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Abstract—

‘We extend randomized path planning algorithms to the
case of articulated robots that have closed kinematic chains.
This is an important class of problems, which includes appli-
cations such as manipulation planning using multiple open-
chain manipulators that cooperatively grasp an object, and
planning for reconfigurable robots in which links might be
arranged in a loop to ease manipulation or locomotion. Ap-
plications also exist in areas beyond robotics, including com-
puter graphics, computational chemistry and virtual proto-
typing. Such applications typically involve high degrees of
freedom, and a parameterization of the configurations that
satisfy closure constraints is usually not available. We show
how to implement key primitive operations of randomized
path planners for general closed kinematics chains. These
primitives include the generation of random free configura-
tions and the generation of local paths. To demonstrate the
feasibility of our primitives for general chains, we show their
application to recently developed randomized planners and
present computed results for high-dimensional problems.

Keywords: randomized path planning, kinematic

chains, closed linkages.

I. Introduction

This paper addresses the problem of path planning for
general linkages that have closed kinematic chains with re-
dundant degrees of freedom, in an environment that con-
tains obstacles, as shown in Figure 1. In general, the con-
straints imposed by a closed linkage form an algebraic va-
riety and in principle complete planners such as [6], [3]
could be used; however, the high computational complex-
ity of all of these algorithms for problems with high degree
of freedom makes them too prohibitive for practical use.
This motivates our approach in this paper, which extends
randomized planning techniques that were developed for
open-chain systems [13], [19], to general closed-chain sys-
tems.

Planning for linkages with closed kinematic chains has
applications both in and beyond robotics. Parallel manip-
ulators involve closed kinematic constraints [22]. In ma-
nipulation planning, when multiple robots grasp a single
object, they form a closed loop containing the object as a
link of the chain [1], [15]. Many of the existing methods for
manipulation planning require inverse kinematics solutions
for the robots [15] which can be a limitation. Regrasping
is also an important issue as one or more of the manipula-
tors often attain a singular configuration [23]. The ability
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Fig. 1. We investigate path planning for linkages that have closed
kinematic chains and must avoid static obstacles.

to plan for linkages with closed kinematics chains elim-
inates the need of inverse kinematics solutions and could
reduce the number of regrasps needed during manipulation
tasks, as the linkage will be considered as a whole rather
than as multiple, independent manipulators. A planner for
closed linkages can also be applied to reconfigurable robots.
Typically, this type of robot is composed of multiple, inde-
pendent robots that can connect and disconnect from one
another [16], [24], [27]. Closed linkages often occur during
locomotion or reconfiguration of such complex robots [16],
[27].

Many of the concepts used in path planning for robotics
can also be applied to computer graphical animation [5].
Human-like characters can naturally be modeled as link-
ages and planning techniques are well suited to animate
those characters [28]. However, a difficulty arises when
these characters manipulate an object with both arms (e.g.,
pick up a box, two characters grasp each other, etc.), be-
cause this forms a closed linkage. There already exist al-
gorithms capable of planning for this problem [14], but
as in coordinated manipulation planning, a decoupling of
the planning for the animated character and the object is
done. Another application that could benefit from a plan-
ner for closed linkages lies in virtual prototyping [7]. For
designs that include closed linkages, a planner could auto-
mate testing, and potentially avoid constructing physical
prototypes. Applications of path planning for linkages with
closed chains also exist in computational chemistry. For
example, a fundamental problem in drug design is to find
low-energy configurations of molecules that satisfy rigidity
constraints similar to those obtained for 3D linkages [18].

In this paper, we extend randomized path planners to
deal with closed kinematic chains by showing how two im-
portant primitives of these planners can be implemented for
closed kinematic chains. These primitives are the genera-



tion of random configurations and the generation of local
paths. We adopt a very general definition for the kinematic
chain. We also assume that inverse kinematics solutions are
not available. Our goal is to demonstrate the feasibility of
extending randomized planners in the general case. It is
clear that by using robot-specific characteristics or inverse
kinematics a more efficient solution can be achieved. We
implement our developed primitives in the context of the
Probabilistic Roadmap Planner (PRM) [13] and Rapidly-
exploring Random Trees (RRTs) [19].

To the best of our knowledge, there are two published
papers that extend randomized planners to handle closed
kinematic chains apart from the earlier work in [15]. One
is a previous paper of ours [20], which presents a subset of
the work in our current paper. The other is a paper by Han
and Amato [10]. In that paper, the authors show how to
develop a PRM-based planner for closed kinematic chains.
They break the closed chains into a set of open chains, ap-
ply standard PRM random sampling techniques and for-
ward kinematics to one subset of the subchains, and then
use inverse kinematics on the remaining subchains to en-
force the closure constraints. While this approach has been
shown to perform well with a robot consisting of a single
chain of varied length [10], experiments are not reported
for the performance of the approach for general chain sys-
tems. Undoubtedly, both [10] and our work advance the
state-of-the-art in using randomized planners for planning
for mechanisms with closed loops and we hope that fur-
ther research will result in efficient randomized planners
for closed kinematics systems.

II. Problem Formulation

In this section, a formal definition of a closed linkage will
be presented, and the path planning problem is formulated
in the context of these linkages.

A. Definition of a Linkage

Our problem will be defined in a bounded two or three
dimensional world, W C R, such that N = 2 or N = 3.
A link, L;, is a rigid body in the world, which represents
a closed, bounded point set. Let £ = {Lq,Ls,...,Ly,}
denote a finite collection of n; links. A joint J; contains
the following information:

1. a subset of links {L;, L;,..., Ly} C £ connected by Jj
2. the point of attachment for each L;

3. the type of joint (revolute, spherical, etc.)

4. the range of allowable motions

Let J be a collection of n; joints, each of which connects
various links in £. We then define M = (£,J) to be a
linkage'. It will sometimes be convenient to consider M
as a graph in which the joints correspond to vertices and
the links correspond to edges. Therefore, let G denote
the underlying graph of M. The special case of unary
links (a link connected to a single joint) in M needs to

1We use the more general definition of linkage that includes open
and closed kinematic chains [9], rather than a linkage that contains
only closed chains [11].

be addressed, since the edge corresponding to these links
will only connect one vertex. An artificial vertex needs
to be created in Gy for each unary link, and it will be
connected only to the edge corresponding to the unary link.
According to the connectivity of Gs, we will then group
linkages into classes?. If Gy is a tree, then we will consider
this type of linkage to be open. A special case of an open
linkage is an open chain linkage, in which all the vertices of
G have degree less than three. In the case where Gy is
cyclic and all vertices have degree greater than one, we will
call this a closed linkage. We define a closed chain linkage
to be a closed linkage in which all the vertices have degree
exactly two. The last class is the compound linkage, in
which Gy is cyclic with at least one vertex having degree
one.

B. Kinematic Closure Constraints

The kinematics of M, are expressed using standard pa-
rameterizations for chains [9], [12]. The configuration of
M is a vector, g, of real-valued parameters that uniquely
determine the position and orientation of all links. The
dimension of ¢ is the number of degrees of freedom of M.

In this paper, we are primarily concerned with the case
in which M is a closed or compound linkage, implying that
G contains cycles. For this case, there will generally ex-
ist configurations that do not satisfy closure constraints
of the form f(¢g) = 0. These constraints can be defined
by breaking each cycle in G, at a vertex, v, and writ-
ing the kinematic equation that forces the pose of the cor-
responding joint to be the same, regardless of which of
the two paths were chosen to v. Let JF represent the set
{fi(@) = 0,f2(q) = 0,..., fm(q) = 0} of m closure con-
straints, whose formulation will be formally defined in Sec-
tion ITI-A. In general, if n is the dimension of C, then
m < n. Let Ceons C C be defined as:

Ccons:{qec|vfi€f7fi(q) :O}a (1)

which denotes the set of all configurations that satisfy the
constraints in F.

A collision is defined for M(q) if any of the links of M(q)
collides with any of the workspace obstacles or the other
links in £. Consecutive links usually do not give rise to col-
lisions. Let W include a set of obstacles B = {By, ..., By, },
which are each a closed subset of W. Using standard ter-
minology, let Csre. denote the set of all configurations such
that M(q) is not in collision. Formally, this is:

Cfree ={q€C|(M(q)NB =0)A(VL;, Lj € M(q),L; N L; = OJ)(},)
2

where L;, L; are nonconsecutive links.

In addition to the usual complications of path planning
for articulated linkages having many degrees of freedom,
we are faced with the additional challenge of keeping the
configuration in Ceons. Let Cyqt = Ceons N Cyree define the

2Note that these classes deviate from the standard terminology used
in mechanism design [11]. Our intent was for a chain to imply linear-
ity of the linkage, and for closed to mean that the linkage contains no
unary links.



set of configurations satisfying both closure and collision
constraints.

Although C is typically a manifold, C.y,s will be more
complicated. Each of the holonomic constraints in F is a
smooth function with a non-zero derivative. Using stereo-
graphic projection, these constraints can be reformulated
as polynomial equations, and together these constraints
form a system of equations that characterize the config-
urations satisfying the closure constraints. A real alge-
braic variety can be defined by the polynomial equations
f1(q@) = ... = fm(q) = 0. The surfaces defined by these va-
rieties are not smooth in general, and can contain singular
points. Therefore, a variety is not necessarily a manifold,
although a real algebraic variety can be split into a finite
number of manifolds [26]. Because of the nature of these
closure constraints, we will assume that we have no a priori
knowledge of a parameterization for the variety.

Our problem reduces to path planning in a space with
lower dimension than C, due to the fact that the equality
constraints in F reduce the dimensionality of C. Since we
have no efficient way to reduce the number of parameters
needed to specify the configuration for a closed linkage,
we allow a tolerance for C.yns, which means that the con-
straints will be satisfied to within some numerical precision.
This tolerance will be the subject of Section ITI-A.

C. Finding o Path

Our problem reduces to path planning in Csu, which
has lower dimension than C. Initially we are given g, €
Csat and ggoar € Csqt, the initial configuration and goal
configuration, respectively. The task is to find a continuous
path 7 : [0,1] = Csqt such that 7(0) = gini and 7(1) =
Qgoal- For a path to exist between giniz and ggoqr, it will
be necessary that they are both contained within the same
connected component of Cggy.

The existence of closed kinematic chains greatly increases
the difficulty of path planning because the set of configura-
tions that satisfy closure constraints is usually expressed
in terms of implicit equations. In the traditional path
planning problem, a parameterization of the configuration
space is available. If closure constraints exist, a parame-
terization is usually not available (except for some specific
mechanisms), and the set of valid configurations is gener-
ally not even a manifold.?

D. A Specific 2D Model

The following model will be used to facilitate later con-
cepts and for our implementation: 1) £ is a collection of
line segments in a 2D world; 2) joints are revolute and at-
tach links at their endpoints; 3) there are joint limits (e.g.,
joints are not allowed to rotate into the range 0 + §, in
which § is a parameter for the joint limit); 4) one of the
joints attaches a link to the origin (0,0) in the world, W;
5) the obstacle region is polygonal.

3Even though it can be expressed as a stratification of manifolds
[6], parameterizations of the strata are still unknown.

Fig. 2. An example of breaking cycles in a linkage.

III. Generating Random Samples

One of the most basic operations in many randomized
planners is the construction of random configurations. For
example, the basic PRM approach [13] uses randomly-
generated configurations that lie in C¢pe.. These can be
found by simply generating configurations in C, and reject-
ing those in collision. The problem is considerably more
complicated for closed kinematic chains because all sam-
ples must lie in C.,ys, satisfying closure constraints. This
section provides a general approach to generating random
samples in Csq¢. The use of kinematic error is an integral
component of our approach.

A. Kinematic Error

To handle the closure constraints in F, we define a new
linkage, M' = (£',J"), which is obtained by breaking cy-
cles in the underlying graph G of M. Let the set of links
be the same, £' = L. Let J' be a superset of 7 and con-
tain n; + m joints, where a new joint is added for each
of the m cycles in Gp;. For each cycle in Gy, the joint
where the break occurs can be selected arbitrarily, and will
be denoted by Ji. There will be two links from the cycle
in Gy that are attached by Ji. For one of these links,
disconnect it from J; and form a new joint Jj, on the link
where J;, was formerly attached. If this insertion of joints
is performed for each cycle of G s, the result will be a link-
age M’ which has no cycles (G is a tree). An example
of “breaking” the loops in a linkage is shown in Figure 2.
In M’, the configuration of any link can be determined by
applying the forward kinematic equations to the sequence
of links on the unique path to Lg.

Neglecting self-collision, note that M’ can achieve any
configuration in C. If Ji, and J; have the same position
in W, then a closure constraint from M is satisfied. If
this is true for all joints in J'\ J, then the configuration
lies in Ceons- The closure constraint f;(g) can be written
by subtracting the kinematic expression for Ji(gq) from the
expression for J;, using the equations from Section II, and
will be done as follows. Let B C {1,...,n;} be the indices
of the set of joints that were broken in M to form M'. A
kinematic error function can be defined as:

e(q) = Y I19e(a) = T (@)II*- 3)

keB

Alternatively, the maximum (or any LP norm) can be used
to combine the error from each broken loop. This error
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Fig. 3. (a) The curves depict Ccons, and configurations are chosen at
random in C. (b) Randomized error minimization is performed
on the samples to force as many as possible onto Ceons-

function allows us to redefine C.,,s as follows:
Ceons = {q € C | e(q) = 0}.

Since the equality constraints that define kinematic clo-
sure are implicit, we allow a specified real-valued tolerance
€ > 0 to determine when the closure constraints are satis-
fied. This enables incremental linear motions to be made
along the C.ons, and gives us new definitions for C.ons and
Csqt that take € into consideration:

{g€Cle(g) <€},

Ccons =

ésat = Ccons N CfTee-

By using the e tolerance, we allow some freedom for the
randomized algorithms as they travel on the constraint sur-
face.

Without the tolerance, we would need to use more costly
algebraic techniques to incorporate the closure constraints
into our planner, which would decrease the number of al-
lowable degrees of freedom for a linkage.

B. Gradient Descent

Figure 3 illustrates the problem of generating vertices in
Csat- A random sample in C can easily be generated (of
course, its distribution depends on the parameterization of
C), but is not very likely to be in Cyps. The algorithm in
Figure 4 gives pseudocode for a randomized descent tech-
nique that iteratively attempts to reduce the error function,
e(q) from Section III-A. The approach we use is to break
the kinematic loops and minimize the sum of squares the
Fuclidean distances of each joint that is not where it should
be to satisfy kinematic closure. An alternative would have
been to define each of the closure constraints f;(¢) in poly-
nomial form. The algebraic distance could then be mini-
mized, or an approximation to the Euclidean distance in C
may easily be minimized [25].

The algorithm GENERATE.RANDOM_SAMPLE requires
three constants: €, which is the numerical tolerance on the
error function, I, which is the maximum number of search
steps, and J which is the maximum number of consecutive

GENERATE_RANDOM_SAMPLE()
1 ¢ +RANDOM_CONFIGURATION();

14+ 0; 7«0
while i < I and j < J and e(g) > € do

i+ J++

¢’ <~RANDOM_NHBR(g);

if e(¢") < e(q) then

i< 0 g+
if e(q) < € then Return ¢
else Return FAILURE

© 00 O Ut i LN

Fig. 4. An algorithm that iteratively attempts to reduce the kine-
matic error of a linkage.

failures to close the kinematic chains. The function RAN-
DOM_NHBR takes in a configuration ¢ as a parameter, and
produces a new random configuration ¢’ in Cfpe.. The dis-
tance between the new configuration ¢' and g will be within
a fixed amount d,,4;, which will generally be very small.
RANDOM_NHBR may have to guess many nearby configura-
tions to produce one that is collision-free. e(q) measures the
kinematic error of configuration q as this is specified in Eq.
3. Rather than compute a complicate gradient of e(q), any
random configuration ¢' in which e(q') < e(q) is kept. This
was observed in [2] to be much faster than computing an
analytical gradient for high-degree-of-freedom problems. If
the algorithm becomes trapped in a local minimum and re-
turns FAILURE, then the sample is simply discarded. This
has no serious effect on the overall approach, except that
some computation time is wasted. Other approaches, such
as the Levenberg-Marquardt [21] nonlinear optimization al-
gorithm could be used instead of randomized descent, but
one must be careful not to introduce an unwanted deter-
ministic bias on the solutions.

C. A Computed Example

We performed the following experiment to demonstrate
that the method presented above can generate a variety
of samples for closed-kinematics chains. We placed obsta-
cles in a 2D world so that there would be many distinct
connected components in Cgq (see Figure 5). We then
generated a PRM roadmap for this world and observed the
various connected components to determine whether they
were all represented. In Figure 5, it can be seen that many
of the generated nodes wrap around various obstacles and
have different orientations. FEach of these configurations
lies in a distinct connected component of ésat, which means
that no path exists between these configurations. This ex-
periment illustrates the ability of random sampling to si-
multaneously explore all components of a space, which is
advantageous for PRM-type multiple-query planners.

IV. Generating Local Motions

Nearly all existing randomized path planners require the
generation of local motions in Cfp... To extend these plan-
ners, operations are needed that generate local motions in
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Fig. 5. All ten components were found in a 2D world that contains
obstacles.

Ceons O Csqt. Given a configuration ¢ € Cgq¢, the task is to
generate nearby configurations that also lie in Cs4; and are
reachable from g by a local motion.

A. Random Steps in the Tangent Space

Suppose that a configuration ¢ € Cs,¢ is given. We will
use random sampling to generate incremental motions. It
is preferable to generate samples that locally follow the
tangent space of the constraints, rather than choosing a
random direction. The tangent space is the set of tangent
vectors for some q € C.ons- Using a tolerance e, each of the
tangent vectors gives us a direction from ¢ that is likely to
remain in ésat, which we can exploit when we wish to move
locally. By sampling in the tangent space when searching
for configurations within a neighborhood of g, we will be
more likely to generate a new configuration that satisfies all
closure constraints. The differential configuration vector dg
lies in the tangent space of a constraint f;(¢) = 0 if

dfi(q) dfi(q) dfi(q)

——dq + dgs + -- -+ —=dg, = 0. 4
dq1 q1 3> q2 9 q ()

This leads to the following homogeneous system for all
of the m closure constraints:

0filg) 9fi(q) 0f1(q)

oq Oqy Oqn, dg:
0fa(q)  9f2(q) 0f2(q) dgo

Oq 0q2 Oqn . =0. (5)
fm(a) Ofm(a) dfml(a) | %

oq g2 0qn

Recall that m < n. If the rank of the matrix is k¥ < m,
then n — k configuration displacements can be chosen in-
dependently, and the remaining k parameters must satisfy
Equation 5. We use singular value decomposition (SVD),
to compute an orthonormal basis for the tangent space.
This enables our algorithm to follow the tangent space and
generate the n — m random scalar displacements needed
for the linear combination. This technique increases the
likelihood that local motions will remain within tolerances
for larger step sizes, thus improving the efficiency of our
algorithms.

To use this technique, it is critical to efficiently compute
the partial derivatives for each of our constraints. Each
of these closure constraints is formulated by finding the
algebraic equations that force J;, and Jj, at each break to
have the same position in the world. J; and J,’g can be
considered as unary joints, or in other words, there is only
one link attached to each of them. L; and Lj will denote
these links for J; and Jj, respectively. Note that L; and
L}, will each have a unique chain of links to the root link
Ly since the linkage is acyclic. The partial derivatives of
these open chains are efficiently computed for W C R2. We
recursive formulas to compute the z and y positions for the
origin of each link in W:

Xn = COS(Qn)Xn—l - Sin(qn)Yn—l + en—l; (6)
where X¢ = z and
Y, = Sin(Qn)anl + COS(‘]H)Ynfl, (7)

in which Yy = y. In Equations 6 and 7, n represents the
index of the link in each open chain, and ¢, represents
the angle between successive links. So, Lo will have in-
dex 0, etc. Once again, £, is the length of a link and the
(z,y) values are the coordinates of a link with respect to its
coordinate frame. These formulas yield an algebraic rep-
resentation of the kinematics for each open chain of links,
but the partial derivatives with respect to each parameter
q; € q need to be computed. For each of the above for-
mulas, there are two cases to be considered when taking
the partial derivatives: taking the derivative with respect
to the parameter for link n, or for one of the other i < n
links:

dq; —sin(gn) Xn—1 — cos(gn)Yn-1 i=n
= { o T meosla) T i<n g
0q; cos(qn) Xn—1 — sin(qp)Yn-1 i=n



CONNECT.CONFIGURATIONS(q, ¢')
1 i+0; j«0; k«0; L+ {q};
while ¢ < I and j < J and k¥ < K and
p(LAST(L),q') > po do
i+ J++;
¢" +~RANDOM_NHBR(LAST(L));
if e(¢") < € then
j<0; k++;
if p(¢",q') < p(LAST(L),¢') then
k+0; L+« L+{{"};
if p(LAST(L),q") < po then Return L
0 else Return FAILURE

[\V]
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Fig. 6. An algorithm that iteratively attempts to move a system
from one vertex to another while keeping ¢ in Csqt-

By using the recursive linkage of these equations to our
advantage, memoized dynamic programming [8] can be
used to efficiently evaluate these expressions for given con-
figurations. The partial derivatives are computed itera-
tively starting from n = 0, and each value is stored in a
table for reuse in later iterations. The following two equa-
tions avoid computing values for Equations 6 and 7:

oY,
X, = B—qn +ln_1, (10)
o0X,
Y, =— . 11
90 (11)

B. Connecting Nearby Configurations

Some randomized path planners, such as the PRM, re-
quire the generation of paths that connects nearby config-
urations. This can be accomplished by chaining together
a sequence of local steps using the method just presented.
Let ¢ and ¢' be two configurations in C,,; that we wish to
connect (if possible).

To describe what is meant by “nearby,” a distance metric
will be defined. For the experiments in Section V we use a
Euclidean metric on the configuration space (appropriately
adjusted for the topology). An alternative is to compute
the sum of squares of the Euclidean displacements for all
of the joints in J [13].

The algorithm in Figure 6 attempts to reduce p(q,q'),
the distance from ¢ to ¢', by a randomized gradient de-
scent that simultaneously maintains the kinematic error to
within € and reduces p, but is free to travel due to the
allowed tolerances on the closure constraints.

The overall structure of the CONNECT_CONFIGURATIONS
algorithm is similar to GENERATE_RANDOM_SAMPLE. An
additional constant K is used to terminate the search after
K consecutive failures to reduce p, even though kinematic
closure is maintained. Also, the constant pg is introduced
to stop the algorithm when the path from ¢ is sufficiently
close to ¢'. In some cases, it might be preferable to switch
the order of Lines 5 and 7, depending on whether we want
to prioritize the minimization of distance over the satis-
faction of the closure constraint. The success of the algo-
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Fig. 7. Comparison between random and tangent space sampling for
random neighbor generation of an 8-link closed chain linkage.

rithm is based on the assumption that the selected vertices
are close enough to ensure local minima and collision con-
straints are not likely to prevent connection.

One drawback of creating paths using randomized gra-
dient descent is that the path needs to be stored for every
edge we add to the roadmap. The reason is that there is no
longer a guarantee, due to the randomization, that a path
can be regenerated between these vertices at a later time.
Another reason is that the gradient descent is computation-
ally expensive to perform, and the computation required
during the query phase should be minimized. However,
once a path has been generated, several path optimization
algorithms from Section V can be used to reduce the length
of the path. As a result, the amount of space needed to
store the paths in the roadmap is reduced, along with the
added benefit of the higher quality paths.

C. Experiments

We again peformed experiments to demonstrate the fea-
sibility and advantages of random sampling versus tangent
space sampling when generating a random neighbor of a
configuration. We generated 5000 random configurations
satisfying the closure constraints, and for each of these con-
figurations a random neighbor was computed using both
the random and tangent space sampling methods. The
number of random neighbors satisfying the closure con-
straints was recorded, as well as their average distance from
the original random configuration. This experiment was
performed repeatedly, changing the parameters of the two
methods to vary the average distance traveled between the
random configuration and its random neighbors. The chart
in Figure 7 compares the two sampling methods for an 8-
link closed chain linkage, and Figure 8 is a comparison for
a 7-link closed linkage that has two loops (the linkage is
shown in Figure 9).

It is readily seen that for both linkages the tangent space
sampling will outperform random sampling in both cri-
teria. Tangent space sampling is more likely to produce
a new configuration satisfying the closure constraints, as
well as generating random neighbors along a greater dis-
tance. Both of these can improve the overall computation
time because more successful random neighbor sampling
leads to less wasted computation and increasing the dis-
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Fig. 8. Comparison between random and tangent space sampling for
random neighbor generation of a 7-link, 2-loop closed linkage.

tance traveled per step speeds connection of two config-
urations. Computing the tangent space samples is more
expensive to perform, though. The average time needed to
generate a neighbor using random sampling took 6.94 mi-
croseconds, while tangent space sampling took 1.518 mil-
liseconds. Even though the tangent space sampling is more
expensive to perform, the extra distance it allows the ran-
dom neighbors to travel makes up for this added expense.
Another factor to be considered is the time spent perform-
ing collision detection, which usually dominates the time
needed to compute the random neighbor using either ran-
dom or tangent space sampling.

V. Path Planning Experiments

In this section we extend a PRM-based planner and an
RRT-based planner by applying the methods introduced
in Sections ITI- IV. Two notes are in order. First collision
detection was performed naively by testing all pairs of line
segments. Second, we optimize computed paths given by
the methods in Section IV as follows. We repeatedly iterate
over the path, analyzing every triple v;, v;41, and v;ya.
We compute the distance d = p(v;,vi+2) and determine
whether d < d;;,4z- In this case, we can delete v; 1 without
violating the maximum distance between two consecutive
configurations in a path. If d > d,;,4., then we attempt to
incrementally move v; 41 closer to the straight line between
v; and v;42, as far as possible before violating the maximum
kinematic error allowance.

A. PRM Results

The implemented version of PRM is a modification of
the planner presented in [13]. A large number of configu-
rations are distributed uniformly at random in the config-
uration space and those that are collision-free are retained
as nodes of a roadmap. A local planner is then used to
find paths between each pair of nodes that are sufficiently
close together. If the planner succeeds in finding a path
between two nodes, they are connected by an edge in the
roadmap. In the query phase, the user specified start and
goal configurations are connected to the roadmap by the
local planner. Then the roadmap is searched for a shortest
path between the given points.

We use GENERATE_RANDOM_SAMPLE to generate config-
urations that lie in C4zq¢. These serve as the vertices of the
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Fig. 9. Snapshots along the path of a closed linkage with two loops.
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Fig. 10. Snapshots along the path of a manipulator example.
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roadmap. The edges of the roadmap are generated using
CONNECT_CONFIGURATIONS.

We now present three examples of linkages for which we
have computed roadmaps. The first linkage is shown in
Figure 9, and is composed of seven links configured into
two loops. A path was generated using the roadmap, and
four intermediate configurations in the path have been dis-
played. This linkage has three DOF: each of the loops in
the linkage has a single DOF, and the base joint adds the
third DOF. The next example considers a manipulator at-
tached to a closed linkage, and is pictured in Figure 10.
This linkage has 6 degrees of freedom: 5 from each link
in the loop and one for the manipulator (the grippers are
not able to move). The single closure constraint then re-
duces the total DOF to 4. Our final example in Figure
11 simulates two planar serial manipulators cooperatively
grasping an object. This example has 8-DOF, because the
two manipulators have 3 and 4 links plus the single DOF
added by the manipulated object. Once again, the closure
constraint reduces the total degrees of freedom to 6 for the
linkage.

We did a straightforward implementation of the prim-

itives described in this paper and focused in displaying
the feasibility of our approach without worrying about
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Fig. 11. Two manipulators grasping and moving an object.

performance. Indeed, all of the considered problems
were solved (snapshots along computed paths are shown
in Figures 9,10, and 11 but computing general PRM
roadmaps required several hours of computation time re-
sulting in roadmaps of several thousand nodes. This
extensive computation time is due to the repeated ex-
ecution of the GENERATE_RANDOM_SAMPLE and CON-
NECT_CONFIGURATIONS algorithms, which generally are
very expensive. Note that the implemented version of PRM
tries to generate a roadmap that captures the components
of the free configuration space. The roadmap is then stored
for answering multiple queries. After the roadmap has been
precomputed, path queries can be run very quickly: once
the initial and goal configurations have been connected to
the roadmap, a simple graph search is all that is required
to compute the remainder of the path.

B. RRT Results

The RRT-based planner is a modification of a planner
presented in [19]. An RRT is a tree that is grown incre-
mentally. Initially, there is a single vertex, ¢;ni;;- In each
iteration, a vertex is added to the tree by picking a ran-
dom configuration, and then extending the vertex that is
closest to the random sample [17], [19]. In the adaptation
described here, the RRT is biased toward gg0q; by selecting
Ggoal 38 a “random” sample a small percentage of the time.

We have computed several examples of paths for closed
linkages using the RRT approach. Each of these examples
were computed by selecting an initial configuration, and
then the RRT was allowed to expand until 8000 nodes were
added to the tree. The first example, shown in Figure
12, is another coordinated manipulation task for two serial
manipulators grasping an object in the shape of a cross.
This example has 9-DOF, but with closure constraints the
number of degrees of freedom is reduced to 7. The time
needed to generate this example was 1271.18 seconds.

The second example is of a snake-like compound link-
age, shown in Figure 13, where the “head” of the snake
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Fig. 12. Two manipulators grasping a cross-shaped object.

Fig. 13. A snake-like compound linkage example.

needs to compress so that it may fit through an obstacle.
This linkage has 9-DOF, but again has a total of 7 degrees
of freedom when closure constraints are considered. Alto-
gether, this example required 468.7 seconds to compute.

The last RRT example is an 11-link linkage, shown in
Figure 14 with 9-DOF once the closure constraints have
been taken into account. The computation of this example
took 888.22 seconds.

VI. Conclusions

We presented extensions of successful randomized plan-
ners to the case of linkages that have closed kinematic
chains. Closure constraints are common in many appli-
cations such as robotics, computational chemistry, virtual
prototyping, and computer graphics. The difficulty is that
path planning must be performed in a complicated sub-
set, Csqs, Of the configuration space. Our current exper-
iments demonstrate the feasibility of our approach. We
expect that substantial performance improvement can be
obtained by taking the following steps: 1) using the motion
primitives from this paper in recent, more-efficient plan-
ning algorithms, such as the LazyPRM [4] or RRTConCon
[19]; 2) precomputing roadmaps while ignoring obstacles,
as suggested in [20] and applied in [10]; 3) employing ef-
ficient nearest-neighbor algorithms and collision detection
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Fig. 14. An 11-link compound linkage example.

algorithms. We believe that a running-time improvement
of a couple of orders of magnitude is possible; however,
experimental support for this remains as a topic of future
research.
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