a finite collection of nonoverlapping convex sets.
- A collection of piecewise-analytic subsets of \mathbb{R}^2 .

State Space For Unknown Map

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

```
In spite of larger {\cal E}, there is no difference:
```

```
X is all pairs (q, E) in which (q_x, q_y) \in E and E \in \mathcal{E}.
```

We can write $X \subset \mathbb{R}^2 \times S^1 \times \mathcal{E}$.

X is enormous! But that is fine here. We do not compute directly on it.

Note: Putting useful probability densities over X might be difficult or impossible.

X is usually **not a manifold** (doesn't look like C-space)

Placing Bodies into Environments

Here, assume every body is a point, except for obstacles. Otherwise, see Chapter 4 of *Planning Algorithms* for configuration space obstacles. Amirkabir Winter School 2012 (Esfand 1390) – 21 / 103

Terms for Bodies

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors** Relational sensors Gap sensors Field sensors Preimages Sensor lattice Additional complications

- **Robot:** A body that carries sensors, performs computations, and executes motion commands.
- Landmark: Usually a small body that has a known location and is easily detectable and distinguishable from others.
- **Object:** A body that can be detected and manipulated by a robot. It can *carried* by a robot or *dropped* at a location.
- Pebble: A small object that is used as a marker to detect when a place has been revisited.
- **Target:** A person, a robot, or any other moving body that we would like to monitor using a sensor.
- **Obstacle:** A fixed or moving body that obstructs the motions of others.
- **Evader:** An unpredictable moving body that attempts to elude detection.
- **Treasure:** Usually a stationary body that has an unknown location but is easy to recognize by a sensor directly over it.
- **Tower:** A body that transmits a signal, such as a cell-phone tower or a lighthouse.

Important Body Properties

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** 1. Depth sensors 2. **Detection sensors** 3. **Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

Names of bodies are not important.

Instead, the properties that affect mathematical models are crucial:

- 1. What are its *motion capabilities*?
- 2. Can it be *distinguished* from other bodies?
- 3. How does it *interact* with other bodies?

Motion

Distinguishability

Interaction

Body Property 1: Motion Capabilities

Physical Sensors
Physical state spaces
Sensor mapping
Basic Examples
Depth sensors
Detection sensors
Relational sensors
Gap sensors
Field sensors
Preimages

Additional complications

Sensor lattice

There are three possibilities:

- 1. If **static**, then it never moves. *Examples: Most landmarks, obstacles, a tower*
- 2. It may have **predictable** motion. *Examples: A rolling ball, a pendulum, a robot*
- 3. It may have **unpredictable** motion. *Examples: An evader, a target*

If planning is involved, then another issue is whether or not the body can be commanded to move.

Body Property 2: Distinguishability

Physical Sensors	Take every callestic of distinct basis D D
Physical state spaces	Take any collection of distinct bodies D_1, \ldots, D_n .
Sensor mapping	
Basic Examples	Let \sim be any equivalence relation:
Depth sensors	$B_i \sim B_j$ if and only if they cannot be distinguished from each other.
Detection sensors	
Relational sensors	
Gap sensors	
Field sensors	
Preimages	
Sensor lattice	Example: Could assign labols to be bedies. With humans, we have
Additional complications	women and men.
•	
•	Warning: Sometimes indistinguishability might not be transitive!

Amirkabir Winter School 2012 (Esfand 1390) – 25 / 103

Body Property 3: Body Interactions

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

Three interaction types are generally possible between a pair B_1 , B_2 , of bodies:

Sensor obstruction: Suppose a sensor would like to observe information about body B_1 . Does body B_2 interfere with the observation?

Motion obstruction: Does body B_2 obstruct the possible motions of body B_1 ? If so, then B_2 becomes an obstacle that must be avoided. Manipulation: In this case, body B_1 could cause body B_2 to move. For example, if B_2 is an obstacle, then B_1 might push it out of the way.

A *field* is a function
$$f: \mathbb{R}^n \to \mathbb{R}^m$$
, with $n = 2$ or $n = 3$ and $m \le n$.

- Encoding E: f: R² → {0,1} in which $f(q_x, q_y) = 1$ if and only if $(q_x, q_y) \in E$.
 An altitude map: $f: \mathbb{R}^2 \to [0, \infty)$.
 An intensity field: $f: \mathbb{R}^2 \to [0, \infty)$.
 - An electromagnetic field: $f : \mathbb{R}^2 \to \mathbb{R}^2$.

Introducing Time

 Physical Sensors

 Physical state spaces

 Sensor mapping

 Basic Examples

 Depth sensors

 Detection sensors

 Relational sensors

 Gap sensors

 Field sensors

Preimages

Sensor lattice

Additional complications

Let T be time interval; usually, $T = [0, \infty)$.

Using any state space X, define *state-time space*:

$$Z = X \times T$$

Each $z \in Z$ is a pair z = (x, t) and x is the state at time t

No, not this:

State Trajectories

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

A state trajectory \tilde{x} is a time-parameterized path through X;

 $\tilde{x}: T \to X$

Sometimes, domain of \tilde{x} may be only [0, t].

Could take time derivatives of states and expand state space. We will not do that here. Amirkabir Winter School 2012 (Esfand 1390) – 29 / 103

Physical Sensors
Physical state spaces
Sensor mapping
Basic Examples
Depth sensors
Detection sensors
Relational sensors
Gap sensors
Field sensors
Preimages

Sensor lattice

Additional complications

Sensor mapping

The Sensor Mapping

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

Let X be any physical state space.

Let Y denote the *observation space*, which is the set of all possible sensor observations.

A virtual sensor is defined by a sensor mapping:

 $h: X \to Y.$

Note similarity to transfer function for physical sensors.

When $x \in X$, the sensor instantaneously observes $y = h(x) \in Y$.

Amirkabir Winter School 2012 (Esfand 1390) - 31 / 103

Virtual Sensor Models

Physical Sensors	Usir
Physical state spaces	
Sensor mapping	
Basic Examples	
Depth sensors	
Detection sensors	
Relational sensors	
Gap sensors	
Field sensors	
Preimages	Pur
Sensor lattice	
Additional complications	Rer

Jsing the sensor mapping, we will make many models:

- Basic (boring) examples
- Depth sensors
- Detection sensors
- Relational sensors
- Gap sensors
- Field sensors

Purpose: To define models of *information* to be used in filters.

Remember: Virtual sensors could have many physical implementations.

Physical Sensors
Physical state spaces
Sensor mapping
Basic Examples
Depth sensors
Detection sensors
Relational sensors
Gap sensors
Field sensors

Preimages

Sensor lattice

Additional complications

Basic Examples

Amirkabir Winter School 2012 (Esfand 1390) – 33 / 103

Basic Examples: The Two Extremes

 Physical Sensors

 Physical state spaces

 Sensor mapping

 Basic Examples

 Depth sensors

 Detection sensors

 Relational sensors

 Gap sensors

 Field sensors

 Preimages

Sensor lattice

Additional complications

The weakest possible sensor

DUMMY SENSOR: $Y = \{0\}$ and h(x) = 0 for all $x \in X$

The strongest possible sensor(s)

IDENTITY SENSOR:

```
Y = X and y = h(x) = x
```

Just give me the state!

BIJECTIVE SENSOR: *h* is bijective function from *X* to *Y*. *x* can be reconstructed as $x = h^{-1}(y)$.

Basic Examples: Linear Sensors

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

```
X = Y = \mathbb{R}^3
```

LINEAR SENSOR: Let y = h(x) = Cx for 3 by 3 matrix C.

If C has full rank, then h is a bijective sensor.

If C has lower rank, then lines or planes produce same observation.

Linear sensors used widely in control theory.

Basic Examples: Projection Sensors

Physical Sensors
Physical state spaces
Sensor mapping

Basic Examples

Depth sensors

Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

PROJECTION SENSOR: Choose some components of X.

$$X = \mathbb{R}^3 \text{ and } x = (x_1, x_2, x_3) \in X.$$
$$Y = \mathbb{R}^2$$
$$y = h(x) = (x_1, x_2)$$

 $X = \mathbb{R}^2 \times S^1$ A state is $(q_x, q_y, q_\theta) \in X$.

Position sensor: Observes (q_x, q_y) and leaves q_θ unknown. Ideal compass: Observes q_θ and leaves q_x and q_y unknown.
Physical Sensors
Physical state spaces
Sensor mapping
Basic Examples
Depth sensors
Detection sensors
Relational sensors
Gap sensors
Field concore
Field Selisois

Preimages

Sensor lattice

Additional complications

Depth sensors

Depth Sensors

 Physical Sensors

 Physical state spaces

 Sensor mapping

 Basic Examples

 Depth sensors

 Detection sensors

 Relational sensors

 Gap sensors

 Field sensors

 Preimages

```
Sensor lattice
```

Additional complications

Observe the distance to the boundary of E.

State space: $X \subset SE(2) \times \mathcal{E}$ State: $x = (q_x, q_y, q_\theta, E)$ with $(q_x, q_y) \in E$ and $E \in \mathcal{E}$.

Directional Depth Sensor

Sensor lattice

Additional complications

DIRECTIONAL DEPTH SENSOR:

$$h_d(p,\theta,E) = \|p - b(x)\|$$

Let $p = (q_x, q_y)$ and $\theta = q_\theta$ (shorthand notation) b(x) is point on boundary ∂E hit by ray.

Amirkabir Winter School 2012 (Esfand 1390) - 39 / 103

Boundary Distance Sensor

Physical Sensors	_
	- •
Physical state spaces	•
	•
Sensor mapping	_
	•
Basic Examples	_
	•
Depth sensors	
	•
Detection sensors	- •
	•
Relational sensors	-
0	•
Gap sensors	
Field concerns	
Field sensors	- :
Proimagoo	
Fielinayes	

Sensor lattice

Additional complications

BOUNDARY DISTANCE SENSOR:

$$h_{bd}(p,\theta,E) = \min_{\theta' \in [0,2\pi)} h_d(p,\theta',E)$$

No dependency on $\boldsymbol{\theta}$

Amirkabir Winter School 2012 (Esfand 1390) – 40 / 103

Proximity and Boundary Sensors

Physical Sensors Physical state spaces Sensor mapping

Basic Examples

Depth sensors

Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

Fix some $\epsilon > 0$. PROXIMITY SENSOR:

$$h_{p\epsilon}(p,\theta,E) = \begin{cases} 1 & \text{if } h_{bd}(p,\theta,E) \leq \epsilon \\ 0 & \text{otherwise} \end{cases}$$

Detects whether within ϵ of the boundary.

BOUNDARY SENSOR:

$$h_{bd}(p,\theta,E) = \begin{cases} 1 & \text{if } h_{bd}(p,\theta,E) = 0 \\ 0 & \text{otherwise} \end{cases}$$

Detects whether boundary is contacted.

Shifted Directional Depth Sensor

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

SHIFTED DIRECTIONAL DEPTH SENSOR: Robot oriented along θ , but sensor is offset by ϕ

$$h_{sd\phi}(p,\theta,E) = \|p - b(p,\theta + \phi, E)\|$$

K-Directional Depth Sensor

Physical state spaces
Sensor mapping
Basic Examples
Depth sensors
Detection sensors
Relational sensors
Gap sensors
Field sensors
Preimages
Sensor lattice
Additional complications
•

Physical Sensors

K-DIRECTIONAL DEPTH SENSOR:

Let k be number of directions.

The observation is a vector $y = (y_1, \ldots, y_k)$

$$y_i = h_i(p, \theta, E) = h_{sd\phi_i}(p, \theta, E).$$

Omnidirectional Depth Sensor

$$y(\phi) = h_{od\phi}(p,\theta,E).$$

Amirkabir Winter School 2012 (Esfand 1390) - 44 / 103

Omnidirectional Depth Sensor

Physical state spaces

Sensor mapping

Basic Examples

Depth sensors

Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

How does the observation $y:S^1
ightarrow [0,\infty)$ look?

Omnidirectional Depth Sensor

|--|

Physical state spaces

Sensor mapping

Basic Examples

Depth sensors

Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

How does the observation $y:S^1
ightarrow [0,\infty)$ look?

Depth Sensors: Practical Limits

Physical Sensors Physical state spaces

Sensor mapping

Basic Examples

Depth sensors

Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

Limited angle:

 $y: [\phi_{min}, \phi_{max}] \to [0, \infty)$

Limited depth:

$$h_{dd}(p,\theta,E) = \begin{cases} d(x) & \text{if } d_{min} \leq d(x) \leq d_{max} \\ \# & \text{otherwise} \end{cases}$$

Physical Sensors		
Physical state spaces		
Sensor mapping		
Basic Examples		
Depth sensors		
Detection sensors		
Relational sensors		
Gap sensors		
Field sensors		

Preimages

Sensor lattice

Additional complications

Detection sensors

TH **ILLINOIS** AT URBANA-CHAMPAIGN

Amirkabir Winter School 2012 (Esfand 1390) – 47 / 103

Detection Sensors

Sensor lattice

Additional complications

Is a body in the field of view, or *detection region*?

Amirkabir Winter School 2012 (Esfand 1390) – 48 / 103

Detection Sensors: Fundamental Aspects

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors 1. Preimages Sensor lattice 2. Additional complications 3.

Three fundamental questions:

- Can the sensor move? For example, it could be mounted on a robot or it could be fixed to a wall.
- 2. Are the bodies so large relative to the range of the sensor that the body models cannot be simplified to points?
- 3. Can the sensor provide additional information that helps to classify a body within its detection region?

Simplest case: Answer "no" to all three questions.

Static Binary Detector

Physical Sensors	This is
Physical state spaces	
Sensor mapping	
Basic Examples	Stati
Depth sensors	
Detection sensors	
Relational sensors	
Gap sensors	
Field sensors	
Preimages	Simpl
Sensor lattice	
Additional complications	

his is the simplest case.

STATIC BINARY DETECTOR:

$$h(p,E) = \begin{cases} 1 & \text{if } p \in V \\ 0 & \text{otherwise} \end{cases}$$

Simply indicates whether the body is in ${\boldsymbol{V}}$

Moving Binary Detector

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

 \boldsymbol{q} is configuration of the body carrying the sensor.

V(q) is the configuration-dependent detection region.

MOVING BINARY DETECTOR:

$$h(p,E) = \begin{cases} 1 & \text{if } p \in V(q) \\ 0 & \text{otherwise} \end{cases}$$

V has simply been replaced by V(q)

Amirkabir Winter School 2012 (Esfand 1390) - 51 / 103

Detecting Larger Bodies

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

A body has configuration q' and $B(q') \subset E$. DETECTING LARGER BODIES:

$$h(q',E) = \begin{cases} 1 & \text{ if } B(q') \cap V \neq \emptyset \\ 0 & \text{ otherwise} \end{cases}$$

Looks like obstacle regions in configuration space!

At-Least-One-Body Detector

Physical Sensors
Physical state spaces
Sensor mapping
Basic Examples

Depth sensors

Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

There are n points bodies, $P = \{p_1, \ldots, p_n\}$.

State: $x = (q, p_1, \ldots, p_n, E)$, in which q is sensor configuration.

AT-LEAST-ONE-BODY DETECTOR:

$$h(q, p_1, \dots, p_n, E) = \begin{cases} 1 & \text{if for any } i, p_i \in V(q) \\ 0 & \text{otherwise} \end{cases}$$

Sensor detects when at least one of the bodies is in V(q).

Body Counter

 Physical Sensors
 P

 Physical state spaces
 Sensor mapping

 Sensor mapping
 Basic Examples

 Depth sensors
 Detection sensors

 Detection sensors
 Gap sensors

 Field sensors
 Field sensors

 Preimages
 Preimages

Sensor lattice

Additional complications

BODY COUNTER:

$h(q, p_1, \dots, p_n, E) = |P \cap V(q)|$

Shopping mall

Coral reef

If number of bodies generally unknown, but sensors fixed and environment E known:

$$X = \{\#\} \cup E \cup E^2 \cup E^3 \cup E^4 \cdots$$

Amirkabir Winter School 2012 (Esfand 1390) - 54 / 103

Labeled-Body Detector

 Physical Sensors

 Physical state spaces

 Sensor mapping

 Basic Examples

 Depth sensors

 Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

 \boldsymbol{L} is a set of class labels.

 ℓ is an assignment mapping:

$$\ell:\{1,\ldots,n\}\to L$$

LABELED-BODY DETECTOR:

$$h_{\lambda}(p, E) = \begin{cases} 1 & \text{if for some } i, p_i \in V \text{ and } \ell(i) = \lambda \\ 0 & \text{otherwise} \end{cases}$$

Examples: Each body is a man, dog, tree, car, ...

Physical Sensors
Physical state spaces
Sensor mapping
Basic Examples
Depth sensors
Detection sensors
Relational sensors
Gap sensors
Field sensors

Preimages

Sensor lattice

Additional complications

Relational sensors

Relational Sensors

 Physical Sensors

 Physical state spaces

 Sensor mapping

 Basic Examples

 Depth sensors

 Detection sensors

 Relational sensors

 Gap sensors

 Field sensors

 Preimages

Sensor lattice

Additional complications

Consider any relation R on the set of all bodies.

For a pair of bodies, B_1 and B_2 , examples of $R(B_1, B_2)$ are:

- B_1 is in front of B_2
- B_1 is to the left of B_2
- $\blacksquare \quad B_1 \text{ is on top of } B_2$
- B_1 is closer than B_2
- $\blacksquare B_1 \text{ is bigger than } B_2.$

More precisely, Let $R_x(i, j)$ mean B_i is related to B_j , when the system is at state x.

Idea is due to Guibas

Primitive Relational Sensor

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

PRIMITIVE RELATIONAL SENSOR:

$$h(x) = \begin{cases} 1 & \text{if } R_x(i,j) \\ 0 & \text{otherwise} \end{cases}$$

Simply detects whether the relation is satisfied for bodies B_i and B_j .

Using this, we can form compound relational sensors.

Amirkabir Winter School 2012 (Esfand 1390) - 58 / 103

Linear Permutation Sensor

O2

• 5

Observation: y = (4, 2, 1, 3, 5)Observation space: Y is all 5! permutations.

Amirkabir Winter School 2012 (Esfand 1390) - 59 / 103

Distance Permutation Sensor

Cyclic Permutation Sensor

•1

• 5

Additional complications

Physical Sensors
Physical state spaces
Sensor mapping
Basic Examples
Depth sensors
Detection sensors
Relational sensors
Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

Gap sensors

Gap Sensors

Physical Sensors
Physical state spaces
Sensor mapping
Basic Examples
Depth sensors
Detection sensors
Relational sensors
Gap sensors
Field sensors
Preimages

Sensor lattice

Additional complications

Report information obtained along the boundary of V(q), which is denoted as $\partial V(q)$

Two qualitatively different parts of $\partial V(q)$:

- 1. A piece of a body boundary
- 2. A gap (discontinuity in depth)

A gap sensor reports how these parts alternate.

Simple Gap Sensor

Sensor lattice

Additional complications

SIMPLE GAP SENSOR:

Alternating between boundary and gaps: $y = (B_0, g_1, B_0, g_2, B_0, g_3, B_0, g_4, B_0, g_5)$

Equivalently: $y = (g_1, g_2, g_3, g_4, g_5)$

Depth-Limited Gap Sensor

Additional complications A new kind of gap, due to being out of range: G_i

Depth-limited gap sensor: $y = (B_0, G_1, B_0, g_1, G_2, g_2, B_0, g_3, G_3, g_4)$

Amirkabir Winter School 2012 (Esfand 1390) - 65 / 103

Multibody Gap Sensor

Physical Sensors	G_2
Physical state spaces	
Sensor mapping	g_{3} g_{4} g_{4} g_{1}
Basic Examples	B_3
Depth sensors	B_2
Detection sensors	g_7 g_3 g_2
Relational sensors	B_1 D_5
Gap sensors	
Field sensors	
Preimages	
Sensor lattice	
Additional complications	

MULIBODY GAP SENSOR:

 $y = (G_1, g_1, B_4, g_2, B_5, g_3, B_4, g_4, G_2, g_5, B_3, g_6, B_2, g_7, B_1)$

Amirkabir Winter School 2012 (Esfand 1390) – 66 / 103

Landmark Counter

Physical Sensors
Physical state spaces
Sensor mapping
Basic Examples
Depth sensors
Detection sensors
Relational sensors
Gap sensors
Field sensors
Preimages
Sensor lattice

Additional complications

Landmark counter: y = (3, 3, 4, 0, 1)

Equivalent to combinatorial visibility vector from Gfeller et al. 2007.

Physical Sensors
Physical state spaces
Sensor mapping
Basic Examples
Depth sensors
Detection sensors
Relational sensors
Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

Field sensors

Field Sensors

Additional complications

DIRECT FIELD SENSOR:

$$h(x) = h(p, \theta) = (f_1(p), f_2(p))$$

Vectors appear with respect to global frame orientation.

Amirkabir Winter School 2012 (Esfand 1390) - 69 / 103

Field Sensors: Scalars

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

DIRECT INTENSITY SENSOR:

$$h(x) = h(p, \theta) = \|f(p)\|$$

INTENSITY ALARM:

$$h(p,\theta) = \begin{cases} 1 & \text{if } \|f(p)\| \ge \epsilon \\ 0 & \text{otherwise} \end{cases}$$

Field Sensors: Transformed Intensity

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

Unknown monotonically increasing function:

$$g:[0,\infty)\to [0,\infty)$$

TRANSFORMED INTENSITY:

$$h(x) = g(\|f(x)\|)$$

Field Vector Observation

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors** Relational sensors Gap sensors Field sensors Preimages Sensor lattice Additional complications

More realistically, vectors observed in local orientation frame.

 $R(\phi)$ is 2×2 rotation matrix by ϕ .

FIELD VECTOR OBSERVATION:

$$h_{fv}(x) = R(-\theta)f(p)$$

If f is given and θ is unknown, then it can be determined using $h_{fv}(x)$. Likewise, if θ is known and f is unknown, then f(p) can be determined from $f(p) = R(\theta)h_{fv}(x)$.

Field Direction Observation

 Physical Sensors

 Physical state spaces

 Sensor mapping

 Basic Examples

 Depth sensors

 Detection sensors

 Relational sensors

 Gap sensors

 Field sensors

 Preimages

 Sensor lattice

Additional complications

Let
$$y' = h_{fv}(x)$$
.

FIELD DIRECTION OBSERVATION:

$$y = h_{fdo}(x) = \operatorname{atan2}(y'_2, y'_1)$$

Special case: An ideal magnetic compass, f(p) = (0, 1).

The orientation θ can be recovered from the given field.

Physical Sensors
Physical state appage
Physical state spaces
Sensor mapping
Basic Examples
Depth sensors
Detection sensors
Relational sensors
Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

Preimages

Preimages

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

The amount of state uncertainty due to a sensor

$$h: X \to Y$$

The preimage of an observation y is

$$h^{-1}(y) = \{ x \in X \mid y = h(x) \}$$

Think about the uncertainty being handled here!

The Partition Induced by h^{+}

Physical Sensors	
Physical state spaces	
Sensor mapping	
Basic Examples	
Depth sensors	
Detection sensors	
Relational sensors	
Gap sensors	
Field sensors	
Preimages	
Sensor lattice	
Additional complications	

Suppose X and $h:X\to Y$ are given.

The set of all preimages partitions \boldsymbol{X}

There is one preimage for every $y \in Y$.

Let $\Pi(h)$ be the partition X that is induced by h.

Detection Sensor Example of $\Pi(h)$

Physical Sensors	n point bodie	s move in \mathbb{R}^2 .			
Physical state spaces	$ X = \mathbb{R}^{2n} $				
Sensor mapping	• $Y = \{0, 1,\}$	$\ldots, n\}$			
Basic Examples	The sensor m	happing $h: X$	T o Y count	s how many p	oints lie a fixed
Depth sensors	detection rea	ion V .			
Detection sensors					
Relational sensors					
Gap sensors			• •	•	
Field sensors	V	V	V	$\overline{\bullet}$ V	$\bullet \bullet V$
Preimages					
Sensor lattice					
Additional complications	For $n=4$, there	are 5 equivale	ence classes	in $\Pi(h)$.	

Depth Sensor Example of $\Pi(h)$

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors Detection sensors **Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

Recall directional depth sensor.

For a known environment, $X = E \times S^1$.

The preimages are chunks of SE(2).

What happens for an unknown environment?

The preimages are chunks of $\mathbb{R}^2 \times S^1 \times \mathcal{E}$.

Amirkabir Winter School 2012 (Esfand 1390) - 78 / 103

Physical Sensors
Physical state spaces
Sensor mapping
Basic Examples
Depth sensors
Detection sensors
Relational sensors
Gap sensors
Field sensors

Preimages

Sensor lattice

Additional complications

TH ILLINOIS AT URBANA-CHAMPAIGN

Sensor lattice

Comparing the Power of Sensors

Physical Sensors
Physical state spaces
Sensor mapping
Basic Examples
Depth sensors

Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

It is better to compare virtual sensors...

```
Fix the state space X.
```

```
Take any two sensors, h_1: X \to Y_1 and h_2: X \to Y_2.
```

 h_1 dominates h_2 if and only if $\Pi(h_1)$ is a refinement of $\Pi(h_2)$. This is denoted as $h_1 \succeq h_2$.

Comparing the Power of Sensors

Physical Sensors	If h_1
Physical state spaces	Ţ
Sensor mapping	16 TT (
Basic Examples	IT 11 (
Depth sensors	obse
Detection sensors	
Relational sensors	This
Gap sensors	
Field sensors	
Preimages	
Sensor lattice	
Additional complications	\//bot
	vila

 $h_1 \succeq h_2$, then h_2 can be "simulated" using only observations from h_1 .

f $\Pi(h_1)$ is a refinement of $\Pi(h_2)$, then we can figure out what observation h_2 must make, using only y_1 .

This is interpreted as the existence of a function $g: Y_1 \to Y_2$.

What about computability or complexity of g?

Comparing More Sensors

Physical Sensors	F
Physical state spaces	-
Sensor mapping	M
Basic Examples	
Depth sensors	
Detection sensors	
Relational sensors	
Gap sensors	
Field sensors	
Preimages	
Sensor lattice	
Additional complications	
•	
•	
•	

Fix the state space \boldsymbol{X}

We could have a sensor chain:

$$h_1 \succeq h_2 \succeq h_3 \succeq h_4 \succeq h_5$$

Comparing More Sensors

Physical Sensors	Fix the s
Physical state spaces	
Sensor mapping	We coul
Basic Examples	
Depth sensors	
Detection sensors	
Relational sensors	
Gap sensors	We coul
Field sensors	
Preimages	
Sensor lattice	Model 7:
Additional complications	Boundary Dist
•	Model 8:

Fix the state space X

We could have a sensor chain:

$$h_1 \succeq h_2 \succeq h_3 \succeq h_4 \succeq h_5$$

Could we even have a directed acyclic graph?

A Lattice of Partitions

Every pair has a glb and lub.

The Sensor Lattice

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors** Relational sensors Gap sensors Field sensors Preimages Sensor lattice Additional complications

Fix X and consider the set of *all* possible sensors $h: X \to Y$. Above, Y is not fixed!!

We say two sensors h_1 and h_2 are *equivalent* if and only if $\Pi(h_1) = \Pi(h_2)$.

Really, the partition of X is the sensor model.

The set of all partitions of X forms the sensor lattice.

All sensor models embed into this lattice!

The bijective sensor and dummy sensor are at the top and bottom, respectively.

Physical	Sens	ors
Physical	state	spaces

Sensor mapping

Basic Examples

Depth sensors

Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

ILLUNOIS AT URBANA-CHAMPAIGN

Additional complications

Amirkabir Winter School 2012 (Esfand 1390) - 85 / 103

Nondeterministic Disturbance

Physical state spaces

Sensor mapping

Physical Sensors

Basic Examples

Depth sensors

Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

Nondeterministic sensor mapping:

$$h: X \to \mathrm{pow}(Y)$$

Corresponding preimage definition:

$$h^{-1}(y) = \{x \in X \mid y \in h(x)\}$$

A sensor mapping induces a cover $\mathcal{C}(h)$ of X, instead of a partition.

Amirkabir Winter School 2012 (Esfand 1390) - 86 / 103

One-Dimensional Position Sensor

Physical Sensors
Physical state spaces
Sensor mapping

Basic Examples

Depth sensors

Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

ONE-DIMENSIONAL POSITION SENSOR:

$$h(x) = \{ y \in Y \mid |x - y| \le \epsilon \}$$

For example,
$$h(2) = [2 - \epsilon, 2 + \epsilon]$$

The preimage of an observation y is

$$h^{-1}(y) = \{x \in X \mid |x - y| \le \epsilon\}.$$

Clearly, a cover of $X = \mathbb{R}$ is induced by h.

Faulty Binary Detection Sensor

Physical Sensors Physical state spaces 1. Sensor mapping 2. **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

Two kinds of mistakes:

- . False positive: h(p, E) = 1 even though $p \notin V$
- . False negative: h(p, E) = 0 even though $p \in V$

What does $\mathcal{C}(h)$ look like?

 \boldsymbol{X} is completely covered by two preimages.

Inaccurate Directional Depth

Physical Sensors	Fix accuracy, $\epsilon \geq 0$.
Physical state spaces	
Sensor mapping	
Basic Examples	INACCURATE DIRECTIONAL DEPTH SENSOR:
Depth sensors	
Detection sensors	$h_{\epsilon}(p, \theta, E) = \{ y \in [0, \infty) \mid p - b(x) - y \le \epsilon \}.$
Relational sensors	
Gap sensors	
Field sensors	
Preimages	
Sensor lattice	\bullet \bullet - \bullet -
Additional complications	

Probabilistic Disturbances

The sensor mapping is replaced by:

```
p(y|x)
```

Depth sensors

Physical Sensors

Sensor mapping

Basic Examples

Physical state spaces

Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

Probabilistic 1D Position Sensor

	•
Physical Sensors	Error mod
Physical state spaces	
Sensor mapping	•
Basic Examples	PROBABIL
Depth sensors	0 0 0
Detection sensors	•
Relational sensors	0 0 0
Gap sensors	• • •
Field sensors	•
Preimages	• • •
Sensor lattice	0 0 0
Additional complications	•
	0 0 0
	•
	•
	•

fror model: Gaussian with zero mean and variance σ^2

PROBABILISTIC 1D POSITION SENSOR:

$$p(y|x) = \frac{1}{|\Sigma|^{1/2} (2\pi)^{k/2}} e^{(y-x)^T \Sigma^{-1} (y-x)}.$$

Probabilistic General Position Sensor

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications Error model: Gaussian with zero mean and Σ as a $k\times k$ covariance matrix.

PROBABILISTIC GENERAL POSITION SENSOR:

$$p(y|x) = \frac{1}{|\Sigma|^{1/2} (2\pi)^{k/2}} e^{(y-x)^T \Sigma^{-1} (y-x)}.$$

Probabilistic Detector

 Physical Sensors

 Physical state spaces

 Sensor mapping

 Basic Examples

 Depth sensors

 Detection sensors

Gap sensors

Relational sensors

Field sensors

Preimages

Sensor lattice

Additional complications

Now probabilities are assigned to false positives and false negatives.

False positive probability:

$$p(y=1 \mid p \notin V)$$

False negative probability:

$$p(y=0 \mid p \in V)$$

If these probabilities are small, then the sensor is quite informative.

Amirkabir Winter School 2012 (Esfand 1390) - 93 / 103

Probabilistic Directional Depth

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

Again assume zero-mean Gaussian error density.

PROBABILISTIC DIRECTIONAL DEPTH SENSOR:

$$p(y|p,\theta,E) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y-\|p-b(x)\|)^2}{2\sigma^2}}$$

Sensors Over Space-Time

Physical Sensors Physical state spaces Sensor mapping

Basic Examples

Depth sensors

Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

Recall state-time space, $Z = X \times T$.

Sensor mapping:

 $h: Z \to Y$

$$y = h(z)$$
, or equivalently, $y = h(x,t)$

Consider preimages, partitions of Z, and sensor lattice.

$$h^{-1}(y) = \{(x,t) \in Z \mid y = h(x,t)\}$$

Amirkabir Winter School 2012 (Esfand 1390) - 95 / 103

Clock

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

PERFECT CLOCK MODEL:

$$y = h(z) = h(x, t) = t.$$

Detector With Time Stamp

Physical Sensors
Physical state spaces
Sensor mapping
Basic Examples
Depth sensors
Detection sensors
Relational sensors
Gap sensors
Field sensors
Preimages
Sensor lattice
Additional complications
•
•

DETECTOR WITH TIME STAMP:

$$h(p, E, t) = \begin{cases} (1, t) & \text{if } p \in V \text{ at time } t \\ (0, t) & \text{otherwise} \end{cases}$$

History-Based Sensors

Physical Sensors
Physical state spaces
Sensor mapping
Basic Examples

Depth sensors

Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

State trajectory: $\tilde{x} : [0, t] \to X$ Let \tilde{X} be set of all state trajectories.

History-based sensor mapping:

 $h: \tilde{X} \to Y$

Preimages again:

$$h^{-1}(y) = \{ \tilde{x} \in \tilde{X} \mid y = h(\tilde{x}) \}$$

h induces a partition of \tilde{X} .

A history-based sensor lattice is obtained over X.

Amirkabir Winter School 2012 (Esfand 1390) - 98 / 103

Linear Odometer

Physical Sensors
Physical state spaces
Sensor mapping

Basic Examples

Depth sensors

Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

Linear velocity of planar robot: (v_x, v_y) LINEAR ODOMETER:

$$y = \theta_0 + \int_0^t \sqrt{v_x^2 + v_y^2} ds$$

 v_x and v_y are part of the state.

For example, $x = (p_x, p_y, \theta, v_x, v_y)$

Angular Odometer

Physical Sensors

Physical state spaces

Sensor mapping

Basic Examples

Depth sensors

Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

$$y = \theta_0 + \int_0^t \dot{\theta}(s) ds$$

Delayed Measurement Sensor

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

Observe what the state was one second ago.

DELAYED MEASUREMENT SENSOR:

$$y = \left\{ \begin{array}{ll} \tilde{x}(t-1) & \text{ if } t \geq 1 \\ \# & \text{ otherwise} \end{array} \right.$$

means no measurement yet available.

Discrete-Time Odometer

 Physical Sensors

 Physical state spaces

 Sensor mapping

 Basic Examples

 Depth sensors

 Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

Fixed time increment $\Delta t > 0$.

 $\widetilde{p}(t)$ is robot position in \mathbb{R}^2 at time t

DISCRETE-TIME ODOMETER:

$$h(\tilde{x}) = \sum_{i=1}^{\lceil t/\Delta t \rceil} \|\tilde{p}(i\Delta t) - \tilde{p}((i-1)\Delta t)\|$$

This this yields an estimate of the total distance travel.

It looks like a temporal filter, which is coming soon.

Part 2 Summary

Physical Sensors Physical state spaces Sensor mapping **Basic Examples** Depth sensors **Detection sensors Relational sensors** Gap sensors Field sensors Preimages Sensor lattice Additional complications

- Physical sensors and their characteristics
- Virtual sensors vs. physical sensors
- Families: Depth, detection, relational, gap, field
- Uncertainty comes from preimages!
- The sensor lattice
- Disturbances, history-based, state-time

To make better filters and planners, you need to find the appropriate virtual sensors for your task.