
Tracking Hidden Agents Through Shadow Information Spaces

Jingjin Yu Steven M. LaValle
jyu18@uiuc.edu lavalle@uiuc.edu

Department of Computer Science
University of Illinois

Urbana, IL 61801 USA

Abstract— This paper addresses problems of inferring
the locations of moving agents from combinatorial data
extracted by robots that carry sensors. The agents move
unpredictably and may be fully distinguishable, partially
distinguishable, or completely indistinguishable. The key is
to introduce information spaces that extract and maintain
combinatorial sensing information. This leads to monitoring
the changes in connected components of the shadow region,
which is the set of points not visible to any sensors at
a given time. When used in combination with a path
generator for the robots, the approach solves problems such
as counting the number of agents, determining movements
of teams of agents, and solving pursuit-evasion problems.
An implementation with examples is presented.

I. INTRODUCTION

Many important tasks involve reasoning about obser-
vations made while detectable bodies pass in and out
of the field-of-view of moving sensors. Figure 1 shows
several scenarios to which the concepts in this paper
apply. In such scenarios, general problems include: 1)
counting unpredictable people or robots that move in a
complicated environment [1], [4], [9], [15], 2) pursuing an
elusive moving target by sweeping through a complicated
environment to guarantee detection or capture [3], [5],
[8], [12], 3) monitoring team movement to ensure that
sufficient numbers from each team are present in critical
parts of an environment, and 4) tracking movements of
agents to determine their possible locations [11], [14],
[16]. For each of these and other tasks, numerous scenar-
ios are possible depending on the types of robots, moving
bodies, sensors, environments, and models that are given.
Our paper is motivated by the following question: Is there
a general way, regardless of the scenario, to systemat-
ically process all accumulated sensor observations and
make inferences about where the moving bodies might
be? Determining where bodies might be is like playing
a complicated shell game1: We want algorithms that
efficiently make perfect inferences about unobservable
moving bodies.

1This is a gambling game, usually involving deception, in which the
player must track the location of a hidden object as the dealer quickly
shuffles several potential containers.

(a) (b)

(c) (d)

Fig. 1. a) Imagine three robots (white discs) that carry visibility sensors
to detect and track the movements of agents in an indoor (complicated
corridors) or outdoor (a campus of buildings) environment. There are
seven connected white regions in which agents are out of view of
sensors. b) Suppose there are holes in the coverage of an actuated
sensor network, and we want to reason about possible movements of
agents in the holes. c) In an urban setting, imagine tracking people using
helicopters, and the field of view is frequently obstructed by buildings
and landmarks. d) Consider using satellites to track boats on the sea
while the land constrains their motions and moving clouds obstruct part
of the view.

This paper addresses the general problem of inferring
where unpredictable moving bodies, called agents, could
be as they pass in and out of view. We only address
the passive problem of making conclusions based on
the motions of the sensors. In this sense, we present a
combinatorial filter, which functions much in the same
way as a Kalman filter or general Bayesian filters; how-
ever, our filter processes only combinatorial information.
This provides useful inferences for humans or robots,
and it is hoped that the filter also aids in the active
problem, which involves deciding how to move robots
and search the information space [6] to accomplish a

given task. Regardless of the particular task or scenario,
the combinatorial filtering problem amounts to process-
ing critical changes in the shadow region, which is the
portion of the environment that is not visible to any
sensors at a particular instant. We construct an information
space which accumulates constraints that arise as the
connected components of the shadow region change. We
introduce algorithms that encode the information state as
a high-dimensional polytope and can efficiently answer
queries regarding possible locations of agents by solving
a maximum flow problem over an extended bipartite graph
that is derived incrementally from the history of sensor
observations.

To the best of our knowledge, there has been no attempt
to reason about the movements of targets with the level of
generality considered in our paper. The main assumption
is that the connected components of the shadow region can
be maintained. Beyond this, the environment may be two
or three dimensional, known or unknown, and simply or
multiply connected. There may be one or more robots or
humans carrying sensors. The sensor field-of-view may
be limited by any depth or angle. The agents in the
environment may be indistinguishable, distinguishable, or
partially distinguishable (for example, there are several
teams). Figure 2 illustrates the high-level flow of concepts
throughout the remainder of the paper.

II. PROBLEM FORMULATION

A. Robots and visibility regions

Suppose that one or more robots move in a world,
W = R

2 or W = R
3. To avoid configuration-space

complications, assume each robot is a point. Suppose
that there are fixed obstacles in W that obstruct the
robots. The obstacle boundary is assumed to be bounded
and piecewise-analytic (to enable finite encodings). Let
F ⊂ W denote the free space, which is an open set of
possible robot positions. Let q denote the configuration
of the robots; if there are k robots, then q ∈ F k.

The robots carry sensors that “illuminate” a subset of
F . Let V (q) denote a closed visible region, when the
robots are in configuration q. Let S(q) = F \ V (q)
denote the shadow region. If the robots move along a
time-parameterized path q̃ : [0, t]→ F k, then the shadow
region itself becomes time-parameterized: S(q̃(t ′)) is ob-
tained for every t′ ∈ [0, t]. It is assumed that V (q)
and S(q) behave nicely as q varies continuously; more
precisely, arbitrarily small changes in q lead to small
changes in V (q) and S(q) (this can be formalized using
the Hausdorff metric). This enables the shadow compo-
nents to be consistently labeled as q varies.

→

89

6

1

7

2

v1v2

17

16

4 3

15

5

v5

v4 v3

10

v10

11
12

v12

1413

19
18

v18

v14v14

tim
e

a b
↓

1-4

14

9

19

18

5

10

12

18

15

13
S0 S1 S2

←

1

14

9

19

18

2

4

3

5

10

12

18

15

13

d c

Fig. 2. a) A 2D environment and trajectory followed by a robot
with omnidirectional visibility. b) A graph that encodes combinatorial
changes in visibility. c) A bipartite graph, made by compressing in-
formation in (b). d) A resulting maximum-flow graph, used to answer
questions about tracking or counting agents.

B. Moving agents

Let A denote a set of n agents. Each agent is a
point that moves along a continuous, not-necessarily-
known path through F . There are no given bounds on
the maximum speeds of the agents. Let r ∈ F n be a
2n-dimensional vector that specifies the agent positions.

The vectors q and r yield the positions of all robots
and agents. Therefore, let x = (q, r) denote the state, and
let X = F k+n be the state space.

To set up different levels of distinguishability, it will
be convenient to assign team labels to the agents. Let
T denote a set of m teams, with m ≤ n. Let the
mapping l : A → T assign a team to each agent. It
is assumed that agents can be distinguished only if they
belong to different teams. At one extreme, we may have
|T | = 1, in which case all agents belong to the same
team and are indistinguishable. At the other extreme, we
may have T = n and l is a bijection. In this case, the
agents are all distinguishable. A convenient intermediate
case is to assign colors to the agents. For example,
T = {red, green, blue}. There might, for example, be
30 agents, with 10 reds, 15 greens, and 5 blues.

What does the sensor actually produce? Suppose that
for any configuration q, the connected components of
S(q) are labeled with unique positive integers. As q
changes, the components of S(q) may undergo one of
four critical changes: 1) two components merge, 2) one
component splits into two, 3) a new component emerges,

and 4) a component disappears.2 Each critical change
is called a component event. These events are based on
inflection and bitangent crossings, and are described in
more detail in [7], [13]. It is assumed that the component
labels remain constant unless there is a component event.
Let N be the set of nonnegative integers. Let h : X → Y
be the sensor mapping, in which Y = N

m+1 is an
observation space. An observation y = h(x) ∈ Y is a
vector of m + 1 integers. For i from 1 to m, the i th

component of y indicates the number of agents from the
ith team that lie in V (q). At the instant in which an
agent enters or exits V (q), ym+1 gives the label of the
component of S(q) that is entered or exited; otherwise,
ym+1 = 0. The instant at which an agent enters or exits
V (q) is called a field-of-view event.

C. Initial conditions

An initial condition is defined for each shadow com-
ponent. The total number of agents, n, may or may not
be known to the robot. For each component, we allow
lower and upper bounds on any subsets T i of T . Let li
and ui denote the lower and upper bounds associated,
respectively, with Ti. Here are some examples. We might
know initially that one component contains at least 2 and
at most 5 red agents. In this case, Ti = {red}, li = 2
and ui = 5. Alternatively, we might know that there
are exactly 7 agents, with unknown teams. In this case,
Ti = T and li = ui = 7. The completely unknown case
becomes Ti = T , li = 0, and ui =∞.

Each component may have as many as k pairs of
bounds (k may be different for each component). Let
T1, . . . , Tk denote the subsets of T chosen for constraints;
we assume these subsets are disjoint. An initial condition
for the component can be expressed as

{(T1, l1, u1), (T2, l2, u2), . . . , (Tk, lk, uk)},
in which the li, ui could be any nonnegative integer or
positive infinity, and li ≤ ui.

D. Possible Tasks

Several kinds of tasks can be defined based on the
formulation. Suppose that the robots have moved along
some trajectory. Possible tasks are:

• Determine the minimum and maximum numbers of
red (or any other color) agents in one of the shadow
components.

• Count the total number of agents in F .
• Determine whether one final shadow component con-

tains any agents.

2This includes a general position assumption, to avoid tedious cases
in which three or more components are involved in a change.

• Determine whether one final shadow component has
more blue agents then red agents.

• Determine whether blue and red agents are separated
into different shadow components.

III. THE HISTORY INFORMATION SPACE

To address the tasks described in Section II-D, we
carefully define and manipulate information spaces (for
a general introduction, see Chapter 11 of [6]). We will
use the abbreviations I-space for information space and
I-state for information state. The basic idea will be
to avoid precisely estimating the agent locations, and
instead process the sensor data directly to solve tasks. To
accomplish this, substantial effort is required to identify
compact, combinatorial representations that preserve all
information that is pertinent to solving tasks. In this
section, we introduce the history I-space, in which an
I-state contains initial conditions and the entire time-
parameterized history of sensor observations.

After time evolves from time 0 to some time t, a
perfect description of everything that occurred would be
a state trajectory x̃t : [0, t] → X . It is impossible
to obtain this, however, because the agent positions are
generally unknown. Instead of the state trajectory, we are
offered the observation history, ỹt : [0, t] → Y , which
is a time-parameterized collection of sensor observations.
Suppose temporarily that the robot configurations are
always known (this assumption is removed in Section IV.
Let η0 denote the initial conditions from Section II-C.

The history I-state at time t is ηt = (η0, q̃t, ỹt), which
represents all information available to the robots. The his-
tory I-space Ihist is the set of all possible history I-states,
which is an unwieldy space that must be dramatically
reduced if we expect to solve our tasks.

IV. THE SHADOW-SEQUENCE INFORMATION SPACE

In this section, we construct a derived I-space Iss

which is obtained by a mapping from Ihist that discards
information that is irrelevant to solving our tasks. Con-
sider the information contained in ηt = (η0, q̃t, ỹt). In
Iss, we retain η0, but q̃t and ỹt are reduced in some way.
The following reductions are made:

1) The configuration trajectory q̃t will be replaced by
a graph structure that simply labels the connected
components of S(q) and tracks how they evolve.
This information can be determined completely
from the configurations, which are given by q̃ t. The
particular configurations do not even need to be
measured, provided that there is some alternative
way to determine the shadow components (for ex-
ample, they be inferred directly from depth discon-
tinuities in a planar, simply connected free space
[13]). The graph structure is updated only when a

(a) (b)

(c) (d)

Fig. 3. In this simple example, a single robot carries a standard
visibility sensor in a polygonal free space. The segment that emanates
from the robot trajectory indicates where a component event occurs
(only a few component events are shown). Agent trajectories are not
shown. There are four possible types of component events: a) A shadow
component splits into two. b) A shadow component appears. c) Two
shadow components merge. d) A shadow component disappears.

component event occurs, which means components
split, merge, appear, or disappear (see Figure 3).

2) The observation history ỹt is compressed so that
only changes in the observation need to be recorded.
Every such change corresponds to a field-of-view
event. The result is a sequence of distinct observa-
tions.

3) Precise timing information is discarded, except the
order in which events occur. The component events
and field-of-view events are interleaved according
to their original time ordering. We make a general
position assumption that no two events occur simul-
taneously.

The result is an I-state that lives in a derived I-space, Iss,
which we call the shadow-sequence I-space.

One fact that should become clear during the pre-
sentation is that all of the concepts and methods from
Sections III to V can be applied to the set of constraints on
each Ti (recall from Section II-C) without consideration
of constraints with respect to other subsets of T . We
therefore present the concepts and algorithms for the case
of a single team (i.e., |T | = 1). The approach then
extends naturally to handle each Ti for i from 1 to k
(we eventually obtain k independent max-flow problems,
instead of one).

89

6

1

7

2

v1v2

17

16

4 3

15

5

v5

v4 v3

10

v10

11
12

v12

1413

19
18

v18

v14v14

tim
e

Fig. 4. A graph that accounts for the evolution of shadow components
over time.

By considering one team only, it is simple to char-
acterize the possible constraints for every initial shadow
component and every shadow component that arises from
an appearance component event, as shown in Figure
3(b). For the ith component, we allow lower and upper
bounds, represented as vi = (li, ui), in which li and ui

are nonnegative integers (ui may be infinite) such that
li ≤ ui. For an initial shadow component, any possible
vi is allowable; however, it seems that for a component
that arises from an appearance, it is only possible that
vi = (0, 0) (a new shadow component must be clear of
agents).

We will divide field-of-view events into two classes to
simplify the discussion. If k field-of-view events occur in
which k agents enter a shadow component, say s i, that
was just formed by an appearance component event, then
we associate vi = (k, k) with si. In the opposite direction,
if k agents leave a shadow component si and in the next
event si disappears, then vi = (k, k) is associated with
si, and it is recorded that si disappeared. The remaining
presentation up to Section V-C assumes that only these
kinds of field-of-view events can occur (otherwise, our
examples become cluttered). Section V-C then describes
how the remaining field-of-view events are handled.

The shadow-sequence I-space Iss will now be de-
scribed using the example from Figure 3. A particular
I-state in Iss is illustrated in Figure 4. The square boxes
indicate the upper and lower bounds v i = (li, ui), which
are associated with each shadow component that either:
1) existed initially (the square boxes at the top), 2)
appears at a component event, or 3) disappears at a
component event. The circles indicate particular shadow
components. The I-state can be considered as a directed
graph in which the vertices are the circles and all edges
flow downward, which corresponds to the progression of
time. The boxes simply show the information associated
with some vertices. The edges indicate how the shadow

Fig. 5. A component event that enables an agent to relocate.

components were involved in a split or merge component
event. This association is important because we must
account for possible movements of agents. For example,
Figure 5 shows how an agent can move from one former
shadow component to another after a merge component
event.

Based on the information shown in the boxes in com-
bination with the graph structure, the possible numbers
of agents behind each final shadow component can be
expressed as a polytope as follows. Every vertex (circle
in Figure 4) is an nonnegative integer variable x i, which
is associated to shadow component si. Every vi = (li, ui)
constraint represents the bounds li ≤ xi ≤ ui. Further-
more, every split and merge component event corresponds
to a sum of variables. For example, in Figure 4, when
s6 splits into s8 and s9, we obtain an ILP constraint
x6 = x8+x9. When s4 and s10 merge into s11, we obtain
x11 = x4 + x10. Thus, a piecewise-linear description
(polytope) of possible numbers of agents is obtained over
the xi variables.

Answering particular queries over the polytope be-
comes a kind of integer linear programming (ILP) prob-
lem. The general ILP problem is NP-hard [10], which
might sound very discouraging; however, our particular
ILPs have a special structure that enables them to be
solved rather efficiently using maximum-flow algorithms.
To arrive at this, however, we need to further compress
the I-states. This brings us to the next section, in which a
bipartite graph structure encodes I-states, and an I-space
results that is even more compact.

V. COLLAPSING THE INFORMATION SPACE ONTO A

BIPARTITE GRAPH

A. Information states as an augmented bipartite graph

After carefully studying the I-states in Iss, it becomes
apparent that the polytopes and associated ILPs that
are obtained have some special structure. Any piece of
information that originates in an initial shadow compo-
nent or a shadow component that is generated by an
appearance component event must eventually contribute
to a final shadow component or a shadow component that
disappeared. Furthermore, the information accumulated at
any final component or a component that disappeared is
composed entirely of information that originated from the

(a)

a

va a a

va

(b)

c

a

bx

b

z

y

a x

z

y

c

(c)

b

c

a

x

z

y

a

b

x

z

y c

(d)

a

vaa a

va

Fig. 6. Incrementally computing I-states in Ibip: a) An appearance
component event adds two vertices and an edge, with va associated with
the left vertex. b) A split event splits a vertex and all edges pointing
to that vertex. c) A merge event collapses two vertices into one and
collapses their ingoing edges. d) A disappear event only associates va
with the vertex on the right side.

initial components and ones that appeared from compo-
nent events. These bilateral dependencies suggest that the
information flow can be captured in a bipartite graph in
which the left side indicates the sources of information
and the right side indicates the destinations.

Figure 6 illustrates how to construct and incrementally
maintain such a graph for each of the four possible types
of component events. The bipartite graph contains weights
on each of the vertices, which result from bounds of the
form vi = (li, ui). Initially, the graph contains a left and
right vertex for every initial shadow component, and an
edge between every corresponding pair. In fact, if there
are k initial shadow components, then k copies of the
construction shown in Figure 6(a) are made. Conceptually,
this is equivalent to introducing k shadow components via
appearance events. The four parts of Figure 6 show how
the bipartite graph grows incrementally while the robots
move along a configuration trajectory. At any time, the
resulting bipartite graph, with associated weights on every
vertex, is considered as an I-state in a new I-space denoted
as Ibip.

Figure 7(a) gives the bipartite graph for the example
in Figure 3. Note that in general, particularly if there
are many component events, the new graph is much
smaller than the kind constructed in Figure 4. Note that
the conversion causes some information loss: All internal

1

14

9

19

18

2

4

3

5

10

12

18

15

13

1-4

14

9

19

18

5

10

12

18

15

13
S0 S1 S2

(a) (b)

Fig. 7. a) An I-state in Ibip , which is a bipartite graph. b) The
corresponding maximum-flow graph for answering questions about agent
movements. All edges are directed from left to right.

nodes from the I-states in Iss disappear as they are
processed to construct the bipartite graph. Furthermore,
the time-ordering information is no longer preserved in
the bipartite graph. The information space Ibip is more
compact than Iss, but it is nevertheless sufficient for
solving our tasks.

B. Tracking agents as a maximum flow problem

We classify the bipartite graph vertices into three types.
Vertices on the left are all from initial or appear-event
shadow components, and are called incoming vertices.
The vertices on the right that are from shadow components
that have disappeared are called inactive vertices; all of
these have fixed weights that correspond to the number
of field-of-view events that occurred immediately prior to
disappearance. The remaining right vertices correspond
to shadow components that have not disappeared, and are
therefore called active vertices.

Once the bipartite is constructed, the task of determin-
ing upper and lower bounds on final shadow components
can be transformed into a maximum flow problem. A
flow problem usually has source and sink vertices, and
the edges have capacity and flow values. For each v i,
assume that li = ui, which corresponds to a scalar weight
wi = li = ui that is associated with various vertices. This
assumption will be lifted at the end of this section.

To transform our bipartite graph with vertex weights
into a flow graph, introduce a source vertex S0, with
edges pointing to all incoming vertices. Also introduce
a sink vertex, S1, to which all inactive vertices point, and
a second sink vertex, S2, to which all active vertices and
S1 point (see Figure 7(b)). Note that shadow components
from s1 to s4 are all collapsed into a single vertex here
because we can equivalently assume that they are split
from same vi.

After obtaining the extended graph, the weights on
vertices must be shifted to capacities on edges. Let e(s, t)
be an edge in the graph going from s to t, and denote

the capacity and flow on that edge as c(s, t) and f(s, t),
respectively.

Consider computing the minimum number of agents in
a final shadow component, sm. In this case, we want to
determine the minimum flow through the corresponding
active vertex in the graph. Every incoming vertex, i,
now corresponds to a fixed number of agents, and the
number is the capacity for e(S0, i). For every inactive
vertex j, the capacity of e(j, S1) is wj . By conserva-
tion of flow, the capacity of e(S1, S2) is c(S1, S2) =∑

c(S0, i)−
∑

c(j, S1). To obtain the minimum for sm,
we want the least possible flow through e(m, S1); there-
fore, c(m, S1) = 0. All other edges are assigned infinite
capacity. After running the maximum-flow algorithm,

min(f(m, S1)) =
∑

i

f(S0, i)−
∑

f(j, S1)−f(S1, S2),

(1)
in which f(j, S1) = c(j, S1). Equation (1) is correct be-
cause minimum flow at one edge of the graph is equivalent
to flowing the maximum amount possible through the
rest of the graph. Note that the particular maximum-flow
algorithm is not critical; this is a classical problem and
many efficient alternatives exist.

To instead compute the maximum number of agents
possible for a final shadow component, sm, let c(m, S1) =
∞ and let c(j, S1) = 0 for all other active vertices.
Keep the rest of the graph the same as for the minimum
case. The resulting f(m, S1) after running maximum-flow
algorithm is the desired upper bound.

The procedure can be repeated for every active vertex.
Note that the lower (or upper) bounds on final shadow
components usually cannot be achieved simultaneously
by actual agents because of the dependencies among the
components.

Now we return to the more general case in which
li and ui are not necessarily equal. In this case, we
simply replace vi by li for determining minima and ui

for determining maxima.

C. Handling the remaining field-of-view events

In Section IV, we intentionally left some field-of-view
events out of the discussion to simplify the explanation.
Those events certainly need to be handled because agents
may enter or exit the visibility region at any time. To
account for those events, we can augment the bipartite
graph as it is computed. For each agent appearance field-
of-view event, we can treat it as if a component splits into
two and then one of the two shadows disappeared, reveal-
ing a certain number of agents. We can treat each agent
disappearance field-of-view event as if a new shadow
component appears and merges into an existing one.
Algorithmically, this effectively transforms field-of-view
events into component events.

VI. SOLVING A VARIETY OF TASKS

The maximum-flow method explained in Section V-B
can be used to determine the minimum and maximum
number of possible agents hiding in a specified shadow
component. In addition to this, a variety of other tasks can
be readily solved, and are covered briefly in this section.
Refining initial bounds: Maximum flow computations
can be used to refine the bounds given originally on the
initial shadow components, based on information gained
later. For example, if s1 originally has a lower bound of 4,
but it is then observed that there are 6 agents appearing
from s9, then there must have initially been at least 6
agents in s1. Upper bounds can be refined similarly. To get
a better lower bound for an initial shadow component, sm,
let c(S0, m) = lm and let the remaining c(S0, i) assume
the weights of their incoming vertices. The edges from
inactive vertices weighted as before, and all c(j, S1) are
infinite. Let c(S1, S2) =

∑
c(S0, i) −

∑
c(j, S1). The

refined lower bound is given by

l′m = lm +
∑

j

c(j, S1)−
∑

j

f(j, S1) (2)

in which j ranges over the inactive vertices. To refine um,
let c(S0, m) = um, c(S0, i) = li for each i 	= m, and the
remaining capacities be the same as in the lower-bound
case. The refined upper bound is

u′
m =

∑

j

f(m, j). (3)

Counting: In this case, the total number n of agents
is unknown. For determining n, the lower and upper
bounds on each initial shadow component are specified as
vi = (0,∞). Using the algorithm from Section V-B, upper
and lower bounds can be obtained on each component. If
li = ui for each of these, then n has been determined.
Otherwise, (2) and (3) give lower and upper bounds on n.
Note that if F is not completely explored, then the upper
bound remains at infinity.
Recognizing task completion: We might also want to
recognize the completion of certain tasks. For example,
in a wild animal preserve, it may be required that the total
number of a species is verified periodically. This reduces
to the problem of being given n and wanting to account
for all of them. To verify the completion of this task, we
can keep track of the lower bounds on the total number
of agents, and if the number agrees with n, then the task
has been accomplished.
Pursuit-evasion: Another task is pursuit-evasion, as de-
fined in [3], [5], [8], [12]. Suppose there is a single evader
and the task is to determine where it might be. In this
case, vi = (0, 1) for each initial shadow component. In
the end, there are three possibilities for each final shadow

component: 1) vi = (0, 0) (the evader is not in si),
2) vi = (1, 1) (the evader is definitely in si), and 3)
vi = (0, 1) (the evader may or may not be in s i). Note that
this is a passive version of the pursuit-evasion problem.
We do not determine a trajectory that is guaranteed to
detect the evader. In general, this problem is NP-hard
[5]. Nevertheless, the calculation method proposed in this
paper can be used with heuristic search techniques (or
even human operators) to correctly maintain the status of
the pursuit.
Multiple teams with bounds on single teams: Now
suppose that there are multiple teams, m > 1. There
are two important cases. For the first one, suppose that
the bounds for each initial shadow component refer to
individual teams. Thus, each Ti (refer to Section II-C)
is just a single team. The task of determining lower and
upper bounds for m teams can then be solved by defining
m distinct single-team tracking problems, one for each
team. If the task is to find a lower bound on all agents in
a final shadow component, we simply sum lower bounds
of all teams in that component to obtain the answer. This
approach even works in the extreme case in which all
agents are distinguishable.
Handling constraints across multiple teams: The sec-
ond case for multiple teams allows Ti to contain more than
one team. For example, an initial shadow component may
have a constraint that there are between 3 and 7 agents
that are red or blue. If we want to know the lower bound
on red or blue agents, then we set red capacity from S 0

to the corresponding vertex in the flow graph to zero,
and flow the reds through the graph to obtain a minimum
of the red. We then do the same for blue. Adding those
two numbers up gives the answer. Upper bounds can be
computed similarly.

VII. IMPLEMENTATION

We implemented and tested the algorithms for a single
robot that moves in a simply connected polygonal region
in R

2 using an omnidirectional visibility sensor. We
chose this setting for simulation because the bitangents
and inflections can be calculated so we could have an
oracle for moving the agents around inside the free space
and avoid simulating particular agent movements. Recall
that the method works for any number of agents, any
sensor models, and 2D or 3D worlds, as long as the
shadow components can be maintained. We implemented
the O(V E2)-time Edmonds-Karp max-flow algorithm [2],
in which V and E are the numbers of vertices and
edges in the graph, respectively. The number V is the
total number of initial, appearing, disappearing, and final
shadow components. In the worse case, the bipartite graph
may be complete, but in practice there are far fewer edges.

The program is written in Java 1.5. The byte code was
run on Intel U2500 1.2GHz machine with 1GB RAM. For
the free space in Figure 8(a), the trajectory generates 85
component events. We defined an oracle that randomly
distributed 100 agents in the free space as the component
events occur. This setting yields a bipartite graph that
has 41 vertices and 60 edges. Calculating the lower and
upper bounds for the 18 final shadow components for
a single team took 0.1 seconds. The second free space,
shown in Figure 8(b), has 385 component events, 491 total
shadow components, 124 vertices in the bipartite graph
with 339 edges. The example involves a million agents on
5 teams that intersperse. The bounds on 12 final shadow
components for all 5 teams were computed in 2.5 seconds.

(a) (b)

Fig. 8. Complicated examples that were used to test our approach. The
given robot trajectories are shown.

VIII. CONCLUSION

We have introduced and solved a combinatorial fil-
tering problem of tracking unpredictable agents that are
mostly out of the range of sensors. The approach uses
initial hypotheses on possible agent locations and reasons
about how the shadow components evolve to make final
conclusions. The resulting information space is collapsed
into a bipartite graph, and queries are solved efficiently by
solving a special maximum flow problem. The concepts
are very basic and general. We therefore believe there
is great potential for applying them to practical prob-
lems such as search-and-rescue, counting people, track-
ing movements in a building, and analyzing movement
strategies for teams of robots or humans.

Many interesting open problems remain. The concepts
apply to a wide variety of sensor models; however, the
feasibility and complexity of maintaining the shadow
components varies and should be studied in particular
contexts. Also, the resulting information spaces may fur-
ther simplify in some cases. For example, it seems that
the derived I-spaces, Iss and Ibip, for a single robot in
a simple polygon should be much simpler than that for
numerous robots in a 3D free space that has holes.

Several open questions remain regarding weaker sensor
models. For agents that lie in V (q), we presently assume
their team labels and entering/exiting shadow components
are all observed. Examples of weaker models include: 1)
a binary sensor that indicates only whether there is at
least one agent in V (q), 2) a counter that yields the total
number of agents in V (q), 3) uncertainty regarding which
shadow component an agent entered or exited.

Acknowledgments: Yu is supported in part by a Siebel
Fellowship. LaValle is supported in part by the DARPA
SToMP program (DSO HR0011-07-1-0002). The authors
sincerely thank Chandra Chekuri for a helpful discussion
on ILPs and maximum flow.

REFERENCES

[1] Y. Baryshnikov and R. Ghrist. Target enumeration via Euler
characteristic integrals I: sensor fields. Preprint available on
Internet, March 2007.

[2] J. Edmonds and R. M. Karp. Theoretical improvements in algorith-
mic efficiency for network flow problems. J. ACM, 19(2):248–264,
1972.

[3] B. Gerkey, S. Thrun, and G. Gordon. Clear the building: Pursuit-
evasion with teams of robots. In Proceedings AAAI National
Conference on Artificial Intelligence, 2004.

[4] B. Gfeller, M. Mihalak, S. Suri, E. Vicari, and P. Widmayer.
Counting targets with mobile sensors in an unknown environment.
In ALGOSENSORS, July 2007.

[5] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Mot-
wani. Visibility-based pursuit-evasion in a polygonal environment.
International Journal of Computational Geometry and Applica-
tions, 9(5):471–494, 1999.

[6] S. M. LaValle. Planning Algorithms. Cambridge Uni-
versity Press, Cambridge, U.K., 2006. Also available at
http://planning.cs.uiuc.edu/.

[7] S. M. LaValle and J. Hinrichsen. Visibility-based pursuit-evasion:
The case of curved environments. IEEE Transactions on Robotics
and Automation, 17(2):196–201, April 2001.

[8] J.-H. Lee, S. Y. Shin, and K.-Y. Chwa. Visibility-based pursuit-
evasions in a polygonal room with a door. In Proceedings ACM
Symposium on Computational Geometry, 1999.

[9] X. Liu, P. H. Tu, J. Rittscher, A. Perera, and N. Krahnstoever.
Detecting and counting people in surveillance applications. In
Proc. IEEE Conference on Advanced Video and Signal Based
Surveillance, pages 306– 311, 2005.

[10] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial
Optimization. Wiley, New York, 1988.

[11] J. Singh, R. Kumar, U. Madhow, S. Suri, and R. Cagley. Tracking
multiple targets using binary proximity sensors. In Proc. Informa-
tion Processing in Sensor Networks, 2007.

[12] I. Suzuki and M. Yamashita. Searching for a mobile intruder in
a polygonal region. SIAM Journal on Computing, 21(5):863–888,
October 1992.

[13] B. Tovar, R Murrieta, and S. M. LaValle. Distance-optimal
navigation in an unknown environment without sensing distances.
IEEE Transactions on Robotics, 23(3):506–518, June 2007.

[14] C.-C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-
Whyte. Simultaneous localization, mapping and moving object
tracking. International Journal of Robotics Research, 26(9):889–
916, 2007.

[15] D. B. Yang, H. H. Gonzalez-Banos, and L. J. Guibas. Counting
people in crowds with a real-time network of simple image sensors.
In Proc. IEEE International Conference on Computer Vision,
volume 1, pages 122– 129, 2003.

[16] F. Zhao and L. Guibas. Sensor Networks: An Information Process-
ing Approach. Morgan Kaufmann, San Francisco, CA, 2004.

