
Motion Planning for Highly Constrained Spaces

Anna Yershova Steven M. LaValle

Department of Computer Science
University of Illinois

Urbana, IL 61801 USA
{yershova, lavalle}@uiuc.edu

Abstract— We introduce a sampling-based motion planning
method that automatically adapts to the difficulties caused by
thin regions in the free space (not necessarily narrow corridors).
These problems arise frequently in settings such as closed-chain
manipulators, humanoid motion planning, and generally any
time bodies are in contact or maintain close proximity with
each other. Our method combines the aggressive exploration
properties of RRTs with the intrinsic dimensionality-reduction
properties of kd-trees to focus the sampling and searching in the
appropriate subspaces. We handle closed-chains and other kinds
of constraints in a general way that avoids inverse kinematics
computations, if desired. We have implemented the method and
show its computational advantages on a variety of challenging
examples.

I. INTRODUCTION

In many motion planing problems, the feasible subspace
becomes thin in some directions. This is often due to kine-
matic closure constraints, which restrict the feasible configu-
rations to a lower-dimensional manifold or variety. This may
also be simply due to the way the obstacles are arranged.
For example, is planning for a closed chain different from
planning a sliding motion for a washer against a rod? An
illustration for the two instances of such problems is shown
on Figure 1. Traditionally, the two problems are solved
with different methods in motion planning. However, the
two seemingly different problems have similar algebraic and
geometric structure of the sets of feasible configurations. In
either case, there may exist functions of the form fi(q) ≤ εi

that contain most or all of the feasible set. Typically, εi is
very small, and in the case of closed chains, εi = 0. When
this occurs, a region of the feasible space has small intrinsic
dimensionality, in comparison to the ambient configuration
space. Note that the fi are not necessarily given.

In automated manufacturing, and manipulation planning
problems similar to the two discussed above are abundant.
In some cases the functions fi are explicitly provided. A
large set of mechanisms, such as PUMA robots, or humanoid
robots are well studied, with readily available expressions for
the forward kinematics, and grasping configurations. Many
practical solutions exists for solving such problems. Very
often, however, the expression for the constraints is not
readily available, such as for the example of the washer and
the rod. There are fewer methods available for such problems,

(a) (b)

Fig. 1. (a) Manipulation problem for a closed chain. (b) Manipulation
problem for sliding a washer against a rod.

unless the constraints are explicitly modeled.
There are thousands of CAD models of mechanisms, and

objects (including rods) of different shapes, designed for
manipulation systems, which are a stronghold of industrial
robotics applications; it is frustrating that no technique exists
for solving these problems in a unified way. Users are putting
up with a burden of modeling issues, and differentiating the
problems into classes.

Planning for closed chains is usually considered as a
separate class of problems, since the kinematic constraints
are given a priory. Analytical approaches construct explicit
geometrical and topological representation of the closure set
[4], [9], [13], but are usually inefficient in practice. Practical
sampling-based methods [3], [16] usually project the closure
set on the subset of parameters, on which the planning is
performed [5], [8]. An inverse kinematics solver is used in
these approaches as a black box to get the solution back on
the configuration space. These approaches are quite success-
ful in practice, however, there are disadvantages associated
with using inverse kinematics:

• Analytical solutions for inverse kinematics for arbitrary
manipulators are prohibitively complex and can only
be applied to relatively simple mechanisms with low
number of degrees of freedom [6].

• Numerical techniques exist for solving inverse kinemat-
ics for arbitrary mechanisms [15]; however, they are not
presently at the stage of being applied in practice.

• Even if inverse kinematics solutions were readily avail-

able, the choice of the subset of parameters on which
projection is made may significantly affect the perfor-
mance of a planner. Planning becomes inefficient around
singularities associated with the projection on the cho-
sen subset of parameters. There is no general method,
though, for the choice of parameters. In practice, a
careful analysis of the linkages is usually required before
the method is applied [5].

Separate techniques are also developed for motion plan-
ning problems with constrained geometries, such as the
example of sliding the washer against the rod. Several ap-
proaches were proposed recently [7], [17] for solving such
problems. However, they can only handle a small set of
motion planning problems in low dimensional configuration
spaces.

In this paper we propose a motion planner which can
handle planning under the set of constraints of the form
fi(q) ≤ εi. It needs neither an inverse kinematics solver,
nor an explicit expression for fi, which provides maximum
flexibility to the user. The method keeps the representation
of the set of feasible configurations in the kd-tree data
structure. Kd-trees are well known for the ability to capture
intrinsic dimensionality of the subsets in an ambient space.
The planning is done locally using the RRT planner [12]
inside the represented portion of the feasible set. Our method
combines the aggressive exploration properties of RRTs with
the intrinsic dimensionality-reduction properties of kd-trees
to focus the sampling and searching only on the feasible set
inside the configuration space.

We have tested the algorithm on a dozen problems,
including both basic motion planning and planning under
closed-chain kinematic constraints. We observed that the
performance of the algorithm improves over the original
RRT planner on most of the problems, often by an order of
magnitude. In rare cases, when there is no improvement in the
running time, the proposed method works only slightly worse
than the RRT. We believe that designing a single algorithm
that reliably performs on a large set of problems is important
to the motion planning community. Our algorithm is also
simple and straightforward to use.

In Section II we define the planning problem we consider.
Sections III and IV introduce the planner we propose, and
the kd-tree data structure it uses, respectively. We show
experimental results in Section V, followed by conclusions
and future work in Section VI.

II. PROBLEM DESCRIPTION

We start with the description of the class of problems we
consider in this paper.

A. The Motion Planning Problem

Let W ⊂ R
N , N = 2 or 3, be the workspace, to which

the robot and obstacles belong. Consider the configuration

space C. The set of all of the configurations satisfying the
constraints Ccon = {q : fi(q) ≤ εi}, εi ∈ [0;∞), i ≥ 0, is
called the constrained space. The free space, Cfree, is defined
as the configurations q ∈ C, which satisfy the collision
constraints. The valid space is the closure of the free space,
Cval = Cfree ∪ ∂Cfree. The feasible space is defined as
Cfea = Ccon ∩ Cval; it contains the configurations satisfying
the constraints and avoid penetration into obstacles.

The motion planning problem is defined on Cfea. Given
an initial and goal configurations qinit, qgoal ∈ Cfea, find a
continuous path τ : [0, 1] → Cfea, such that τ(0) = qinit,
and τ(1) = qgoal.

It is important to note that when i = 0 and Cfea = Cval

the feasible space may have similar topological properties to
the feasible spaces for which the functions fi are defined. In
cases when i = 0 the obstacles of the configuration space
may define the constraints similar to fi(q) ≤ εi implicitly.

B. Special Case: Linkages with Closed Chains

One instance of the set of problems defined above can be
obtained when planning for linkages with closed kinematic
chains. Consider a chain of n links, such that each link Li

is a 3-d rigid body. When two links, Li and Lj , are attached
to each other, the place at which they attach is called the
joint J(Li, Lj). Call L the collection of all of the links in the
chain, and J the collection of all of the joints. The underlying
graph, G(J, L), in which the vertices correspond to all of the
joints, and the edges are the corresponding links, represents
the topology of the linkage. The underlying graph has cycles
if and only if the linkage contains closed chains.

Each joint J(Li, Lj) carries information about the type
of the attachment (revolute, spherical, etc.) This is often
expressed as the homogeneous transformation matrix from
the coordinate frame of one link to the frame of another. The
variables in the matrix express the freedom of movement of
the link around the joint with another link. This leads to
a parametrization of the linkage (for example, the Denavit-
Hartenburg representation [10]).

Setting each of the parameters to a fixed value results in a
real-valued vector q, which represents a fixed configuration
of the linkage. If G(J, L) contains cycles, then not all of the
configuration q yield an acceptable position and orientation
of each of the links in the chain. Only configurations q which
satisfy the closure constraints of the form fi(q) = 0 result in
valid configurations of the linkage. The closure constraints
can be obtained by writing down two homogeneous transfor-
mation matrices for a coordinate frame of a link in each loop
of a closed chain. Each of the matrices corresponds to the
two different paths to the link alone the loop. The closure
constrain can then be obtained by forcing the frame of the
link to be the same, regardless of the path that was chosen.

Since the configurations satisfying the closure constraints
fi(q) = 0 are defined implicitly, they often can not be

BUILD RRT(qinit)
1 T .init(qinit)
2 for k = 1 to K do
3 qrand ← RANDOM CONFIG(C)
4 qnear ← FIND NEAREST NEIGHBOR(qrand, T)
5 if CONNECT(T , qrand, qnear, qnew)
6 T .add vertex(qnew)
7 T .add edge(qnear, qnew)
8 Return T

f(q) = ε

q
near

qnew

q
rand

X

εC f(q) = 0

f(q) = −ε

Fig. 2. The RRT-CONNECT construction algorithm.

obtained analytically. It is natural to assume, therefore, that
some numerical error, ε, is allowed for the configurations on
the closure set. The value for ε is usually chosen based on the
particular application. In the rest of the paper we consider,
therefore, the relaxation of the closure constraints for closed
chains fi(q) = 0 to |fi(q)| ≤ ε.

III. DYNAMIC DOMAIN RRT PLANNER

The RRT planner [12] was successfully used for many
motion planning problems. It has a natural ability to ag-
gressively explore the free configuration space. RRTs can be
straightforwardly applied to the feasible spaces, by ensuring
that the constraints fi(q) ≤ εi are validated for each vertex
in the tree. This approach is a baseline algorithm for our
experiments. We describe it in details in Section III-A.

It was shown in [17] that RRTs suffer from local minimum
problems in case when the free space is significantly smaller
that the configuration space. The approach to overcome this
difficulty in [17] was to maintain a local representation,
called dynamic domain, of the explored portion of the free
space. This allows the RRT planner to concentrate the search
on the useful portion of the configuration space. The data
structure used to maintain the dynamic domain in [17] could
only handle up to six dimensional configuration spaces.
We propose using kd-tree based representation to maintain
dynamic domains in feasible configuration spaces. Kd-trees
[1] can handle up to 25-50 degrees of freedom and millions
of nodes, are able to significantly speed up nearest-neighbor
calculations in motion planning applications [2], and have
intrinsic dimensionality reduction abilities. We describe the
dynamic-domain RRT in Section III-B, and the kd-tree data
structure for the dynamic domain in Section IV.

BUILD DDRRT(qinit)
1 T .init(qinit)
2 for k = 1 to K do
3 qrand ← RANDOM CONFIG(D)
4 qnear ← FIND NEAREST NEIGHBOR(qrand, T)
5 if CONNECT(T , qrand, qnear, qnew)
6 T .add vertex(qnew)
7 T .add edge(qnear, qnew)
8 UPDATE(D)
9 Return T

q
near

C f(q) = 0q
rand

X

ε

D

Fig. 3. The DDRRT-CONNECT construction algorithm.

A. The RRT Algorithm

Consider the pseudocode for building an RRT in Cfea

shown on Figure 2. At iteration k = 1 an RRT contains
only the initial configuration, qinit. At each iteration the RRT
grows, until either it contains the goal configuration (that is,
a path from qinit to qgoal is found which is a branch in
the RRT), or a limit on the number of iterations is reached.
To grow the RRT, a random configuration, qrand ∈ C, is
chosen in Line 3. This configuration is not added to the tree,
thus the constraints fi(q) ≤ εi need not be satisfied at this
step. In Line 4, the closest to qrand configuration qnear from
the nodes in RRT is selected. The connection from qnear

to qrand is attempted in Line 5. This corresponds to the
interpolation between qnear and qrand, such that the furthest
configuration qnew ∈ Cfea along the interpolation path from
qnear is returned. If the interpolation step is successful, the
new vertex qnew, and corresponding edge are added to the
RRT. The function CONNECT performs interpolation and
validation of the constraints fi(q) ≤ εi. The geometrical
illustration of the algorithm is shown on Figure 2.

This algorithm requires neither parametrization of the
points in Cfea, nor an inverse kinematics solver in case
of planning for closed chains. This makes each line in the
procedure very efficient. Given that n points were built
by an RRT at a particular iteration, and the dimension of
the configuration space C is d, the sampling step in Line
3 takes O(d) time, and the nearest neighbor call in Line
4 takes O(2dn log n) running time [2]. The computational
time in this algorithm is not spent at any particular line of
the pseudocode, but on the number of iterations needed for
solving a problem. The drawback of this approach is similar
to the one outlined in [17]. That is, the Voronoi bias of

BUILD KD TREE(P , d, m, b, r)
Input: A set of points P , the dimension of the space d, the
number of points to store in a leaf m, the bounding box b
for P , and the thickness parameter r.
Output: The root of a kd-tree storing P

1 if P contains less than m points
2 return a leaf storing these points,

and an r-bounding box for P
3 else Split b into two boxes, b1, b2.
4 Find P1 and P2, the sets of the data points

inside boxes b1 and b2.
5 v1 =BUILD KD TREE(P1, d,m, b1, r)
6 v2 =BUILD KD TREE(P2, d,m, b2, r)
7 Create node v storing the splitting plane l,

splitting dimension k, bounding box b,
and nodes v1 and v2, the children of v.

8 area = v1.area + v2.area
9 height = max(v1.height,v2.height) + 1
10 return v

Fig. 4. The algorithm for constructing a kd-tree for a set of points P .

the points in the RRT determine the exploration behavior of
the RRT. Since the sampling from the configuration space
C in Line 3 does not take into account neither obstacles
of configuration space, nor the constraints fi(q) ≤ εi, the
same extensions are repeatedly attempted towards invalid
configurations. This increases the number of iterations needed
to solve a problem. The next section presents a better suited
approach for constrained feasible spaces.

B. Dynamic Domain Sampling for RRT

To improve the Voronoi bias in the RRT exploration the
approach in [17] proposes to maintain a dynamic domain
D, that approximates the feasible configuration space with a
simple shape, such as a collection of balls. This significantly
reduces the effect of local minimum problem for RRTs. The
sketch of the algorithm and its geometrical illustration are
shown on Figure 3. The difference from the baseline RRT
algorithm is in Line 3, in which dynamic domain is used
for sampling instead of the configuration space. Assume
again that n points were built by an RRT at a particular
iteration, and the dimension of the configuration space C is
d. For the kd-tree dynamic domain, the uniform sampling
in Line 3 of the algorithm on Figure 3 is performed in
O(log n) running time, the nearest-neighbor call in Line 4
requires O(2dn log n) time, and the update function in Line
8 takes O(log n) time. Using the kd-tree data structure, the
cost of each iteration is slightly increased, comparing to the
original RRT algorithm on Figure 2. However, the number
of iterations is usually reduced in the planning process, and
therefore, the running time improves overall.

UPDATE KD TREE(p, d, m, v, b)
Input: The point to be added p, the number of points to
store in a leaf m, the node v (initially the root), and the
bounding box b for v.
Output: The root of a kd-tree which includes P ∪ p

1 if v is a leaf
2 if (v.size > 2m)
3 BUILD KD TREE(v.P ∪ p, d,m, b, r)
4 else consider the two subboxes, b1, b2 of b
5 d1 = dist2TK

(q, b1)
6 d2 = dist2TK

(q, b2)
7 if d1 < d2

8 then v1 = UPDATE KD TREE(p, m, b1, v1)
9 else v2 = UPDATE KD TREE(p, m, b2, v2)
10 if (v1.height > 2v2.height) or

(v2.height > 2v1.height)
11 BUILD KD TREE(v.P ∪ p, d,m, b, r)
12 area = v1.area + v2.area
13 height = max(v1.height,v2.height) + 1
14 return v

Fig. 5. The algorithm for updating the kd-tree with a new point p.

The next section describes the implementation details for
the kd-tree data structure to perform efficient sampling and
update on the explored portion of the feasible configuration
space.

IV. REPRESENTING FEASIBLE CONFIGURATION SPACES

WITH KD-TREES

Consider the set S of data points lying inside a d-
dimensional enclosing rectangle. We build the kd-tree inside
this rectangle, and define it recursively as follows. The set of
data points is split into two parts by splitting the rectangle that
contains them into two children rectangles by a hyperplane,
according to a specified rule; one subset contains the points
in one child box, and another subset contains the rest of the
points. The information about the splitting hyperplane and
the boundary values of the initial box are stored in the root
node, and the two subsets are stored recursively in the two
subtrees. When the number of data points contained in some
box falls below a given threshold, m, the node associated
with this box is called a leaf node, and a list of coordinates
for these data points is stored in this node.

We divide the current cell through the median of the points
orthogonally to the cell’s longest side. If there are ties then
we select the dimension with the largest point spread. This
ensures that the resulting kd-tree for n data points is balanced,
with the height of the tree equal to O(log n/m).

We introduce the notion of r-bounding rectangle for a set
of points P at a node m of the kd-tree, as an intersection of
the bounding rectangle of the node m and a rectangle with the
two opposite points p1 and p2 defined as p1 = (min{pi

j |p
i ∈

(a)

(b)

Fig. 6. (a) An RRT with 800 nodes in two dimensional space, together with
the corresponding kd-tree dynamic domain is shown. (b) An RRT with 600
nodes is growing inside the diagonal corridor. The corresponding kd-tree
dynamic domains with two different r-parameters are shown.

P}d
j=1

− ~r), and p2 = (max{pi
j |p

i ∈ P}d
j=1

+ ~r). Here, r is
the parameter that determines the thickness of the dynamic
domain for the points in the RRT. This parameter is manually
selected in our current implementation. However, for more
effective performance, an automatic parameter tuning similar
to [11] can be implemented.

The kd-tree dynamic domain is defined as the collection
of all of the r-bounding rectangles of the points at the leaves
of the kd-tree.

Next, we outline the four main functions for the kd-tree
needed to implement the algorithm on Figure 3.

A. Construction

Our kd-tree is constructed using a recursive procedure,
which returns the root of the kd-tree (see Figure 4). This
construction algorithm is essentially identical to the case of
constructing a kd-tree in an Euclidean space [14]. The differ-
ences in the implementation come from the need to maintain
additional information, such as r-bounding rectangles, and
the heights of the tree and each of the subtrees. This is needed
for efficient sampling (Section IV-D) and update (Section IV-
B) of the kd-tree.

The running time for building a kd-tree for a set of n points
is O(n log n) [1].

B. Dynamic Update

When a new point is added at line 8 on Figure 3, the kd-
tree is updated according to the algorithm shown on Figure
5. First, the algorithm descends to a node, to which the new
point belongs, and such that the height balance at line 10
of the algorithm would become invalid for the two children

KDTree::SAMPLE()
Output: sample q

1 q = root.SAMPLE()
2 return q

Node::SAMPLE()
1 p1 = v1.area/ area
2 p2 = v2.area/ area
3 with probability p1

4 q = v1.SAMPLE()
5 with probability p2

6 q = v2.SAMPLE()

Leaf::SAMPLE()
1 q =RANDOM CONFIG(bnd box)

Fig. 7. The algorithm portions for searching a kd-tree on the root level
and internal and leaf nodes levels.

nodes after adding the point. Next, the construction procedure
is called on this node. The area of the r-bounding boxes and
the heights of the subtrees are then updated.

Given that there are n points in the kd-tree, the time to
perform one update consists of O(log n) to descent to the
node that needs rebalancing, and of O(n̂ log n̂) to rebalance
this node, given that it has n̂ points. The running time of
the algorithm depends on the node which is rebalanced.
Over many runs, the nodes with large number of points
are rebalanced fewer times than the leaves of the tree. In
fact, the node with n points in the worst case is rebalanced
only during every n-th run. Therefore, the amortized analysis
yields O(log n) worst case running time for this procedure.

Figure 6 (a) illustrates how the update procedure works,
and how the corresponding binary tree looks like for 800 data
points incrementally added to the tree. Figure 6 (b) shows
two kd-trees for the set of points among the obstacles in
configuration space. Each kd-tree in this figure corresponds
to a different r-parameter.

C. Nearest-Neighbor Query

The query phase is performed identically to the procedure
outlined in [1] and [2]. Therefore, we omit the discussion
about it here. We only note that the query is performed
in O(2d log n) time [1], where d is the dimension of the
configuration space C. This is the most expensive operation
in a single iteration of the RRT algorithm on Figure 3.

D. Uniform Sampling

To sample the area represented by the kd-tree, the algo-
rithm first descends to a leaf, with probability corresponding
to the area of the r-bounding rectangle of the leaf. Next,
it returns a sample from the r-bounding box of the leaf.
The procedure is outlined on Figure 7. The running time
of the procedure is O(log n), since only one descend alone

2dLoop3 RRT DDRRT
time(sec) 170.70 5.5

nodes 4,347 881
CD calls 20,667 11,408

Fig. 8. The goal in this example is to move a closed chain with 12 links
and revolute joints from the left to the right part of the environment through
a narrow opening.

obelix RRT DDRRT
time(sec) 295.92 26.79

nodes 223 40
CD calls 817,900 100,642

Fig. 9. The goal is to use the PUMA robot to move the toroidal object
from one rod in the work space to the other.

the tree is needed. The resulting samples are guaranteed to
be uniformly distributed over the collection of r-bounding
boxes, since the boxes from different leaves do not intersect.

V. EXPERIMENTAL RESULTS

We have compared the performances of the two RRT
algorithms described in Figures 2 and 3. For each of the
experiments, we show the running times, the number of nodes
in the solution trees and the number of collision detection
calls (CD) during the construction process averaged over
50 runs. The r-parameter was manually selected in these
experiments.

The first experiment is for a 2d closed chain consisting of
12 identical rectangular links. All of the joints are revolute.
The performance comparison of both of the RRT algorithms
is shown on Figure 8. The improvement of the kd-tree-based
approach is around 30 times over the original RRT in this
example.

The second experiment does not involve closed chains
explicitly (Figure 9). The goal in this example is to enable the
PUMA robot to hold a toroidal object, and to move it from

3dLoop1 RRT DDRRT
time(sec) 178.6 124.85

nodes 138 208
CD calls 4,143 2,481

Fig. 10. The goal in this example is to unfold a 3d-closed chain with 12
links amidst the cloud of obstacles.

3dtree2 RRT DDRRT
time(sec) 240.58 35.81
no.nodes 869 843
CD calls 2,309 1,919

Fig. 11. This experiment involves two PUMA robots holding an object,
which needs to be moved from the back to the front of the environment.

one rod in the work space to the other. Using the kd-tree
approach there is an improvement of an order of magnitude
in the running time for this experiment.

The third example involves unfolding a 3d closed chain
with revolute joints and 10 degrees of freedom through a
cloud of obstacles (Figure 10). The performance improve-
ment in this experiment is not as significant as in the
other examples. We speculate that adaptive tuning of the r-
parameter is significant for solving the problem efficiently.
There are several thin sheets in the configuration space of
this problem, each of which requires a different r-parameter
value. There is an improvement of 11% in this example using
the current implementation of the kd-tree approach.

The final experiment involves two PUMA robots holding
an object, which needs to be moved from the back to the
front of the environment (Figure 11). The kd-tree approach

gives an 8 times improvement in the running time of the RRT
algorithm.

Besides the experiments reported in this paper, we con-
ducted around twenty other experiments for both basic
motion planning problems, and problems involving closed
kinematic chains. We observed that the approach using
kd-trees provides significant improvement on most of the
problems we have tested. The improvement is either by
orders of magnitudes, or just by several times. Only for
three out of twenty problems we noticed either no significant
improvement, or a slight deterioration (not more than 10%)
in the performance of the kd-tree-based algorithm. This
suggests that our approach is promising to provide uniform
running time improvement on a large set of motion planning
problems.

VI. CONCLUSIONS AND FUTURE WORK

We presented a general method for solving motion plan-
ning problems which involves constrained feasible configura-
tion spaces. The approach builds a kd-tree representation of
the explored part of the configuration space, which enables
the RRT to use local information to rapidly explore on the
feasible space. The experimental results suggest that it gives
uniform improvement over large class of motion planning
problems. The algorithm did not provide a running time
improvement only on few out of a dozen experiments.

Our next development addresses the implementation of
the adaptive tuning of the parameter used in our method.
This can be done using the information history from the
collision detector. Another important research direction is to
address systems with differential constraints. The expression
for kinematic closure constraints is similar to the differential
constraints, which suggests that our approach may be bene-
ficial for a broader class of motion planning problems.

Kd-trees provide good performance on up to 50-
dimensional problems. For problems involving higher dimen-
sions, other techniques need to be developed. An obvious
future direction is to use a dimensionality reduction tech-
nique, which would project all of the space on significant
dimensions, after which the kd-tree approach is applied. This
would address the problem of motion planning for thousands
of links.

ACKNOWLEDGMENTS

This work is partially supported by Toyota Future Project
Division Grant, NSF CISE-0535007. We are grateful to
Benjamin Tovar, Steve Lindemann, and Sariel Har-Peled
for valuable discussions. We thank Frank Lingelbach for
providing the model of the PUMA robot.

REFERENCES

[1] S. Arya and D. M. Mount. Approximate nearest neihgbor queries in
fixed dimensions. In ACM-SIAM Sympos. Discrete Algorithms, pages
271–280, 1993.

[2] A. Atramentov and S. M. LaValle. Efficient nearest neighbor searching
for motion planning. In IEEE Int’l Conf. on Robotics and Automation,
pages 632–637, 2002.

[3] O. Burchan Bayazit, Dawen Xie, and Nancy M. Amato. Iterative re-
laxation of constraints: A framework for improving automated motion
planning,. In IEEE/RSJ Int. Conf. on Intelligent Robots & Systems,
pages 586 – 593, 2005.

[4] J. F. Canny. The Complexity of Robot Motion Planning. MIT Press,
Cambridge, MA, 1988.

[5] J. Cortés and T. Siméon. Sampling-based motion planning under
kinematic loop-closure constraints. In 6th International Workshop on
Algorithmic Foundations of Robotics, pages 59–74, 2004.

[6] Alicia Dickenstein and Ioannis Z. Emiris. Solving Polynomial Equa-
tions: Foundations, Algorithms, and Applications. Springer, 2005.

[7] E. Ferré and J.-P. Laumond. An iterative diffusion method for part
disassembly. In IEEE Int. Conf. Robot. & Autom., 2004.

[8] L. Han and N. M. Amato. A kinematics-based probabilistic roadmap
method for closed kinematic chains. In Proceedings of the Workshop
on Algorithmic Foundations of Robotics, 2000.

[9] L. Han, L. Rudolph, J. Blumenthal, and I. Valodzin. Stratified
deformation space and path planning for a planar closed chain with
revolute joints. In Proceedings of the Workshop on Algorithmic
Foundations of Robotics, 2006.

[10] R. S. Hartenburg and J. Denavit. A kinematic notation for lower pair
mechanisms based on matrices. J. Applied Mechanics, 77:215–221,
1955.

[11] L. Jaillet, A. Yershova, S. M. LaValle, and T. Simon. Adaptive tuning
of the sampling domain for dynamic-domain RRTs. In IEEE/RSJ Int’l
Conf. on Intelligent Robots and Systems, 2005.

[12] J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach
to single-query path planning. In Proc. IEEE Int’l Conf. on Robotics
and Automation, pages 995–1001, 2000.

[13] G.F. Liu, J.C. Trinkle, and R.J. Milgram. Toward complete path plan-
ning for planar 3r-manipulators among point obstacles. In Proceedings
of the Workshop on Algorithmic Foundations of Robotics, 2005.

[14] D. M. Mount. ANN programming manual. Technical report, Dept. of
Computer Science, U. of Maryland, 1998.

[15] J. Porta, L. Ros, and F. Thomas. Multi-loop position analysis via
iterated linear programming. In Proceedings of Robotics: Science and
Systems, Cambridge, USA, June 2006.

[16] J. Yakey, S. M. LaValle, and L. E. Kavraki. Randomized path planning
for linkages with closed kinematic chains. IEEE Transactions on
Robotics and Automation, 17(6):951–958, December 2001.

[17] A. Yershova, L. Jaillet, T. Simon, and S. M. LaValle. Dynamic-domain
RRTs: Efficient exploration by controlling the sampling domain. In
IEEE Int’l Conf. on Robotics and Automation, Barcelona, Spain, 2005.

