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Light-dependent resistor GPS unit

Wireless card Toilet float mechanism

We know it when we see it, but will not try to formally classify.
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Shopping mall Control room

Assisted living Coral reef
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Roomba CMU Boss

UAV Protein
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Spatial: displacement, velocity, acceleration, distance to something,

proximity, position, attitude, area, volume, level/tilt, motion detection

Temporal: clock, chronometer (elapsed time), frequency.

Electromagnetic: voltage, current, power, charge, capacitance,

inductance, magnetic field, light intensity, color. These may operate within

a circuit or within open space.

Mechanical: solid (mass, weight, density, force, strain, torque), fluid

(acoustic, pressure, flow, viscosity), thermal (temperature), calories.

Other: chemical (composition, pH, humidity, pollution, ozone), radiation

(nuclear), biomedical (blood flow, pressure).

See CRC Measurement, Instrumentation, and Sensors Handbook
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Contact sensor Sonar

Compass Microphone
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Wheel encoder Stopwatch/timer

Occupancy detector Safety beam
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Camera Wii remote

Pressure mat SICK laser scanner
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� Transfer function converts physical phenomenon to sensor reading:

g : R → R.

� Domain of g may be absolute vs. relative.

� g itself may be linear or nonlinear.

� Resolution is given by set of possible g(x).

� Sensitivity is set of stimuli that produce same reading.

� Repeatability is producing same readings under same phenomena.

� Calibration eliminates systematic errors.

You will find these notions in sensor handbooks.
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Physical sensor: The real thing.

Virtual sensor: Mathematical model of information obtained from a

sensing system.

A virtual sensor could have many alternative physical-sensor

implementations.

Identifying which virtual sensor is required will lead to better filter design

and planning algorithms.
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The key idea in this section is to understand how two spaces are related:

1. The physical state space, in which each physical state is a

cartoon-like description of the possible world external to the sensor.

2. The observation space, which is the set of possible sensor output

values or observations.

Physical state → a sensor observation
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� Observation: The wall is 3 meters away.

� What possible external physical worlds are consistent with that?
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� Localization only: Set of possible configurations

� Mapping only: Set of possible environments

� Both: Set of configuration-environment pairs

Let Z be any set of sets.

Each Z ∈ Z is a “map” .

Each z ∈ Z is the configuration or “place” in the map.

Unknown configuration and map yields a state space as:

All (z, Z) such that z ∈ Z and Z ∈ Z .
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Without any obstacles:

� Any position (qx, qy) ∈ R
2

� Any orientation qθ ∈ [0, 2π)
� Let state space X be all positions and orientations

Can imagine X ⊂ R
3; however, for orientation, we have additional

topology since qθ = 0 = 2π.

Could write X = R
2 × S1, in which S1 is a circle and the set of all

orientations.

Could write X = SE(2), set of all 2D rigid-body transformations.
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Suppose E ⊂ R
2 is known to be the set of allowable positions.

Must have (qx, qy) ∈ E.

State space: X = E × S1
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Given a set of k possible maps:

E = {E1, E2, . . . , Ek}

For example, could be given 5 maps:

E = {E1, E2, E3, E4, E5}

X is all (q, Ei) in which (qx, qy) ∈ Ei and Ei ∈ E .

Recall the common structure.
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Given an infinite map family, E , of environments.

Examples:

� The set of all connected, bounded polygonal subsets that have no

interior holes (formally, they are simply connected).

� The previous set expanded to include all cases in which the polygonal

region has a finite number of polygonal holes.

� All subsets of R
2 that have a finite number of points removed.

� All subsets of R
2 that can be obtained by removing a finite collection

of nonoverlapping discs.

� All subsets of R
2 obtained by removing a finite collection of

nonoverlapping convex sets.

� A collection of piecewise-analytic subsets of R
2.
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In spite of larger E , there is no difference:

X is all pairs (q, E) in which (qx, qy) ∈ E and E ∈ E .

We can write X ⊂ R
2 × S1 × E .

X is enormous! But that is fine here. We do not compute directly on it.

Note: Putting useful probability densities over X might be difficult or

impossible.

X is usually not a manifold (doesn’t look like C-space)
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Place a body B into E.

Each could have a configuration space SE(2), so that we transform it:

B(qx, qy, qθ) ⊂ E.

Here, assume every body is a point, except for obstacles.

Otherwise, see Chapter 4 of Planning Algorithms for configuration space

obstacles.
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� Robot: A body that carries sensors, performs computations, and executes
motion commands.

� Landmark: Usually a small body that has a known location and is easily
detectable and distinguishable from others.

� Object: A body that can be detected and manipulated by a robot. It can
carried by a robot or dropped at a location.

� Pebble: A small object that is used as a marker to detect when a place has
been revisited.

� Target: A person, a robot, or any other moving body that we would like to
monitor using a sensor.

� Obstacle: A fixed or moving body that obstructs the motions of others.
� Evader: An unpredictable moving body that attempts to elude detection.
� Treasure: Usually a stationary body that has an unknown location but is easy

to recognize by a sensor directly over it.
� Tower: A body that transmits a signal, such as a cell-phone tower or a

lighthouse.
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Names of bodies are not important.

Instead, the properties that affect mathematical models are crucial:

1. What are its motion capabilities?

2. Can it be distinguished from other bodies?

3. How does it interact with other bodies?

Motion Distinguishability Interaction
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There are three possibilities:

1. If static, then it never moves.

Examples: Most landmarks, obstacles, a tower

2. It may have predictable motion.

Examples: A rolling ball, a pendulum, a robot

3. It may have unpredictable motion.

Examples: An evader, a target

If planning is involved, then another issue is whether or not the body can

be commanded to move.
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Take any collection of distinct bodies B1, . . ., Bn.

Let ∼ be any equivalence relation:

Bi ∼ Bj if and only if they cannot be distinguished from each other.

Example: Could assign labels to be bodies. With humans, we have

women and men.

Warning: Sometimes indistinguishability might not be transitive!
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Three interaction types are generally possible between a pair B1, B2, of

bodies:

� Sensor obstruction: Suppose a sensor would like to observe

information about body B1. Does body B2 interfere with the

observation?

� Motion obstruction: Does body B2 obstruct the possible motions of

body B1? If so, then B2 becomes an obstacle that must be avoided.

� Manipulation: In this case, body B1 could cause body B2 to move.

For example, if B2 is an obstacle, then B1 might push it out of the way.
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A field is a function f : R
n → R

m, with n = 2 or n = 3 and m ≤ n.

–2

–1

0

1

2

x_2

–2 –1 0 1 2

x_1

x2

x1

–2

–1

0

1

2

x_2

–2 –1 0 1 2

x_1

x2

x1

–2

–1

0

1

2

x_2

–2 –1 0 1 2

x_1

x2

x1

Examples:

� Encoding E: f : R
2 → {0, 1} in which

f(qx, qy) = 1 if and only if (qx, qy) ∈ E.

� An altitude map: f : R
2 → [0,∞).

� An intensity field: f : R
2 → [0,∞).

� An electromagnetic field: f : R
2 → R

2.
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Of course the world is not static.

Let T be time interval; usually, T = [0,∞).

Using any state space X , define state-time space:

Z = X × T

Each z ∈ Z is a pair z = (x, t) and x is the state at time t

No, not this:
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A state trajectory x̃ is a time-parameterized path through X ;

x̃ : T → X

Sometimes, domain of x̃ may be only [0, t].

x̃

x̃(t)

x̃(0) X
X

T

x̃(0)

x̃

Z

x̃(t)

Mapping into X Mapping into Z

Could take time derivatives of states and expand state space. We will not

do that here.
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Let X be any physical state space.

Let Y denote the observation space, which is the set of all possible sensor

observations.

A virtual sensor is defined by a sensor mapping:

h : X → Y.

Note similarity to transfer function for physical sensors.

When x ∈ X , the sensor instantaneously observes y = h(x) ∈ Y .
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Using the sensor mapping, we will make many models:

� Basic (boring) examples

� Depth sensors

� Detection sensors

� Relational sensors

� Gap sensors

� Field sensors

Purpose: To define models of information to be used in filters.

Remember: Virtual sensors could have many physical implementations.
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The weakest possible sensor

DUMMY SENSOR:

Y = {0} and h(x) = 0 for all x ∈ X

The strongest possible sensor(s)

IDENTITY SENSOR:

Y = X and y = h(x) = x

Just give me the state!

BIJECTIVE SENSOR:

h is bijective function from X to Y .

x can be reconstructed as x = h−1(y).
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X = Y = R
3

LINEAR SENSOR:

Let y = h(x) = Cx for 3 by 3 matrix C .

If C has full rank, then h is a bijective sensor.

If C has lower rank, then lines or planes produce same observation.

Linear sensors used widely in control theory.
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PROJECTION SENSOR:

Choose some components of X .

X = R
3 and x = (x1, x2, x3) ∈ X .

Y = R
2

y = h(x) = (x1, x2)

X = R
2 × S1

A state is (qx, qy, qθ) ∈ X .

Position sensor: Observes (qx, qy) and leaves qθ unknown.

Ideal compass: Observes qθ and leaves qx and qy unknown.
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Observe the distance to the boundary of E.

State space: X ⊂ SE(2) × E
State: x = (qx, qy, qθ, E) with (qx, qy) ∈ E and E ∈ E .
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p

θ

b(x)

DIRECTIONAL DEPTH SENSOR:

hd(p, θ, E) = ‖p − b(x)‖

Let p = (qx, qy) and θ = qθ (shorthand notation)

b(x) is point on boundary ∂E hit by ray.
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BOUNDARY DISTANCE SENSOR:

hbd(p, θ, E) = min
θ′∈[0,2π)

hd(p, θ′, E)

No dependency on θ
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Fix some ǫ > 0.

PROXIMITY SENSOR:

hpǫ(p, θ, E) =

{

1 if hbd(p, θ, E) ≤ ǫ

0 otherwise

Detects whether within ǫ of the boundary.

BOUNDARY SENSOR:

hbd(p, θ, E) =

{

1 if hbd(p, θ, E) = 0
0 otherwise

Detects whether boundary is contacted.
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SHIFTED DIRECTIONAL DEPTH SENSOR:

Robot oriented along θ, but sensor is offset by φ

hsdφ(p, θ, E) = ‖p − b(p, θ + φ, E)‖
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K-DIRECTIONAL DEPTH SENSOR:

Let k be number of directions.

The observation is a vector y = (y1, . . . , yk)

yi = hi(p, θ, E) = hsdφi
(p, θ, E).
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Like an infinite-dimensional vector of observations

OMNIDIRECTIONAL DEPTH SENSOR:

hod(x) = y, in which y : S1 → [0,∞)

y(φ) = hodφ(p, θ, E).
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How does the observation y : S1 → [0,∞) look?
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How does the observation y : S1 → [0,∞) look?

φ
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Limited angle:

y : [φmin, φmax] → [0,∞)

Limited depth:

hdd(p, θ, E) =

{

d(x) if dmin ≤ d(x) ≤ dmax

# otherwise

φmax

φmin

dmin

dmax
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New category: Detection Sensors

Detection
region

Is a body in the field of view, or detection region?
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Detection
region

Three fundamental questions:

1. Can the sensor move? For example, it could be mounted on a robot or

it could be fixed to a wall.

2. Are the bodies so large relative to the range of the sensor that the

body models cannot be simplified to points?

3. Can the sensor provide additional information that helps to classify a

body within its detection region?

Simplest case: Answer “no” to all three questions.
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This is the simplest case.

STATIC BINARY DETECTOR:

h(p,E) =

{

1 if p ∈ V

0 otherwise

Simply indicates whether the body is in V
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q is configuration of the body carrying the sensor.

V (q) is the configuration-dependent detection region.

MOVING BINARY DETECTOR:

h(p,E) =

{

1 if p ∈ V (q)
0 otherwise

V has simply been replaced by V (q)
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A body has configuration q′ and B(q′) ⊂ E.

DETECTING LARGER BODIES:

h(q′, E) =

{

1 if B(q′) ∩ V 6= ∅
0 otherwise

V (q)

B(q′)

Looks like obstacle regions in configuration space!
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There are n points bodies, P = {p1, . . . , pn}.

State: x = (q, p1, . . . , pn, E), in which q is sensor configuration.

AT-LEAST-ONE-BODY DETECTOR:

h(q, p1, . . . , pn, E) =

{

1 if for any i, pi ∈ V (q)
0 otherwise

Sensor detects when at least one of the bodies is in V (q).
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BODY COUNTER:

h(q, p1, . . . , pn, E) = |P ∩ V (q)|

Shopping mall Coral reef

If number of bodies generally unknown, but sensors fixed and environment

E known:

X = {#} ∪ E ∪ E2 ∪ E3 ∪ E4 · · ·
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L is a set of class labels.

ℓ is an assignment mapping:

ℓ : {1, . . . , n} → L

LABELED-BODY DETECTOR:

hλ(p,E) =

{

1 if for some i, pi ∈ V and ℓ(i) = λ

0 otherwise

Examples: Each body is a man, dog, tree, car, ...
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Consider any relation R on the set of all bodies.

For a pair of bodies, B1 and B2, examples of R(B1, B2) are:

� B1 is in front of B2

� B1 is to the left of B2

� B1 is on top of B2

� B1 is closer than B2

� B1 is bigger than B2.

More precisely, Let Rx(i, j) mean Bi is related to Bj , when the system is

at state x.

Idea is due to Guibas
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PRIMITIVE RELATIONAL SENSOR:

h(x) =

{

1 if Rx(i, j)
0 otherwise

Simply detects whether the relation is satisfied for bodies Bi and Bj .

Using this, we can form compound relational sensors.
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Relation: “is to the left of”

1

3

5

2
4

Observation: y = (4, 2, 1, 3, 5)
Observation space: Y is all 5! permutations.
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Relation: “is closer than”

2

3
5

1

4

Observation: y = (2, 3, 5, 4, 1)
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Relation: “is to the left of in counterclockwise order”

4

3

5

2

1

Observation: y = (1, 2, 4, 3, 5)

Note that y could equivalently be (4, 3, 5, 1, 2).
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Report information obtained along the boundary of V (q), which is

denoted as ∂V (q)

Two qualitatively different parts of ∂V (q):

1. A piece of a body boundary

2. A gap (discontinuity in depth)

A gap sensor reports how these parts alternate.
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V (q)

φ

g1

g2

g3

g4

g5

SIMPLE GAP SENSOR:

Alternating between boundary and gaps:

y = (B0, g1, B0, g2, B0, g3, B0, g4, B0, g5)

Equivalently:

y = (g1, g2, g3, g4, g5)



Depth-Limited Gap Sensor

Physical Sensors

Physical state spaces

Sensor mapping

Basic Examples

Depth sensors

Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

Amirkabir Winter School 2012 (Esfand 1390) – 65 / 103

g1

g2 g3

g4

G2

G3

G1

A new kind of gap, due to being out of range: Gi

DEPTH-LIMITED GAP SENSOR:

y = (B0, G1, B0, g1, G2, g2, B0, g3, G3, g4)
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G2

G1

g1

g2

g4
g5

g3

B3

B2

B1

B4

B5

g7

g6

MULIBODY GAP SENSOR:

y = (G1, g1, B4, g2, B5, g3, B4, g4, G2, g5, B3, g6, B2, g7, B1)
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LANDMARK COUNTER:

y = (3, 3, 4, 0, 1)

Equivalent to combinatorial visibility vector from Gfeller et al. 2007.
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–2

–1

0

1

2

x_2

–2 –1 0 1 2

x_1

x2

x1

DIRECT FIELD SENSOR:

h(x) = h(p, θ) = (f1(p), f2(p))

Vectors appear with respect to global frame orientation.
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DIRECT INTENSITY SENSOR:

h(x) = h(p, θ) = ‖f(p)‖

INTENSITY ALARM:

h(p, θ) =

{

1 if ‖f(p)‖ ≥ ǫ

0 otherwise
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Unknown monotonically increasing function:

g : [0,∞) → [0,∞)

TRANSFORMED INTENSITY:

h(x) = g(‖f(x)‖)
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More realistically, vectors observed in local orientation frame.

R(φ) is 2 × 2 rotation matrix by φ.

FIELD VECTOR OBSERVATION:

hfv(x) = R(−θ)f(p)

If f is given and θ is unknown, then it can be determined using hfv(x).

Likewise, if θ is known and f is unknown, then f(p) can be determined

from f(p) = R(θ)hfv(x).
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Let y′ = hfv(x).

FIELD DIRECTION OBSERVATION:

y = hfdo(x) = atan2(y′2, y
′
1)

Special case: An ideal magnetic compass, f(p) = (0, 1).

The orientation θ can be recovered from the given field.



Preimages

Physical Sensors

Physical state spaces

Sensor mapping

Basic Examples

Depth sensors

Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

Amirkabir Winter School 2012 (Esfand 1390) – 74 / 103



Preimages

Physical Sensors

Physical state spaces

Sensor mapping

Basic Examples

Depth sensors

Detection sensors

Relational sensors

Gap sensors

Field sensors

Preimages

Sensor lattice

Additional complications

Amirkabir Winter School 2012 (Esfand 1390) – 75 / 103

The amount of state uncertainty due to a sensor

h : X → Y

The preimage of an observation y is

h−1(y) = {x ∈ X | y = h(x)}

Think about the uncertainty being handled here!
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Suppose X and h : X → Y are given.

The set of all preimages partitions X

X

There is one preimage for every y ∈ Y .

Let Π(h) be the partition X that is induced by h.
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� n point bodies move in R
2.

� X = R
2n

� Y = {0, 1, . . . , n}
� The sensor mapping h : X → Y counts how many points lie a fixed

detection region V .

V V V VV

For n = 4, there are 5 equivalence classes in Π(h).
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Recall directional depth sensor.

For a known environment, X = E × S1.

The preimages are chunks of SE(2).

What happens for an unknown environment?

The preimages are chunks of R
2 × S1 × E .
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Question: Is better than ?

It is better to compare virtual sensors...

Fix the state space X .

Take any two sensors, h1 : X → Y1 and h2 : X → Y2.

h1 dominates h2 if and only if Π(h1) is a refinement of Π(h2).

This is denoted as h1 � h2.
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If h1 � h2, then h2 can be “simulated” using only observations from h1.

If Π(h1) is a refinement of Π(h2), then we can figure out what

observation h2 must make, using only y1.

This is interpreted as the existence of a function g : Y1 → Y2.

X Y2

Y1
h1 g

h2

.

What about computability or complexity of g?
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Fix the state space X

We could have a sensor chain:

h1 � h2 � h3 � h4 � h5
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Fix the state space X

We could have a sensor chain:

h1 � h2 � h3 � h4 � h5

We could have a sensor tree:

Model 7:

Boundary Distance Sensor

Model 10:

Shifted Dir. Depth Sensor

Model 11:

K-Directional Depth Sensor

Model 13:

Depth-Lim. Dir. Depth Sensor

Model 24:

Simple Gap Sensor

Model 12:

Omnidirectional Depth Sensor

Model 6:

Directional Depth Sensor

Model 9:

Boundary Sensor

Model 8:

Proximity Sensor

Model 25:

Depth-Limited Gap Sensor

Could we even have a directed acyclic graph?
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For any set X , the set of all partitions forms a complete lattice.

X = {1, 2, 3, 4}

{{1, 4}, {2, 3}} {{1}, {2, 3, 4}} {{1, 2, 4}, {3}} {{1, 3}, {2, 4}} {{1, 2, 3}, {4}} {{1, 3, 4}, {2}} {{1, 2}, {3, 4}}

{{1}, {2}, {3, 4}}{{1, 2}, {3}, {4}}{{1, 3}, {2}, {4}}{{1}, {2, 4}, {3}}{{1, 4}, {2}, {3}}{{1}, {2, 3}, {4}}

{{1, 2, 3, 4}}

{{1}, {2}, {3}, {4}}

Every pair has a glb and lub.
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Fix X and consider the set of all possible sensors h : X → Y .

Above, Y is not fixed!!

We say two sensors h1 and h2 are equivalent if and only if

Π(h1) = Π(h2).

Really, the partition of X is the sensor model.

The set of all partitions of X forms the sensor lattice.

All sensor models embed into this lattice!

The bijective sensor and dummy sensor are at the top and bottom,

respectively.
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Nondeterministic sensor mapping:

h : X → pow(Y )

Corresponding preimage definition:

h−1(y) = {x ∈ X | y ∈ h(x)}

A sensor mapping induces a cover C(h) of X , instead of a partition.
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ONE-DIMENSIONAL POSITION SENSOR:

h(x) = {y ∈ Y | |x − y| ≤ ǫ}

For example, h(2) = [2 − ǫ, 2 + ǫ]

The preimage of an observation y is

h−1(y) = {x ∈ X | |x − y| ≤ ǫ}.

Clearly, a cover of X = R is induced by h.
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Two kinds of mistakes:

1. False positive: h(p,E) = 1 even though p 6∈ V

2. False negative: h(p,E) = 0 even though p ∈ V

What does C(h) look like?

X is completely covered by two preimages.
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Fix accuracy, ǫ ≥ 0.

INACCURATE DIRECTIONAL DEPTH SENSOR:

hǫ(p, θ, E) = {y ∈ [0,∞) | |‖p − b(x) − y‖| ≤ ǫ}.

p

θ

b(x)
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The sensor mapping is replaced by:

p(y|x)

Using nondeterministic h that we can declare p(y|x) = 0 for all

y 6∈ h(x).
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Error model: Gaussian with zero mean and variance σ2

PROBABILISTIC 1D POSITION SENSOR:

p(y|x) =
1

|Σ|1/2(2π)k/2
e(y−x)T Σ−1(y−x).
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Error model: Gaussian with zero mean and Σ as a k × k covariance

matrix.

PROBABILISTIC GENERAL POSITION SENSOR:

p(y|x) =
1

|Σ|1/2(2π)k/2
e(y−x)T Σ−1(y−x).
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Now probabilities are assigned to false positives and false negatives.

False positive probability:

p(y = 1 | p 6∈ V )

False negative probability:

p(y = 0 | p ∈ V )

If these probabilities are small, then the sensor is quite informative.
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Again assume zero-mean Gaussian error density.

PROBABILISTIC DIRECTIONAL DEPTH SENSOR:

p(y|p, θ, E) =
1

σ
√

2π
e
−

(y−‖p−b(x)‖)2

2σ2
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Recall state-time space, Z = X × T .

Sensor mapping:

h : Z → Y

y = h(z), or equivalently, y = h(x, t)

Consider preimages, partitions of Z , and sensor lattice.

h−1(y) = {(x, t) ∈ Z | y = h(x, t)}
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PERFECT CLOCK MODEL:

y = h(z) = h(x, t) = t.
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DETECTOR WITH TIME STAMP:

h(p,E, t) =

{

(1, t) if p ∈ V at time t

(0, t) otherwise
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State trajectory: x̃ : [0, t] → X

Let X̃ be set of all state trajectories.

History-based sensor mapping:

h : X̃ → Y

Preimages again:

h−1(y) = {x̃ ∈ X̃ | y = h(x̃)}

h induces a partition of X̃ .

A history-based sensor lattice is obtained over X̃ .
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Linear velocity of planar robot: (vx, vy)
LINEAR ODOMETER:

y = θ0 +

∫ t

0

√

v2
x + v2

yds

vx and vy are part of the state.

For example, x = (px, py, θ, vx, vy)
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ANGULAR ODOMETER:

y = θ0 +

∫ t

0
θ̇(s)ds
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Observe what the state was one second ago.

DELAYED MEASUREMENT SENSOR:

y =

{

x̃(t − 1) if t ≥ 1
# otherwise

# means no measurement yet available.
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Fixed time increment ∆t > 0.

p̃(t) is robot position in R
2 at time t

DISCRETE-TIME ODOMETER:

h(x̃) =

⌈t/∆t⌉
∑

i=1

‖p̃(i∆t) − p̃((i − 1)∆t)‖

This this yields an estimate of the total distance travel.

It looks like a temporal filter, which is coming soon.
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� Physical sensors and their characteristics

� Virtual sensors vs. physical sensors

� Families: Depth, detection, relational, gap, field

� Uncertainty comes from preimages!

� The sensor lattice

� Disturbances, history-based, state-time

To make better filters and planners, you need to find the appropriate virtual

sensors for your task.
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