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A problem is introduced in which a moving body (robot, human, animal, vehicle, and so on) travels among
obstacles and binary detection beams that connect between obstacles or barriers. Each beam can be viewed
as a virtual sensor that may have many possible alternative implementations. The task is to determine
the possible body paths based only on sensor observations that each simply report that a beam crossing oc-
curred. This is a basic filtering problem encountered in many settings, under a variety of sensing modalities.
Filtering methods are presented that reconstruct the set of possible paths at three levels of resolution: 1)
the possible sequences of regions (bounded by beams and obstacles) visited, 2) equivalence classes of homo-
topic paths, and 3) the possible numbers of times the path winds around obstacles. In the simplest case, all
beams are disjoint, distinguishable, and directed. More complex cases are then considered, allowing for any
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1. INTRODUCTION

Imagine installing a bunch of cheap, infrared eye beams throughout a complicated
warehouse, office, or shopping center; see Figure 1. Just like the safety beam on a
motorized garage door, a single bit of information is provided: Is the beam currently
obstructed? Now suppose that there are one or more moving bodies, which could be
people, robots, animals, and so on. If the beams are distinguishable and we know the
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Fig. 1. What can be determined about the path using only the word cbabdeeefe, which indicates the se-
quence of sensor beams crossed?

order in which beams were crossed, what can we infer about the paths taken by the
moving bodies? This may be considered as a filtering problem, but with minimal, com-
binatorial information, in contrast to popular Kalman filters and particle filters. We
introduce the notion of combinatorial filters, which are minimalist analogs to common
Bayesian filters. They instead reduce complexity by employing combinatorial reason-
ing, which lies at the heart of computational geometry and some parts of computational
topology. The idea is to reason in an exact but discrete way about continuous spaces by
identifying or representing critical pieces of information.

This paper proposes the study of a family of inference problems that arise from
moving bodies crossing sensor beams among obstacles. It turns out that the subject is
much more general than the particular scenario just described. In addition to binary
detection beams or regions placed around an environment, the mathematical model
arises in other contexts. For example, if a robot carries a camera and certain image
features critically change, then the event may be equivalent to crossing a “virtual”
beam in the environment (see Section 3).

Our questions are inspired by many problems that society currently faces. There is
widespread interest in developing assisted living systems that use sensors to monitor
the movements of people in their homes or hospitals. How much can be accomplished
with simple detection beams, which are affordable, robust, and respect privacy? Al-
ternatively, imagine the field of sensor-based forensics, in which police investigators
or lawyers would like to corroborate or refute a testimony about how people moved
at a crime scene (for related work, see [Yu and LaValle 2010] and references therein).
A simple verification test based on the sequence of beam crossings might establish
whether someone is lying. Other problems include tracking wildlife movement for con-
servation purposes, landmark-based navigation with outdoor vehicles, sensor-assisted
safe child care, and security.
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Fig. 2. This paper considers sensors that are clearly too weak to fully reconstruct the path taken by the
body, but are nevertheless able to produce useful information regarding the path. Rather than approach the
most common problem of complete reconstruction (top of the diagram), we present filtering methods that
determine information about the path at three levels of ambiguity. The result of each level in the diagram
could be derived from the information directly above it; however, the complete path is never given. Only the
sequence of crossed sensor beams is given.

Suppose there is one moving body and we receive information that a particular se-
quence of sensor beams was crossed. We present a family of methods for reconstruct-
ing information about the path taken by the body. See Figure 2, which relates various
forms of information that could be obtained about the path, ordered by the amount of
ambiguity. Considering the example in Figure 1, note that the beams and obstacles
partition the space into regions in which the body can move without being detected.
Section 4 develops filtering methods that reconstruct the possible sequences of regions
traversed by the body. This is the tightest possible representation of the set of pos-
sible body paths that explain the observed data. In Section 5, we then introduce the
homotopy equivalence relation on the set of paths. In that case, we reconstruct possi-
ble paths up to the resolution of homotopy classes. This is a more coarse, and possibly
more compact, summary of the possible paths than the sequences of possible regions.
In Section 6, an even more coarse characterization of possible paths is made, in terms
of winding numbers: How many times does the path effectively “wrap” around each
obstacle?

Our approach is inspired by works in mathematics, algorithms, robotics, and sen-
sor networks. From mathematics, our reconstructions based on homotopy and winding
numbers inspired by topology, and are motivated by homotopy and homology, respec-
tively. Furthermore, they are closely related to word problems in combinatorial group
theory, in which it must be determined whether two words or group presentations are
equivalent. In the general group-theoretic setting, such questions go back to 1910 with
Dehn’s fundamental problems [Dehn 1987]; decidability and complexity results are
reviewed in [Epstein et al. 1992].

Regarding algorithms, some of the most closely related works are algorithms that
decide whether two paths in a punctured plane are homotopic [Cabello et al. 2002;
Efrat et al. 2006]. These algorithms are based on extending vertical lines from each
of the punctures (which are interior obstacles in our paper). The vertical lines serve
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two purposes: First, any given path is represented by the sequence of vertical rays
that it intersects. Second, they connect the different fibers of a covering space of the
punctured plane. In this context, two paths are homotopic if and only if they have
the same endpoints when they are lifted to the universal covering space. Other recent
works introduce topological methods to compute shortest paths within a homotopy
class [Grigoriev and Slissenko 1998; Kim et al. 2012]. Our work draws inspiration
from these; however, we start with sensor words and must first convert them into path
descriptions. This represents an inverse problem that is constrained by the geometry
and topology of the sensors and obstacles.

In the context of robotics and sensor networks, we draw inspiration primarily from
works that focus on minimalism and also on combinatorial reasoning, which is preva-
lent in computational geometry. This has led, for example, to the notion of a rela-
tional sensor [Guibas 2002]. Once combinatorial reasoning is applied, several topo-
logical methods have been developed to infer whether there are holes in connectivity
[Silva and Ghrist 2006; Lobaton et al. 2010; Marinakis et al. 2002; Sarkar and Gao
2010]. Similarly, works such as [Kim et al. 2005; Shrivastava et al. 2006b; Singh
et al. 2007] propose binary proximity sensors to detect and count targets. The binary
proximity sensors can be considered as overlapping beams that go off when a body is
in range. Target tracking is often accomplished with a particle filter, in which each
particle is a candidate trajectory of a target. In robotics, the use of particle filters
has been very successful in solving tasks such as simultaneous localization and map-
ping (SLAM) [Castellanos et al. 1999; Choset and Nagatani 2001; Dissanayake et al.
2001; Montemerlo et al. 2002; Parr and Eliazar 2003; Thrun et al. 1998]. Tradition-
ally, the focus of SLAM approaches is the production of an environment representa-
tion based on metric information. From a sensing perspective, algorithms such as the
ones used in SLAM, are concerned with the problem of sensor fusion, in which several
sensors are added to increase the accuracy of a solution. In contrast, others have stud-
ied the minimal sensing requirements to solve a particular task [Erdmann and Mason
1988; Goldberg 1993; O’Kane and LaValle 2007; Tovar et al. 2007b]. This typically in-
volves a characterization and simplification of the information space associated with
the task [LaValle 2006; 2012], which considers the whole histories of commands given
to the actuators and sensing observations. From an information space perspective,
in [Yu and LaValle 2008] the location of moving bodies is inferred from combinatorial
changes in sensing observations. Such combinatorial changes may correspond to visual
events [Durand 1999], which can be abstracted in our work as sensor beams. An exam-
ple of this is presented in Section 3, in which the combinatorial changes correspond to
the crossing of landmarks within the field of view [Tovar et al. 2007a]. The careful con-
sideration of visual events is the basis for solutions to problems such as localization
[Dudek et al. 1998; Guibas et al. 1995] and visibility-based pursuit-evasion [Gerkey
et al. 2004; Guibas et al. 1999; Kameda et al. 2006; Lee et al. 1999; Suzuki and Ya-
mashita 1992].

This paper is an expanded and updated form of [Tovar et al. 2009].

2. PROBLEM FORMULATION

Let W ⊆ R
2 be the closure of a simply connected (contractible) open set. A common case

is W = R
2. Let O be a set of n pairwise-disjoint obstacles, which are each the closure of

a simply connected open set. Let X be the free space, which is the open subset of W that
has every o ∈ O removed. Let B be a set of m beams, each of which is an open linear
subset of X. It is possible to generalize B to allow nonlinear beams without affecting
the results in this paper; however, this will be avoided in the presentation to improve
clarity.

4



r2

r1
r3

a

b

e

d

c

f

(a)

r1

r2

a

b

e

d

c

f

r5

r6

r8

r7

r4r3

b

e
a

(b)

Fig. 3. (a) A simple example, which includes 6 beams and three regions, r1, r2, and r3, in which the body can
move without being detected. (b) Beams may be directional, may intersect, and may be indistinguishable.
The positive beam direction is indicated by an arrow placed along the beam. There are 8 regions.
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The model is defined to allow the cases of both W bounded or unbounded. If W is
bounded, then every beam is a line segment with both endpoints on the boundary of X.
Figure 3(a) shows an example in which W is bounded and there are four obstacles. Note
that beams may connect an obstacle boundary to itself, another obstacle’s boundary, or
the boundary of W ; also, a beam may connect the boundary of W to itself. If W is
unbounded, then some beams may be infinite rays that emanate from the boundary of
an obstacle, and others may even be infinite lines that are contained in the interior of
W .

Regions. The collection of obstacles and beams induces a decomposition of the free
space X into connected cells. If the beams in B are pairwise disjoint, then each B ∈ B
is a 1-cell and the 2-cells are maximal regions bounded by 1-cells and portions of the
boundary of X. If beams intersect, then the 1-cells are maximal segments between
any beam intersection points or boundary elements of X; the 2-cells follow accordingly.
Every 2-cell will be called a region. The regions are shown for the examples in Figure
3. It is assumed that beams are arranged in general position so that if a pair of beams
intersects, then the intersection must occur at one point.

Body path. Suppose that a body moves along a state trajectory or path, x̃ : [0, 1] → X,
in which [0, 1] is imagined as a time interval, but time scaling is unimportant to our
questions. (Alternatively, [0, tf ] could be allowed for any tf > 0.)

Sensor model. If the body crosses a beam, what exactly is observed? Assume that the
set of possible x̃ is restricted so that: 1) every beam crossing is transverse (the body
cannot “touch” a beam without crossing it and the body cannot move along a beam)
and 2) the body never crosses an intersection point between two or more beams (if any
such intersections exist).

Let L be a finite set of labels. Suppose each beam is assigned a unique label by some
bijection α : B → L. The sensor model depicted in Figure 1 can be obtained by a sensor
mapping h : X → Y , in which Y = L ∪ {#} is the observation set. If x̃(t) ∈ B for some
B ∈ B, then h(x̃(t)) = α(B); otherwise, h(x̃(t)) = #, which is a special symbol to denote
“no beam”. This is referred to as the undirected beam model because it indicates that
the beam was crossed, but we do not know the direction.

To obtain a directed beam model, let D = {−1, 1} be a set of directions, in which 1 is
called the positive and −1 is called the negative direction, respectively. In this case, the
observation set is Y = (L×D)∪ {#}, and the sensor mapping yields the orientation of
each beam crossing. Note that in addition to x̃(t), the domain of the sensor mapping h
must include open subsets of X so that the side of the beam that the body was shortly
before time t can be measured.

So far, the beams have been fully distinguishable because α is a bijection. It is possi-
ble to make |L| < m (the number of beams) and obtain some indistinguishable beams,
in which case α : B → L is not bijective. It might seem odd that beams cannot be
distinguished, but this can occur frequently in practice; see Section 3.

If a collection B of beams is disjoint, distinguishable, and directed, the case will be
referred to as DDD beams, which is the most ideal situation. We consider the most
general cases, however, in which these conditions are not met. Figure 3(b) shows one
such example.

Sensor words. What observations are accumulated after x̃ is executed? Since there is
no precise timing information in our problems, all # observations can be safely ignored,
resulting in a sequence ỹ, called the sensor word, of the remaining observations (ỹ
is a kind of observation history [LaValle 2006]). For the example in Figure 1, L =
{a, b, c, d, e, f} and the sensor word is cbabdeeefe. For a directed beam with label λ, the
symbol λ is used to denote traversal in the positive direction, and λ′ is used to denote
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a b c

(a) (b)

Fig. 4. (a) The left-to-right traversal of the two undirected, nearby, parallel beams yields the sensor word
ab. (b) The beams effectively simulate a directed beam, in which c is observed when the original word is ab
and c′ when the original word is ba. The triangle along the beam indicates the positive c direction.

traversal in the negative direction. A sensor word for directed beams may then appear
as aba′bb′acbc′, for example.

Note that if two parallel, undirected beams are placed closely together (see Figure 4),
then they can simulate one directed beam. This requires an assumption that the pair
must always be crossed transversely, rather than crossing one beam and returning.

Inference and filtering. Let Ỹ be the set of all possible sensor words and let X̃ be the
set of all possible paths. Let φ : X̃ → Ỹ denote the mapping that produces the sensor
word ỹ = φ(x̃).

Suppose that ỹ has been obtained with no additional information. What can be in-
ferred about x̃? Let φ−1(ỹ) denote the preimage of ỹ:

φ−1(ỹ) = {x̃ ∈ X̃ | ỹ = φ(x̃)}. (1)

The main task in this paper is to characterize the preimage (or collection of plausible
paths) from a given sensor word. Section 4 will provide a simple and efficient algorithm
that provides an exact characterization of φ−1(ỹ) in terms of sequences of regions that
may have been traversed. Furthermore, the method works incrementally as a combi-
natorial filter by updating its information state [Kuhn 1953; von Neumann and Mor-
genstern 1944] efficiently as each new observation occurs. This process is analogous to
the popular Kalman filter, which computes the next mean and covariance based on the
new sensor observation and the previous mean and covariance [Kalman 1960; Kumar
and Varaiya 1986]. The Kalman filter falls under the general family of Bayesian filters,
to which particle filtering techniques are usually applied [Thrun et al. 2005].

For a sensor word ỹk of length k, let κ(ỹk) denote an information state, which could,
for example, be the set of possible current regions. A combinatorial filter efficiently
computes κ(ỹk+1) using only κ(ỹk) and yk+1, in which yk+1 is the last (most recent)
letter in ỹk+1. This implies that ỹk does not need to be stored in memory; only κ(ỹk) is
needed. Simple filters of this form will be presented in Section 4.

In addition to simple region-based filters, we provide methods that directly trans-
form the sensor word into topological path descriptions. Section 5 converts the sensor
word into one or more elements of the fundamental group. Each element corresponds
to a class of homotopically equivalent paths that are possible given the sensor word ỹ.
This provides a more coarse characterization of the preimage φ−1(ỹ) than the methods
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(a) (b)

(c) (d)

Fig. 5. Some examples simple systems to implement sensor beams: (a) Inductive coils are placed in roads to
detect car crossings. (b) Passive infrared sensors detect movement within a specific zone. (c) Infrared garage
beams are placed under garage doors for safety, but can be used in many other settings. (d) Pressure mats
or cables can be placed along or into the ground.

of Section 4. The information is useful in many contexts, including search-based plan-
ning for navigation [Bhattacharya et al. 2011]. Section 6 produces information about
φ−1(ỹ) that is even more coarse. Given ỹ, a method is presented that calculates the
winding number with respect to each obstacle. In other words, it determines the num-
ber of times, positive or negative, that the body path wrapped around each obstacle
counterclockwise.

3. MODEL MOTIVATION

Before moving on to computing descriptions of φ−1(ỹ), this section motivates the gen-
eral formulation of Section 2 to illustrate the wide range of settings to which it applies.

In many settings, sensors may be placed in the environment to directly obtain the
beam detection behavior. Some examples are shown in Figure 5. In Section 7.1, we
describe our own beam detection system, which costs around $5 US per beam. Using
simple sensors, virtually any beam model from Section 2 can be implemented.

It is possible, however, to obtain the sensor beam model in a more indirect way.
For example, imagine that a robot moves in a large field, in which several landmarks
(e.g., radio towers) are visible using an omnidirectional camera. This can be modeled
by W = R

2 and O as a set of point obstacles. Suppose that the landmarks are fully
distinguishable and some simple vision software indicates when a pair of landmarks
are “on top of each other” in the image. In other words, the robot and two landmarks are
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(a) (b)

Fig. 6. (a) Imagine how the landmarks (small discs) appear in an omnidirectional camera while traversing
the shown trajectory. The arrows show each perceived virtual beam. (b) Here the virtual beams are based
on passing directly north of a landmark.

collinear, with one of the two landmarks in the middle. The result is mathematically
equivalent to placing n(n − 1) beams as shown in Figure 6(a), in which rays extend
outward along lines passing through each pair of landmarks.

Several interesting variations are possible based on precisely what is detected in the
image. If the only information is that oi and oj crossed each other in the image, then all
beams are undirected and the two beams associated with oi and oj are indistinguish-
able. If we know whether oi passes in front of or behind oj , then the two beams become
distinguishable from each other. If we know whether oi passes to the left or right of oj
in the image, then the beams even become directed. Scenarios such as these motivated
the consideration of beam labels and indistinguishability in Section 2.

For another example, consider changing the landmark sensing so that instead of
detecting pairwise landmark crossings, the robot simply knows when some landmark
is directly south. This could be achieved by using a compass to align the vehicle and
noting when a landmark crosses a fixed spot on the image plane or windshield. Figure
6(b) shows virtual beams that are obtained in this way. Directed and undirected beam
models are possible, based on whether the sensor indicates the left-right direction that
the landmark moves as it crosses the fixed spot. An important property of this model
is that the beams do not intersect (assuming the points are not collinear). Section 5
utilizes this property to reconstruct the path up to homotopy equivalence.

4. REGION FILTERS

In this section, we present a simple method to keep track of the possible regions in
which the body might be after obtaining the sensor word. The possible sequences of
regions traversed can also be computed. Section 4.1 covers the case of a single body,
and Section 4.2 provides some extensions to multiple bodies.

4.1. One Body

Suppose that n obstacles O and m beams B are given along with L and α (beam labels).
Furthermore, assume that W and O are represented in a way that enables exact, effi-
cient computations. For example, it is sufficient to assume all sets are polygonal. The
beams may intersect, may or may not be directed, and some beams may be indistin-
guishable. Using standard representations of subdivisions (such as the half-edge data
structure) and planar decomposition algorithms, the regions and their connectivity in-
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(a) (b)

Fig. 7. (a) Two intersecting beams: a is directed and b is undirected; (b) the corresponding multigraph G;
multiple edges are compressed into a single edge with a list of the labels that cause the transition.

Fig. 8. The multigraph G corresponding to Figure 3(b).

formation can be easily computed (see [de Berg et al. 2000] for an overview of such
methods).

Let R0 denote the set of possible regions that initially contain the body, before any
sensor data is observed. Let Rk denote the smallest set of possible regions that contain
the body after a sensor word ỹk, of length k, has been obtained. The task is to design a
combinatorial region filter, which is a function φ of the form

Rk+1 = φ(Rk, yk+1) (2)

that can be efficiently computed. In the first application of φ, R1 is computed from R0

and y1. Each subsequent Rk is similarly computed.
Before implementing the filter φ, a special graph is constructed in a preprocessing

phase. Let G be a directed multigraph that possibly contains self-loops. Each vertex
of G is a region, and a directed edge is made from region r1 to region r2 if the corre-
sponding regions are adjacent (an interval along a beam lies on the boundary of r1 and
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r2). The edge is labeled according to the sensor observation that is received when the
body crosses the shared beam from r1 to r2. A self-loop in G is made if it is possible
to cross a beam and remain in the same region. Figure 7 provides a simple example.
Figure 8 shows G for the example in Figure 3(b). Once again, G can be computed from
well-known decomposition algorithms [de Berg et al. 2000]; even thousands of beams
would present little computational challenge.

The region filter (2) is implemented over G in a way similar to the simulated oper-
ation of a nondeterministic finite automaton. Let V denote the set of all vertices of G,
which corresponds bijectively to the set of all regions. Let mk : V → {0, 1} be a function
that is computed as each stage k. Let mk(v) = 1 mean that the body might be in the
region that corresponds to v, and let mk(v) = 0 mean that the body is certainly not
in that region. Initially, m0 is computed by assigning m0(v) = 1 to each vertex that
corresponds to a region in R0. For all others, m0(v) = 0.

For the incremental operation of the filter, assume that Rk has been already calcu-
lated from ỹk. This means that mk(v) = 1 for each corresponding region in Rk and no
others. Suppose that yk+1 is observed, which extends the sensor word by one observa-
tion. Initially, assign mk+1(v) = 0 for all v ∈ V . For each vertex v ∈ V for which mk = 1,
assign mk+1(v) = 1 for every outgoing edge that has yk+1 as its label. After this is
completed, the set of all regions for which mk+1(v) = 1 represents Rk+1, which is the
desired result (2). Note that Rk+1 may be larger than Rk because multiple outgoing
edges may match yk+1 at each vertex. Also, this approach works for the case of par-
tially distinguishable beams because the match is based on the observed beam label
yk+1, rather than the particular beam.

Now suppose that after computing Rk, we would like to know the possible sequences
of regions traversed by the body. Construct a (k+1)-partite graph H in which the ith set
of vertices in the partition is denoted by Vi (there are no edges between vertices in Vi).
Each Vi corresponds bijectively to the regions in Ri. The edges in H are formed directly
from the computations of the region filter. For every r′ ∈ Ri+1, if for r ∈ Ri, there is an
edge in G from r to r′ and it is labeled with yi, then an edge from the corresponding
vertex is made in H. This edge is formed from the vertex in Vi corresponding to r to
the vertex in Vi+1 corresponding to r′. Once H has been computed, a compact encoding
of the set of all possible region sequences given ỹk is obtained: It is the set of all paths
in H from any vertex in V0 to any vertex in Vk. Note that from some v ∈ V0 a path
might not even exist to any v′ ∈ Vk because it was learned from later observations that
the body must not have initially been in the region corresponding to v. In other words,
observations gained at later stages can refine our knowledge about what might have
occurred several stages earlier.

Note that the sequences of possible regions provides a tight characterization of the
set of possible paths given ỹk: It is the set of all paths that traverse any one of the
computed possible region sequences. Any paths that traverse a region sequence not
listed as a possible sequence must not be included because it would have yielded a
different sensor word.

The region filter runs in time O(|V |+|E|) for each update from k to k+1, in which |V |
and |E| are the numbers of vertices and edges in G, respectively. The bipartite graph
H is extended with no additional overhead. Note that the number of computations
grows with the number of vertices for which mk(v) = 1, which reflects the amount of
uncertainty about the current region. In some cases the number of marked vertices
cannot increase, as in the case of DDD beams.

To illustrate the region filter, we present simulations for the concrete scenario of
beams coming from crossings of landmarks. We computed two cases. In the first one,
all beams are distinguishable and directed (see Figure 9). In the second, the only in-
formation available at a crossing is the corresponding pair of landmarks. Therefore,
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the beams are not directed, and each beam label can be reported by exactly two beams
(see Figure 10). In these examples, a beam is identified with the pair of landmarks
that produce it.

4.2. Multiple Bodies

The formulation in Section 2 can be naturally extended by allowing more than one
body to move in X. In this case, suppose that the sensor beams cannot distinguish
between bodies. They simply indicate the beam label whenever crossed. Furthermore,
assume that bodies never cross beams simultaneously. The task is to reconstruct as
much information as possible about what path they might have taken.

Figure 11(a) shows a simple example of this, in which there is one obstacle, two
bodies, and three undirected beams. This yields a set of three regions: R = {r1, r2, r3}.
Using (r, r′) to denote the region that contains the first and second bodies, respectively,
there are nine combinations of region assignments: (r1, r1), (r1, r2), (r1, r3), (r2, r1),
(r2, r2), (r2, r3), (r3, r1), (r3, r2), and (r3, r3). Consider I = pow(R × R), which is the
set of all subsets of possible region assignments. A region filter can be made over this
set in the form

ιk+1 = φ(ιk, yk+1), (3)

in which ιk represents the set of all possible region assignments after ỹk has been
observed. Initially, some ι0 ∈ I is given. After each observation is received, ιk+1 ∈ I
is computed from Ik and yk+1. The method of Section 4.1 can be easily extended to
compute (3). Let G2 be the multigraph formed by taking the Cartesian product G ×G
in the sense that the vertices correspond to all ordered pairs of regions. Each edge in
G2 is formed if a transition from one ordered pair to another is possible after a single
observation yk+1. Once G2 is formed, the method calculating mk from Section 4 can be
easily extended.

If there are n bodies in the environment, then the method can be extended by form-
ing an n-fold Cartesian product of R to obtain I and a n-fold product of G to obtain
Gn. Although conceptually simple, the number of region assignments grows exponen-
tially in the number of bodies, and the power set needed to obtain I is exponentially
larger. Therefore, an important direction of future research on region filters is to iden-
tify ways to reduce complexity from the task description. For example, consider the
following question for the example in Figure 11(a): Are the two bodies together in a
region, or are they separated by a beam? Consider designing the simplest region filter
that correctly answers this question.

Figure 11(b) shows a surprisingly simple combinatorial filter that answers the ques-
tion for any sensor word and uses only four information states. The T information
state means they are together in some room. Each Dx information state means they
are in different rooms, with beam x separating them. The set of all information states
is I = {T,Da, Db, Dc}, and a filter of the form (3) in nicely obtained. With only two bits
of memory, arbitrarily long sensor words can be digested to produce the answer to the
question, in constant time during each iteration. It is required, however, to know the
initial information state in I.

Under what other conditions can such dramatic reductions be made? The example
in Figure 11(b) can be extended to more regions and bodies by asking the question of
whether each region contains an odd or even number of bodies. In this case, a filter can
be made that records only one bit per region (the parity). It is challenging, however, to
find more useful settings in which simple region filters exist for multiple bodies.

One important point to note about the problem in Figure 11 is that it did not dis-
tinguish between the bodies. If there are n bodies and the task does not require dis-
tinguishing between then, the number of region assignments is reduced from mn to
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Fig. 9. In this region filter simulation the beams are formed by the crossings of landmarks in the field
of view, resulting in directed and distinguishable beams. The obstacles are small points. A reconstructed
sample path is shown in red.
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Fig. 10. This region filter simulation corresponds to the case of crossings of landmarks that results in
undirected, partially distinguishable beams. Each beam label can be reported by exactly two beams.
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Fig. 11. (a) A three-region problem with two bodies; (b) a tiny combinatorial filter that determines whether
the bodies are together in a room.
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Fig. 12. Keeping track of only the number of bodies per region, rather than the particular region assign-
ments, dramatically reduces the complexity. In this simple example, there are only two bodies and three
regions. Rather than obtain 23 = 9 possible region assignments, only (3

2
) = 6 are needed if we only care

about the number per region.

(m+n−1
n ), in which there are m regions. Figure 12 shows a simple example; only the

number of bodies per region matters. It is the classical balls and urns problem from
combinatorics. Only the number of bodies per region needs to be maintained in the
filter.

5. RECONSTRUCTION UP TO HOMOTOPY

In this section, the task is to use the sensor word ỹ to reconstruct a description of
possible paths x̃ ∈ X̃ up to an equivalence class of homotopic paths. The required
topological definitions are given in the Appendix.
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Fig. 13. A perfect collection of beams and a loop path.

Fig. 14. With this collection of obstacles and beams, the sensor word ỹ directly transforms into an element
of the fundamental group Fn by renaming symbols.

5.1. Perfect Beams

We now handle the case that is conceptually as simple as Figure 23. More complicated
cases are built upon it. Let a beam be called outer if it is either an infinite ray (possible
only if X is unbounded) or it is a finite segment that connects an obstacle to the bound-
ary of W . For a set of n obstacles, let a perfect collection of beams mean that there are
exactly m = n DDD beams (recall that this means disjoint, distinguishable, and di-
rected beams), with exactly one outer beam attached to each obstacle. For convenience,
further assume that all beams in a perfect collection are oriented so that a counter-
clockwise traversal corresponds to the positive direction, as shown in Figure 13. If
they are not, then we can easily transform our solution to reverse the corresponding
directions.
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Fig. 15. (a) A sufficient collection of DDD beams; (b) a minimally sufficient collection of DDD beams forms
trees that each contain one outer beam. This example is obtained by removing beams from the the figure on
the left.

Let Fn denote the free group over an n-letter alphabet Σ. Suppose that a perfect
collection of beams is given with label set L. Let β : L → Σ denote any bijection, in
which Σ denotes an alphabet as used in the definition of Fn. We obtain the following
proposition.

Proposition 5.1 For any sensor word ỹ for a perfect collection of beams, if the transfor-
mation β is applied to every element, the resulting transformed word is the correspond-
ing element of Fn, under the basis of one counterclockwise loop per obstacle (as depicted
in Figure 14).

Proof: While preserving homotopy equivalences, the obstacles and basepoint can
be moved into a canonical form as shown in Figure 14. This corresponds to choosing
a particular basis of Fn in which each generator σi is exactly a counterclockwise loop
around one obstacle. It does not matter what loop in particular is chosen, provided that
exactly one obstacle is encircled for each generator. Each bi corresponds to a beam and
letter in L. A word w ∈ Fn is formed as follows. Let yk denote the kth observation in ỹ.
The kth element of w is defined as β(yk). Each beam crossing then corresponds directly
to a generator of Fn under the chosen basis. This converts every ỹ into an element of
Fn that represents the loop path that was traversed using basepoint x0.

Recall that arbitrary words in Fn can be simplified to reduced words by applying the
group axioms. Note that this simplification can even be performed directly on the sen-
sor word, before the transformation into Fn, without changing the result. For example,
b1b2b

′

2b3 can be simplified to b1b3 because σ2σ
−1
2 = ε would cause a cancellation anyway

after the transformation β is applied.

5.2. Sufficient DDD Beams

What if the collection of beams is not perfect? For some arrangements of obstacles, it
might not even be possible to design a perfect collection (unless beams are allowed to
be nonlinear). Suppose that a collection B of m ≥ n DDD beams is given. A collection
of beams called sufficient (regardless of whether they are DDD) if all of the resulting
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Fig. 16. Forming a basis using a sufficient tree of beams.

regions are simply connected; see Figure 15(a). Note that any sufficient collection must
contain at least one outer beam. Also, any perfect collection is also sufficient.

Recall the previous question regarding whether two paths must be homotopic if the
region sequence they traverse is the same. We obtain the following proposition:

Proposition 5.2 If the collection of beams is sufficient and two paths x̃ and x̃′ traverse
the same sequence of regions, then they must be homotopic.

Proof: For a sufficient collection, they must be homotopic because if they are not,
then it implies that there exists an obstacle o ∈ O that blocks the deformation of
one path into another. This would be possible only if o lies in the interior of a region;
however, o must border two or more regions because in a sufficient collection, a beam
is attached to o. Therefore, the homotopy map would cause a change in the region
sequence, which violates that assumption that it is the same for both paths.

The implication of Proposition 5.2 is that path reconstruction up to homotopy is
more coarse than reconstruction up to region sequences. The region filters provide the
tightest possible description of the path, but homotopy equivalence allows some paths
that traverse different region sequences to be declared as being “the same”.

Suppose that a sensor word ỹ is obtained for a sufficient collection B of beams. The
first step in describing the path as an element of Fn is to disregard redundant beams.
To achieve this, let B′ ⊆ B be a minimal subset of B that is still sufficient. Such a collec-
tion is called minimally sufficient and can be computed using linear-time spanning tree
algorithms such as depth-first or breadth-first search. In this case, the outer boundary
and each obstacle is considered a vertex, so that connection to the outer boundary is
assured. An example spanning tree is shown in Figure 15(b).

Recall the bijective transformation β : L → Σ. The function can be applied to obtain
elements of Fn as was done for Proposition 5.1; however, a different representation is
obtained in comparison to the nice one in Figure 23. This amounts to a careful choice
of basis for Fn. The relationship between this basis and the nice basis of Figure 23 is
given by an element of Aut(Fn), which is described in the Appendix.
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Proposition 5.3 For a minimally sufficient collection B of DDD beams, the sensor
word ỹ maps directly to the corresponding element of Fn by simply applying β to each
letter.

Proof: A basis for the fundamental group is defined as follows. For each tree of
beams in B, a collection of loop paths can be formed as shown in Figure 16. Each
loop must cross transversely the interior of exactly one beam and enclose a unique
nonempty set of obstacles. Such loops always exist and can be constructed inductively
by first enclosing the leaves of the tree and then progressing through parents until
a loop is obtained that traverses the outer beam. Since there is only one region, it is
possible to inductively construct such a collection of loops for every tree of beams in
B. The total collection of loops forms a basis of Fn, which can be related to the basis
in Proposition 5.1 via Tietze or Nielsen transformations [Magnus et al. 1976]. The
mapping β from ỹ to β(ỹ) ∈ Fn is once again obtained by mapping each letter in ỹ to
its corresponding unique loop that traverses the beam.

Using Proposition 5.3, a simple algorithm is obtained. Suppose that any sufficient
collection B of DDD beams is given and a sensor word ỹ is obtained. A spanning tree
B′ ⊆ B of beams is computed, which is minimally sufficient. Let L′ ⊆ L denote the cor-
responding set of beam labels. To compute the element of Fn, the first step is to delete
from ỹ any letters in L \ L′. This yields a reduced word ỹ′ for which each letter can
be mapped directly to a loop using the proof of Proposition 5.3 to obtain a representa-
tion of the corresponding path in Fn. Once again, reductions based on the identity and
inverses in Fn can be performed before or after the mapping is applied.

5.3. The General Case

We finally return to most general collection of beams, which includes examples such as
Figure 3(b). Consider a collection B of beams in which some may intersect, some may
be undirected, and some may even be indistinguishable. The collection is nevertheless
assumed to be sufficient, which means that all of the corresponding regions are simply
connected. Rather than worry about making a minimal subset of B, the method for
the general case works by inventing a collection of fictitious beams that happens to be
minimally sufficient. Since the ambiguity may be high enough to yield a set of possible
paths, the region filter from Section 4 is used.

There are two phases to the computation. In the first phase, a set of “imaginary”
DDD beams is constructed from the original collection of obstacles and beams. In the
second phase, the sensor word ỹ is processed and a representation of possible path
classes is given in terms of imaginary beams.

For the first phase, suppose W , O, B, L, and α (beam labels) are given in a way that
once again facilitates exact computation (as Section 4.1). The algorithm proceeds as
follows:

(1) Compute the arrangement of regions and multigraph G from Section 4.
(2) For each vertex in G choose a sample point in its corresponding region.
(3) For each directed edge e in G, compute a piecewise-linear sample path that: i)

starts at the sample point of the source vertex of e, ii) ends at the sample point of
the destination vertex of e, and iii) crosses the beam associated with e in a man-
ner consistent with its label. The sample path must be chosen so that it does not
intersect additional beams. The sample paths can be computed using standard mo-
tion planning techniques, such as trapezoidal decomposition or triangulations (see
[LaValle 2006]). The result is an embedding of G into the free space X, as depicted
in Figure 17(a).
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Fig. 17. (a) This shows the embedding of the multigraph G into the free space X for the example of Figure
3(b). (b) A minimally sufficient collection of DDD beams forms trees that each contain one outer beam. This
example is obtained by removing beams from the figure on the left.
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(4) Construct any minimally sufficient collection BI of imaginary DDD beams. The
choice does not depend at all on previous steps. A convenient choice is to make all
imaginary beams vertical, one from each obstacle. See Figure 17(b).

(5) For all computed sample paths from Step 3, compute their intersections with the
imaginary beams of Step 4 and record the order in which they occur.

Now suppose that a sensor word ỹ is given. The following steps construct the possible
paths up to homotopy equivalence:

(1) Apply the region filter of Section 4 is used to determine the set of possible region
sequences.

(2) Each region sequence corresponds to a cyclic walk through G. Using the embedding
of G into W from the first phase of computation (recall Figure 17(b)), a loop path
x̃′ is obtained by concatenating the corresponding sample points and sample paths
in G.

(3) Using the construction in the proof of Proposition 5.3, ỹ′ is mapped directly to an
element of Fn.

(4) The obtained word in Fn is simplified to obtain the reduced word. As before, simpli-
fications can be applied to ỹ′ in advance or to its image in Fn and the same result
is obtained.

(5) In the final step, duplicate reduced words are removed from the collection obtained
for each sequence produced by the region filter.
As usual, reductions can be applied to ỹ′ or its image in Fn. Once elements of Fn are
computed and reduced for each possible region sequence, duplicates are removed
to obtain the complete set of possible homotopically distinct paths based on the
sensor word ỹ.

Note that BI essentially gives the user the freedom to define whatever basis of Fn

is desired to express the result. By extending the method to nonlinear beams, the
solution can even be expressed in terms of perfect beams, instead of the unusual loop
paths produced by the method of sufficient DDD beams.

Proposition 5.4 The given algorithm reconstructs from ỹ the complete set, up to ho-
motopy equivalence, of paths that could have possibly produced ỹ in terms of a common
basis for Fn.

Proof: The sensor word ỹ is given. By applying the region filter from Section 4, all
possible sequences of regions traversed by the path are obtained. Constructing the
walk through G and converting it into a sample path provides one representative from
the correct homotopy class. This is true because the sample path was constructed by
traversing the same region sequence and all paths that traverse the same region se-
quence are homotopic, as established by Proposition 5.2. It is now simple a matter
of picking a basis for Fn to describe the homotopy class. The collection of imaginary
beams is a sufficient DDD collection. Proposition 5.3 therefore implies that the cor-
responding element of Fn is obtained by the direct mapping β. This establishes that
the computed representation is indeed the correct homotopy class that corresponds to
the region sequence. Since the class is correctly characterized for every possible re-
gion sequence, the complete set of paths is characterized up to homotopy equivalence,
as required. Furthermore, all classes are described with respect to the same basis of
Fn because the imaginary beams are fixed in advance and all homotopy classes are
expressed in terms loops that encompass them.

It remains an open problem to characterize the complexity of the set of possible
homotopy classes in terms of the sensor word.
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We now remove the assumption that only loop paths are executed using a basepoint
x0. If all paths start at some x0 and terminate at some x1, then a fixed path segment
that connects x1 back to x0 can be chosen. This path may intersect some beams, which
is false information; however, the possible body paths are nevertheless characterized
correctly up to homotopy equivalence. If instead we allow either of the path endpoints
to vary, then all paths become trivial (homotopic to a constant path) by continuously
deforming each path to be a constant function into one basepoint. One possibility is
to assume that there are several possible fixed points based on the starting and final
regions produced in each sequence from the region filter. In this way, possible paths
can at least be compared if their starting and terminating regions match.

6. PATH WINDING NUMBERS

The section provides a reconstruction of the path at a level that is more coarse than
homotopic equivalence. Suppose that the body travels along a loop path. There is an
integer winding number vi ∈ Z for each oi ∈ O, in which mi is defined as the number
of times the path wraps counterclockwise around oi after deleting all other obstacles
and pulling the path tight around oi using homotopy. If there are n obstacles, then a
vector of n winding numbers is obtained. Two paths are called homologous if and only
if their vectors of winding numbers are identical. This notion of equivalence is crucial
to algebraic topology, and in particular homology theory [Hatcher 2002], in which a
homology group is computed. The first homology group H1(X) can be considered as
the “abelianized” version of the fundamental group π1(X). For our problem, H1(X) is
obtained by applying the equivalence relation σ1σ2 = σ2σ1 over all words in Fn, for all
σ1, σ2 ∈ Σ.

6.1. Perfect Beams

In the case of perfect beams, the winding numbers are obtained by directly “abelianiz-
ing” the sensor word ỹ. Using Proposition 5.1, the sensor word maps directly to a word
Fn by applying β to every letter. For example, consider the sensor word:

ỹ = b1b2b
′

1b2b2b1b
′

2b
′

2b1b
′

2b
′

2b
′

2. (4)

After applying β to each symbol, the word

w = σ1σ2σ
−1
1 σ2σ2σ1σ

−1
2 σ−1

2 σ1σ
−1
2 σ−1

2 σ−1
2 ∈ Fn (5)

is obtained. By applying the commutativity relation, we simply sort the symbols in the
word, perform cancellations, and count the resulting number of each. For the example,
the result is

w =σ1σ2σ
−1
1 σ2σ2σ1σ

−1
2 σ−1

2 σ1σ
−1
2 σ−1

2 σ−1
2

=σ1σ1σ1σ
−1
1 σ2σ2σ

−1
2 σ−1

2 σ−1
2 σ−1

2 σ−1
2

=σ2
1σ

−3
2 .

(6)

The winding numbers are simply the exponents; for (6) we obtain v = (2,−3). The
application of β was unnecessary in this case to obtain the result. The operations can be
performed directly on ỹ due to the simplicity of β. Note that the winding numbers can
be computed in time O(|ỹ|) without actually sorting by simply maintaining n counters,
one for each letter in λ ∈ L. Scan across ỹ and increment or decrement each counter,
based on whether λ or λ′, is encountered, respectively. Note that this makes a constant-
time combinatorial filter of the form vk+1 = φ(vk, yk+1), by computing the winding
numbers vk+1 at step k+1 from the winding number vector vk and the last observation
yk+1, which is the last letter of ỹk+1.
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Fig. 18. A simple commutator example that yields sensor word aba′b′, group element σ1σ2σ
−1

1
σ−1

2
∈ F2,

and winding numbers v = (0, 0), but corresponds to path that is not homotopic to a constant path.

6.2. Sufficient DDD Beams

Once a minimally sufficient collection is determined (recall Figure 15), the winding
numbers can be calculated in the same way as in the perfect beams case. However,
the result needs to be transformed to obtain the correct result because the path may
wind around multiple obstacles simultaneously. Recall the basis from Figure 16 and
suppose that for a path, the sensor word is

ỹ = aabcbd′cbdbd′ab′b′a′cb′acaab′b′b′b′d′. (7)

Applying the simple method from the perfect beams case suggests winding numbers
(5,−3, 4, 1). For example, there are 5 more as than a′s in ỹ. This means that the path
wraps 5 times around o3, but it also wraps 5 times around o1, o2, and o4. Likewise,
it wraps −3 times around o1 and o2. A counter is made for each obstacle and each
computed exponent raises or lowers some counters. After being performed for each
component, the correct result is obtained. For the sensor word in (7), the corrected
winding numbers are (3, 2, 5, 9). Note that if the positive direction of a beam is in the
clockwise direction, then the computed winding number needs to be multiplied by −1.

6.3. The General Case

Now suppose that a sufficient collection of general beams has been given, which is the
model used in Section 5.3. A straightforward approach is to first run the algorithm of
Section 5.3. After the sufficient collection of imaginary beams has been placed and the
elements of Fn have been computed, each can be abelianized to obtain winding num-
bers using the method just described. This yields a set of vectors of winding numbers
because there might not be enough sensor data to infer the exact numbers.

In some cases, this approach computes more information than is needed to obtain the
winding numbers. For example, suppose that a sufficient collection of beams is given
that is not necessarily disjoint, but all beams are directed and distinguishable. Since
the winding number essentially ignores all other beams, an approach can be developed
by picking a minimally sufficient collection of beams that is not necessarily disjoint.
The beam intersections do not interfere with the calculation of winding numbers. For a
given sensor word, any letters that do not appear in the minimally sufficient collection
can simply be deleted. The method then proceeds as in the case of DDD beams.

6.4. Higher Order Winding Numbers

There is actually a way to provide path descriptions that are more coarse than ho-
motopy equivalence but are finer than homology equivalence. The winding numbers
give a measure of how many times a body circles around a given obstacle, but ignores
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how the body weaves in between obstacles. They are insensitive to paths such as a
commutator around obstacles, as shown in Figure 18.

There are “higher order winding numbers” which keep track of how a body does
in fact interweave through different obstacles. They count the cumulative number of
times that a commutator was achieved. It is also possible, however, to count commuta-
tors that are build from other commutators. The notion of higher order arises from the
levels of nesting of commutators. These structures can be captured by a Lie algebra in
which the Lie bracket is the group commutator: [σ1, σ2] = σ1σ2σ

−1
1 σ−1

2 . These higher
order winding numbers in the case above arise in two classical ways reflecting the in-
terplay between geometry and a free group. These are the Lie algebras which arise
from either (i) the descending central series of a free group, or (ii) principal congruence
subgroups of level pr in the group of SL(2,Z). These Lie algebras provide measures of
complexity in addition to “higher order winding numbers” and it remains an open prob-
lem to develop computation methods that characterize them for a given sensor word.
It remains an open problem to efficiently compute higher order winding numbers for
problems presented in this paper.

7. EXPERIMENTAL IMPLEMENTATION

In this section, we present an inexpensive hardware architecture that implements
some simple, reliable, low-cost beams, both directed and undirected. We conducted
several experiments that involved reconstructing the path of moving bodies in a labo-
ratory setting by applying the region filters from Section 4. Since the method was val-
idated for these filters, they would also clearly work for the methods of Sections 5 and
6 because they are derived from the same sensor observations. Many more details re-
garding our hardware choices, their costs, and our experiments appear in [Czarnowski
2011].

7.1. Hardware Architecture

We implemented the beam sensor using optical emitter-detectors pairs. One pair was
used to make an undirected beam. To make a directed beam, two pairs were placed
close together using the idea in Figure 4, and some simple logic circuitry was used to
determine the crossing direction. We chose presentation laser pointers due to their low
cost (about $3 US each) and because they can be aimed easily. The pointers were mod-
ified to use external battery packs using three AA batteries. Inexpensive and easily
obtainable photodiodes (about $2 US each) were placed on the opposite side to detect
body crossings. A change in voltage across the photodiode is observed when a body
crosses the beam, thereby blocking the laser light from reaching the photodetector.
This change in voltage is detected by a basic ADC circuit using the LM339 comparator
(about $0.20 US each). The threshold voltage for the beams can be set using a poten-
tiometer. For the purposes of this experiment, simple circuit boards were fabricated to
accommodate the ADC circuit (Figure 19 (b) ). Each board can handle four inputs from
the outputs of the photodetectors.

The outputs of the ADC board are connected to the digital I/O pins of a Complex
Programmable Logic Device (CPLD). The CPLD is a programmable logic device that
takes care of debouncing and denoising the inputs. It then outputs an ASCII character
corresponding to the beam label over a serial port. The CPLD was designed using the
Verilog hardware description language.

There are several reasons why we chose a CPLD for use in our system:

(1) Price: The least expensive Altera MAX IIZ CPLD costs less than $7 US.
(2) Energy Consumption: The Altera MAX IIZ CPLD can run on as little as 25µA.
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(a) (b)

Fig. 19. (a) An emitter-detector pair with an body crossing the beam; (b) a simple Analog to Digital Conver-
sion board using the ubiquitous LM339 comparator.

(3) Reconfigurability: The circuit implemented on a CPLD can easily be reconfigured
in-circuit by changing the Verilog code and reprogramming the device with a PC.

Additionally, the CPLD design software reports the hardware resources (including
logic elements) that are used for a given design. Thus, it is possible to quickly esti-
mate the hardware cost of a mass-produced (ASIC-based) product. For example, the
CPLD usage for a six-beam implementation uses 78 logic elements and 21 total pins.
Thus, this design easily fits in the sub-$7 device mentioned above, which has 240 logic
elements and 54 IO pins. Detailed analysis of the resource usage suggests that a de-
sign incorporating at least 20 beams can fit in even this small CPLD. If a larger system
is desired, the Verilog design can be seamlessly migrated to a larger CPLD.

The cost of a six-beam deployment is under $30 US. Once properly set up, the beams
do not miss any body crossings. Furthermore, our system has low energy consumption.
When using three AA alkaline batteries, the current draw was measured to be 21.7
mA. Using a standard AA alkaline with 2700 mAh capacity, a beam can be powered
for over 120 hours. The CPLD board can be powered with a simple rechargeable bat-
tery pack or through an USB port. Using Altera’s energy consumption estimator, the
Altera MAX IIZ would use 0.072 mA when using a six-beam implementation. Thus,
the CPLD could theoretically run for around 37,000 hours using only a set of three
alkaline batteries.

Wireless communication can be easily added to our architecture if needed. We have
experimented with 2.4GHz XBee modules that implement the 802.15.4 protocol. For
under $25 US, these devices allow very reliable and simple wireless communication.
Each of this Zig-bee modules is capable of handling up to six beams directly using the
on-board ADC circuitry.

To the best of our knowledge, our hardware implementation compares favorably in
terms of cost with previous implementations for tracking using binary sensors [Kim
et al. 2005; Shrivastava et al. 2006a]. First of all, we used cheaper sensors than Pas-
sive Infrared Sensors (PIR) or acoustic sensors. Furthermore, instead of using a full
sensor mote that may excessive for simple computations, we determined the precise
computational requirements for solving our task and implemented them in hardware.
This leads to an overall decrease in price and energy consumption.

7.2. Reconstructing the Motion of a Single Body

We will illustrate how the architecture works with a simple example. As illustrated in
Figure 20, we deployed six sensor beams in a 1.67m by 1.3m environment. The outer
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Fig. 20. A physical implementation of the six-beam example from Figure 1.

boundary of the free space is formed from cinder blocks and the obstacles made of
bricks. This physical setup, shown in Figure 20, was designed to match the example in
Figure 1.

After creating the environment, we let an unpredictable rolling ball, called a Weasel-
ball, to wander for several minutes as the moving body. (See [Bobadilla et al. 2011a]
for more information on Weaselball motions.). We used an overhead camera and al-
gorithm implementations in OpenCV to extract the ground truth path of the body
(Figure 21(a)). For the sake of clarity, we show only the first several seconds of the
ground truth tracking. In Figure 21 (b), we show the reconstruction of the path that
was obtained from the computed region sequence. Note that the actual experiment ran
for three minutes, with 62 detected beam crossings and successful reconstruction of the
path up to the sequence of regions traversed by the body.

In this experiment and others, the beam did not fail to detect any of the body cross-
ings. This was observed in dozens of experiments that were performed, with hundreds
of beam crossings. The only type of mistake made was that the system reported a
crossing when the body entered the beam but did not cross through it. This violates
the assumption in Section 2 that the body must cross transversely. If desired, this
problem can be alleviated by the use of two adjacent beams to ensure the complete
crossing of the body before reporting an observation.

7.3. The Two-Body, Three-Region Filter

We implemented the two body problem illustrated in Figure 11(a), and the correspond-
ing experimental version appears in Figure 22. A group of small bricks serves as the
barrier (the center of the ring), whereas larger paving bricks form the outer boundary
of the free space. The ring is then partitioned into three sections by our laser-detector
pairs.

Recall the simple filter shown in Figure 11(b), which keeps track of whether the two
bodies are in separate regions. We implemented the simple automaton on the Altera
MAX II CPLD. The CPLD resource usage for the three room design is as follows: 52
logic elements, 18 total pins. Thus, the design is easily implemented on the inexpensive
MAX IIZ CPLD mentioned above. The two moving balls in the environment and the fil-
ter successfully kept track of whether they were together for long periods of time. Once
again, the errors occurred only when a body entered a laser beam but did not complete
the crossing. The use of two emitter-detector pairs mounted close to each other should
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Fig. 21. A physical implementation of the example in Figure 1: (a) The ground truth path (causing ỹ =
bbcee) of the body; (b) the reconstruction of the path over about 15 seconds of motion. A sample path is
shown based on the reconstructed region sequence.

alleviate this issue. Other multibody tracking experiments appear in [Bobadilla et al.
2011b] and [Czarnowski 2011].

8. CONCLUSIONS AND OPEN QUESTIONS

In this paper we identified a basic inference problem based on bodies moving among ob-
stacles and detection beams. Recall from Section 3 that the beams may directly model
physical sensors or they may arise virtually from a variety of other sensing models.
Therefore, the region filter, homotopic reconstruction, and winding-number compu-
tations provide basic information that arises in numerous settings such as robotics,
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Fig. 22. A physical implementation of the environment and filter described in Figure 11. The beam locations
are shown with green tape. Wires connecting to the photodiodes are visible.

security, forensics, environmental monitoring, and assisted living. Recall that the re-
gion filter provides the tightest characterization of the set of possible paths given the
sensor word ỹ. Characterization up to homotopy equivalence is more coarse than pro-
viding region sequences. Following this, the winding number characterization is even
more coarse. It is possible to provide higher order winding numbers based on group
commutators, yielding a level of coarseness that lies between homotopy equivalence
and winding numbers.

We implemented the filters in simulation. We also developed an inexpensive, low
energy consumption hardware architecture to show the practicality of the proposed
approach. This hardware architecture scales well and allows the use of wireless com-
munication.

The results presented here represent a first step in understanding this broad class
of problems. Many open issues remain for future research, several of which are sug-
gested here: 1) It is assumed that the geometric arrangement of obstacles and beams is
known. What happens when this is uncertain? For example, we might not even know
which beams intersect. The sensor words can be used to make simultaneous infer-
ences about the body path and the beam arrangement. 2) What happens in the case of
faulty beams? There could be false positives and false negatives in the detections. In
this case, probability distributions over regions, homotopy classes, and winding num-
bers could be studied. It is difficult, however, to develop realistic prior distributions
and error models in many settings. 3) Without the assumption of transverse beam
crossings and crossings are intersection points, significantly more ambiguity arises.
How do these affect the computations? 4) What are the limits of path reconstruction
when there are two or more bodies? How efficient can filters be made for such prob-
lems when there are many obstacles and beams? 5) What other specific path statistics
can be computed efficiently from beam data? Can Lie algebra constructions be applied
to efficiently compute higher-order winding numbers (based on commutators) for the
paths? Can the sensor data be used to compare paths as elements of the braid group?
6) Since the methods so far provide only inference, how can their output be used to
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design motion plans? In other words, how can the output be used as a filter that pro-
vides feedback for controlling how the bodies move to achieve some task? 7) Finally,
what other classes of combinatorial filters can be defined and efficiently computed?
This depends on developing appropriate abstract sensor models and identifying tasks
that depend on critical pieces of information provided by such sensor models. Some
steps in this direction are suggested in [LaValle 2012].

Acknowledgments. The authors thank Andrew Lycas for implementing the visual
tracking code, based partly on OpenCV, for ground truth comparison. They also thank
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A. HOMOTOPY AND THE FUNDAMENTAL GROUP

Assume that all body paths start and stop at some fixed basepoint x0 ∈ X which lies
in the interior of some region; this assumption is lifted at the end of the section. Two
paths, x̃ and x̃′ are called homotopic if there exists a continuous function h : [0, 1] ×
[0, 1] → X for which the following four conditions are met:

(1) (Start with first path) h(s, 0) = x̃(s) for all s ∈ [0, 1] .
(2) (End with second path) h(s, 1) = x̃′(s) for all s ∈ [0, 1] .
(3) (Hold starting point fixed) h(0, t) = h(0, 0) for all t ∈ [0, 1] .
(4) (Hold ending point fixed) h(1, t) = h(1, 0) for all t ∈ [0, 1] .

The parameter t can be interpreted as a “knob” that is turned to gradually deform the
path from x̃ into x̃′ without jumping over obstacles. This definition induces an equiva-
lence relation on the set X̃ of all paths. Note that paths that follow different sequences
of regions could possibly be equivalent homotopically. It is natural to ask: Under what
conditions can be it guaranteed that if two paths traverse the same region sequence,
then they are homotopic? We would like to argue that a description of the path up
to homotopy equivalence is coarser than a description up to the region sequence. The
solution to this problem is provided in Section 5.

Describing the equivalences classes of paths up to homotopy equivalence is part of
basic algebraic topology. An algebraic group can be formed by defining the following
binary operation on X̃. Let x̃1 and x̃2 be two loop paths with the same basepoint x0.
Their product x̃ = x̃1 ◦ x̃2 is defined as

x̃(t) =

{

x̃1(2t) if t ∈ [0, 1/2)
x̃2(2t− 1) if t ∈ [1/2, 1].

(8)

This results in a continuous loop path because x̃1 terminates at x0, and x̃2 begins
at x0. In a sense, the two paths are concatenated end-to-end. The operation ◦ forms
a group on the space of all paths. Using the homotopy equivalence relation, we do
not want to distinguish between paths that equivalent. Therefore, a quotient group
is formed by starting with the operation ◦ and applying to the homotopy equivalent
classes. The result is called the fundamental group, denoted by π1(X), on the space of
all equivalence classes of paths [Hocking and Young 1988].

The structure of this group reveals much about the topological structure of the space
X. In our case, the topology of X is somewhat simple in that it depends only on the
number n of holes, which from Section 2 is the number of obstacles in O. For this
case, the fundamental group π1(X) is isomorphic to Fn, in which Fn is called the free
group on n letters. It is called “free” because it can be presented using generators and
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Fig. 23. There are three obstacles and the fundamental group is F3. Three loop paths are chosen as rep-
resentatives that correspond to σ1, σ2, and σ3 in Σ. In this way, each word σk

i
nicely represents a class of

paths that wraps k times counterclockwise around the ith obstacle.

no relations (other than the ones appearing in the group axioms). The group Fn can
be described as follows. Start with an alphabet Σ of n letters. For every letter σ ∈ Σ,
make an inverse letter denoted by σ−1. This simply doubles the size of the alphabet to
make 2n symbols. The elements of Fn are simply the set of all finite-length words (or
strings) that can be formed from the 2n symbols.

For example, suppose O consists of three obstacles. The fundamental group is F3,
the free group on 3 letters. Let the alphabet be Σ = {σ1, σ2, σ3}. The group F3 consists
of all words that can be formed from σ1, σ2, σ3, σ−1

1 , σ−1
2 , and σ−1

3 . An example is
σ3σ

−1
2 σ1σ1σ2 ∈ Fn.

This is not the complete story, however, because the group axioms contain relations
for identities and inverses, even in a free group. Let ε denote the identity element in Fn.
It must be true for any element σ ∈ Σ that εσ = σε = σ and also that σσ−1 = σ−1σ = ε.
This induces an equivalence relation on the set of all words formed from 2n symbols.
For example, σ3σ

−1
2 σ2σ1σ2 = σ3σ1σ2. An arbitrary word can often be simplified into an

equivalent, shorter word by apply these relations. The shortest word in the equivalence
class is called a reduced word.

A familiar problem in group theory is determining whether two group presentations
are equivalent, in other words, their corresponding groups are isomorphic. Recall from
linear algebra that there are many ways to define and transform bases for a vector
space. A similar but more complicated situation exists for Fn. If we say that Fn is
the fundamental group of X, what do the symbols σ ∈ Σ actually represent? Each σ
should correspond to an equivalence class of homotopic paths. Within an equivalence
class, there exists the common issue of picking a representative path for the whole
class. However, the situation is more complicated than this because the class that σ
represents is somewhat arbitrary.

Figure 23 shows a simple way to represent the symbols for F3. This way is com-
mon for explaining the fundamental group in textbooks. All elements of F3 can be
constructed using ◦ and it seems the topic is finished. However, since we are recon-
structing paths from sensor data, we may be forced to work with other representative
elements of Fn and transform them back into easy-to-interpret representations. Even
without the complication of paths, Fn itself can be represented in many ways. Suppose
it is presented using the alphabet Σ = {σ1, . . . , σn}. Consider a function g : Σ → Fn,
which replaces every σ ∈ Σ with a word in Fn. In some cases, g yields an automorphism
(isomorphism to itself) of Fn. The group Aut(Fn) of all automorphisms of Fn is remark-
ably complicated. One way to describe them is to perform Nielsen transformations on
the alphabet and use them to generate Aut(Fn) [Magnus et al. 1976]. Our goal in the
paper, however, is to carefully sidestep complicated issues regarding automorphisms
of Fn while nevertheless reconstructing simple representations of equivalence classes
of paths.
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