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Abstract— This paper applies the principles of Virtual Reality
(VR) to robots, rather than living organisms. A simulator, of
either physical states or information states, renders outputs
to custom displays that fool the robot’s sensors. This enables
the design of targeted experiences for the robot that are
more realistic than pure simulation, yet more feasible and
controllable than real-world experiences. Potential applications
include testing procedures that are better than simulation,
reverse engineering of unknown robots, the study of spoofing
attacks and anti-spoofing techniques, and sample generation
for machine learning. A general mathematical framework is
presented, along with a simple experiment, detailed examples,
and discussion of the implications.

I. INTRODUCTION

Imagine a food delivery robot, such as the Kiwibot in
Fig. 1a. Assume it gets input data from three sensors: GPS,
a front-facing camera, and wheel encoders. When the robot
moves in cities and among people, it can easily lose GPS
signal, get kicked or stuck, or even get kidnapped. These
scenarios raise a question: What is a feasible but realistic
method for replicating these scenarios during development
and testing? Issues such as system integration or systematic
sensor errors cannot be completely replicated in simulation;
thus, we would like to prioritize interaction with the actual,
physical robot. How can we use simulation to achieve
principled, systematic interaction with the robot? How would
such an interaction affect testing, reverse engineering, and
verification of robotic systems?

Virtual Reality (VR) uses simulation and displays to
trick humans and other organisms into believing they are
having a perceptual experience that is different from reality.
This experience is usually interactive and carefully crafted.
Humans might, for example, believe they are exploring exotic
worlds in a game. Other organisms, such as monkeys, rats,
or Drosophila, interact with artificial worlds so that scientists
can study their creation of neural place and grid cells [10] or
other neurological phenomena. This paper explores a natural
question: What would happen if the living organisms are
replaced by a robot? This immediately raises additional
questions. What new approaches would this enable? How
would this form of VR be generally defined and achieved,
well beyond what might be imagined from Fig. 1b? How
would VR be successfully achieved in this context? We call
this class of problems Virtual Reality for Robots (VRR).
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(a) (b)
Fig. 1: (a) A Kiwibot food delivery robot. (b) A robot in VR: An
Optofidelity Buddy 3 wearing an Oculus Go headset.

We envision at least four distinct applications for VRR: 1)
The designers of a robot system or algorithm want to evaluate
its robustness in environments that are difficult to reach
or construct, or infeasible to simulate. In this case, VRR
provides a hybrid approach of real and virtual worlds that
is more realistic than simulation but more accessible than a
normal deployment. To easily verify sensor errors or attacks,
VRR allows us to create scenarios that are extraordinary
or implausible, such as the kidnapped robot problem [5] in
which the robot is unexpectedly transported into another en-
vironment. 2) To reverse engineer the design of an unfamiliar
robot, VRR can put it through carefully designed, contrived
scenarios. The robot receives an adaptive series of tests to
determine its inner decision making strategies. 3) As security
and delivery robots increase in popularity, their protection
against sensor spoofing attacks must be considered. VRR
could be used to intentionally create sensor spoofing attacks
on the actual sensors, and to study the robustness of the robot
system. 4) In a machine learning context, precious new data
can be generated by measuring how the actual robot responds
to numerous hybrid scenarios, addressing the gap between
simulation and reality (sim-to-real; see e.g. [21]).

To the best of our knowledge, this the first attempt to
generally introduce and mathematically define VRR. The
most similar related work is [9], in which real drone dynam-
ics (infeasible to simulate) are combined with a simulated
visual display. Spoofing literature is also related, which
considers adversarial attacks against sensor systems. Many
attacks are against biometric security systems, such as face
[7], fingerprint [33] or speech [35] recognition systems.
There also exists mathemetical analysis on when spoofing
is feasible [36], [37]. These works, however, aim at fooling
a classifier, whereas VRR is meant for continuous fooling of
entire sensing and information processing subsystems.

Other recent works show that MEMS sensors such as
Inertial Measurement Units (IMU)s can be distracted [27]
and even controlled [29] with external amplitude-modulated
noise. LiDAR, a key component in many autonomous cars,
has been shown to be susceptible to spoofing attacks [26].
GPS is not immune either, and GPS-based capture of au-
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tonomous vehicles is a major concern [11]. Anti-spoofing
methods for drones have also been proposed, by observing
whether the combination of sensor inputs obeys the laws
of physics [4]. These examples help to enable VRR (we
can provide controllable input to real sensors) and further
motivate it. To study and counter spoofing attacks, the
concept of VRR must be well defined and understood.

Section II introduces background on virtual reality and a
provides a concrete robotics scenario. Section III provides a
mathematical framework that captures the essence of VR for
living organisms, but characterizes it in the general context
of robots. This framework builds upon the usual state spaces
(with configurations and environments), sensor mappings,
and state transition mappings; we then introduce VR-specific
notions such as a virtual world generator, renderers, and
displays, which are used to fool the robot’s sensors. VRR
displays do not necessarily resemble a display or video
screen in the usual sense; instead, each is custom designed
to spoof a particular sensor, techniques for which will be
explained in Section IV. Section V discusses virtual world
and rendering challenges. Section VI presents a simple
mobile experiment, and Section VII concludes by assessing
the differences between VR and VRR, and speculating on
the implications of this work.

II. EXPERIENCING VIRTUAL REALITY

In this section we give background on Virtual Reality (VR)
for humans and other living organisms. Then, we will show
the connections to VRR, and define full VR and partial VR.

A. How living organisms experience virtual reality

VR for living organisms can be defined as “inducing
targeted behavior in an organism by using artificial sensory
stimulation, while the organism has little or no awareness
of the interference” [15]. Creating “targeted behavior” re-
quires tracking the organism and rendering the virtual world
accordingly, as shown in Fig. 2. “Awareness of the interfer-
ence” refers to the phenomenon of presence [24], and is an
important criterion of a successful human VR experience.
Interestingly, according to ”poison theory” [18] the failure
of human sensor fusion to accept a credible situation is
proposed as one of main reasons causing cybersickness; in
such a situation being poisoned is a possible cause, and
thus vomiting is a reasonable reaction. Similarly, if a robot
expects to be spoofed, such a non-viable set of sensor inputs
could warn the system of this possibility, analogously as
proposed in [2].

Next, consider “artificial sensory stimulation.” Fig. 2
demonstrates how a VR experience is generated. It shows
that VR is not limited to visual stimuli but includes all
possible sensing modalities. Besides vision, common sensing
modalities include audio and tactile feedback, proprioception
(through e.g., treadmills), olfaction [23], and even Electrical
Muscle Stimulation (EMS) [19]. Also, fooling vision does
not necessarily require an Head-Mounted Display (HMD).
For example, the “visual odometry” of honeybees can be
influenced by changing the pattern of a tunnel they flew
through [28]. Also, for humans, CAVE systems (i.e., sur-
rounded by screens) are considered VR [3].

Fig. 2: The organism interacts directly with a virtual world gen-
erator, which tracks the organism and has renderers that calculate
display outputs based on the simulation state. Rendering on displays
causes stimulation of the organism.

If a VR system does not target all sensing modalities, we
will call it partial VR; let full VR mean that all sensors are
targeted. Biological sensor systems such as proprioception,
the vestibular system, and temperature/pressure sensing in
the skin are quite complex and incomprehensible. Thus,
achieving full VR on humans is practically impossible. Some
simplifications are possible; for example tilting forward a
human wearing a HMD can simulate accelerating due to
gravity. However, for robots, full VR is more feasible.
Various levels of partial VRR can thus be considered.

B. How robots might experience virtual reality
We consider VRR by direct adaptation of how VR is

currently defined for humans. We assume that the robot’s
sensors are not bypassed to inject information directly into
the processor. This would be similar to a Brain-Computer
Interface (BCI) for humans, and for robots it would be
essentially simulation and thus hamper the sensor testing
advantage of VRR. In contrast, we assume that the only way
to affect the robot is to interact with its sensors through a
display, to which stimuli are rendered from a virtual world,
as shown in Fig. 2. For the stimuli to be rendered correctly,
the VRR system must also track and possibly predict the
actions of the robot.

Rendering is not limited to a visual display, but en-
compasses all the sensors being fooled, to be discussed in
Section IV. This provides the main strength of VRR: We can
create a mixed world of real and virtual sensor inputs. For
example, simulation of dynamics involving air and fluid flow,
or slipping on granular materials, is still computationally
intractable and thus prone to artifacts and assumptions in
simulation. Moreover, in simulators it is often assumed
that sensors are perfect, or if noise is considered, then the
injected noise is almost always assumed to be Gaussian.
However, it is usually the case that the Gaussian assumption
is inadequate. There may be unexpected systematic errors
not captured in simulation, such as temperature dependence
of sensors, or interference between electromagnetic or ultra-
sonic sensors. By retaining real sensors on the robot, VRR
would enable targeted experiments with results that can be
more reasonably expected to transfer to deployment.

C. A motivating example
Recall the food delivery robot from Fig. 1a. First, imagine

the robot is equipped with only a single sensor, such as
a camera. For such a robot we can only perform full VR



because with one display all of the robot’s sensors are
fooled, and its actions will be based only on the stimuli
coming from the display, and its internal programming. Next,
assume that the robot is equipped with more sensors, such
as a forward-facing camera, range finders pointed in four
orthogonal directions, GPS, and wheel encoders. The robot
navigates to GPS waypoints, using wheel encoder data to
augment the GPS state estimation. It also avoids static and
dynamic obstacles using data from its camera and range
finders. Whereas performing full VR on such a multi-sensor
robot is possible, it is often too complicated and its main
applications would be spoofing and reverse engineering. For
verification and learning, full VR bypasses one of VRR’s
main strengths, which is the combination of real and virtual
sensor inputs. Thus, we will consider only partial VR on
the following example. The type of partial VR needed will
depend on the use case of VRR.

Imagine a few possible scenarios for each of the four
purposes described in Section I: 1) robustness: The robot
needs to be able to drive over potholed and graveled streets
while avoiding static and dynamic obstacles. 2) reverse
engineering: the robot has been accused of colliding with
a small child and the robot creators want to analyze all
the possible conditions that could cause such an event; 3)
spoofing: someone is feeding false GPS data into a security
robot to derail it from the usual circle; 4) learning: the robot
designers are training a control policy that safely navigates
through crowds of humans, but they wish to avoid needing
to spend many hours walking around the robot to collect
training data.

In the first scenario, we want to test the entire robot
system in environments that are difficult to simulate, with
a mixture of real and virtual inputs. For example, the robot
could drive across a real street while the camera and range
finders are stimulated to create obstacles that require driving
across potholes. In the second scenario, we would need to
use the actual robot and create many scenarios to discover the
cause of the collision-avoidance bug. In the third scenario, we
would need to test that anomaly-detection code and fallback
strategies work well in many different situations. In the final
scenario, training is expensive to do with real humans, but the
need for safety means we would like to make sure the trained
policy works on the actual robot before full deployment.

III. GENERAL MATHEMATICAL FRAMEWORK

This section takes the examples from Section II as a
starting point and both formalizes and generalizes them into
a precise mathematical framework that captures VRR and
extends naturally from typical robotics models.

Consider a generic robot that is equipped with sensors,
actuators, and computation. Let X denote its standard state
space, which could be its configuration space or more general
phase space to include time derivatives. Let U denote its
action space, which corresponds to the set of commands
that can be given to the robot. The robot has one or more
sensors, which are each modeled by a sensor mapping; the
most common form of this mapping is h : X → Y , but
in general, X could be replaced by a space that includes
time, state histories, or unpredictable disturbances [17]. Each
y = h(x) is called a sensor observation.

A state transition equation x′ = f(x, u) determines the
effect of the action u ∈ U when applied at state x ∈ X ,
resulting in a new state x′ ∈ X . The system feedback loop
could occur over discrete time at fixed intervals, be event
driven, or any other common possibility.

The robot selects an action u according to a plan, which
has the form π : I → U , in which I is an information space,
defined for robots in [14], but derived from [1], [31]. Thus,
the action u = π(η) is chosen based on an information state
or I-state η, which is derived (a mapping) from initial condi-
tions, the sensor observation history, the action history, and
possibly the state transition equation and sensor mappings. A
common example is that in a Bayesian setting, η corresponds
to a posterior pdf that takes into account all models and
existing information. As another example, η could simply
be the most recent sensor observation, y, resulting in pure
sensor feedback. Note that there is no direct access to the
state x at any time (unless a powerful enough sensor can
measure it, which is unlikely in practice).

To provide VRR, the robot should be “tricked” into exe-
cuting its plan as designed, even though it may not traverse
the state space in the way that it “believes”. The safest way
to implement this is to ensure that every sensor provides
observations that the robot would expect based on execution
of its plan. Because the sensors are an integral part of VRR,
we assume we cannot bypass them and directly manipulate
the robot’s memory and I-states.

Let D denote a display output space, in which a particular
display output is denoted by d ∈ D. A display is associated
with a sensor, implying a relationship in which the display
output d causes a targeted observation y. Thus, there is a
function σ : D → Y , called the spoof mapping. More
generally, the spoof mapping may depend on state, to yield
σ : D ×X → Y .1

How does the display know what to output? For human-
based VR, a Virtual World Generator (VWG) (see Fig. 2)
maintains a virtual world, which is then rendered to displays
according to the tracked configuration of the human. The
same idea is needed for VRR. Let S denote the virtual
state space. Note that S and X could be the same or vastly
different. Each display uses the state s ∈ S to determine
the output through a rendering mapping, r : S → D. Thus,
d = r(s) is the rendered output to the display when the
VWG is in state s.

More generally, the display output might depend on both
the physical state x and the virtual state s. In this case, the
rendering mapping is r : S ×X → D and d = r(s, x). This
analogously happens in human-based VR, in which we must
know where the user is looking (equivalent to x) and what in
the virtual world needs to be rendered (equivalent to s). The
implementation of r might then require a tracking system to
estimate x (analogous to VR head tracking [16], [32]), but
in this paper we will assume that the VRR system includes
sufficiently accurate tracking.

There are now two options for creating the Virtual World
Generator, depending on our knowledge of the robot:

1Of course, the display is embedded in the physical world. We use this
notation for the spoof mapping for clarity, implicitly defining X as “the
rest of the world.” Ideally, the display would not alter configuration space
obstacles; in reality this will depend on the design of the display.



1) Black-box robot: If we have no knowledge of the
internal algorithms of the robot, then the VWG should
maintain a complete and perfect virtual state space,
mimicking the behavior of the real world with suffi-
cient fidelity that the appropriate display outputs can
always be determined.

2) White-box robot: If we know the internal algorithms of
the robot, the VWG can directly induce the transitions
of I-states inside of the robot with an incomplete
or imperfect virtual state space; the VWG need not
maintain a high-fidelity artificial world.

The first choice is appropriate when we do not have
direct access to the I-states. This is the common situation
in human-based VR, in which it is impossible to measure
or understand the brain’s I-state (all relevant neural activity).
The second choice is available for VRR but not human-based
VR because we might have access to the robot’s design. The
implications of this are quite powerful. For example, if we
know that the I-state completely ignores one sensor, then
there is no need to design a display for it. Similarly, if the I-
state severely quantizes sensor observations, then the display
resolution could be significantly lowered. The VWG may
more resemble a simple state machine that emits the correct
displays rather than a physics simulator.

A. Black-box robots

Consider the case of a robot where we know its sensors
and their mappings, and can track the robot’s actions, but
know nothing of its algorithms or internal state. The VWG
ideally would construct and maintain a complete physically
plausible world, of sufficient fidelity that no sensor would be
able to detect the presence of the artificial display. Precise
information about the robot’s supposed configuration in a
fictitious environment is maintained by the tracking system.

The sensor mapping implies a sensor preimage for each
sensor reading y ∈ Y , defined as

h−1(y) = {x ∈ X | y = h(x)}. (1)
Since sensors usually are many-to-one mappings, h−1(y)
could be a large subset of X . For example, a proximity sensor
that returns TRUE if the sensor is within five centimeters of
a wall, and FALSE otherwise, h(x) = TRUE would induce
a preimage that correspond to all states that put the sensor
within five centimeters of a wall.

In general, the collection of sensor preimages for all
possible sensor readings forms a partition of X . For a given
sensor mapping h, let the partition be denoted Π(h). The
sets in Π(h) should be thought of as equivalence classes,
because for any two xi, xj in the same sensor preimage,
h(xi) = h(xj) and the states are indistinguishable with that
single sensor.

This has implications for the necessary resolution of the
virtual state space. Whereas X may be continuous, S can
be formed by discretizing X as the common refinement of
all partitions Π(h) for all sensors. Within each element of S,
all corresponding states x will then be guaranteed to produce
the same sensor readings. Two challenges remain: First, some
sensors (such as cameras) have such fine-grained mappings
that this approach would be prohibitively complex. Second,
a computational burden is added of needing to compute

whether the robot will transition between states in S, based
on its state transition model in X . However, especially for
robots with simple sensing modalities (such as swarm robots
or micro-scale applications), this approach can dramatically
simplify the corresponding VRR system.

B. White-box robots

For the case of a white-box robot, we focus on how to
use the VRR system to induce specific targeted behaviors
by reasoning in I-states. The I-states of the robot may
correspond to a set of possible physical states, a belief
distribution over the physical state space, or something more
abstract. For example, a simple vacuuming robot may have
I-states that correspond to cleaning in free space, cleaning
along a wall, having completed cleaning, and has reactive
transition rules between these states and their associated
behaviors.

For simplicity, assume the robot has a finite I-state I,
action space U , and sensor mapping h for every sensor. Also
assume that the plan π : I → U is known. Assume an
event-based transition model, in which the robot performs an
action and gets a sensor observation at each transition. Each
sensing and action history can be thought of as an input string
that drives the robot into a specific I-state. The traversal
of the information space can be mathematically treated as
a deterministic finite automaton, with state space I, input
symbol space Y , and a state transition map that yields next
I-states based on the current I-state, action according to π,
and observation y.

If we know the initial I-state, then inducing specific
behaviors involves searching for a sequence of sensor values
that drive the robot to the target I-state. The case in which
we do not know the initial I-state is more interesting because
it allows for analysis of behavior over all possible initial
conditions, and is a first step toward reverse engineering an
unknown robot.

We now develop a first, simple, theoretical result for VRR.
Assume a robot is given, with known sensors, action space,
plan, and deterministic finite information space, and that the
robot’s actions are hidden or unknown.

Proposition: A polynomial-time algorithm in |I| and |Y | ex-
ists that computes a sequence of targeted sensor observations
that will drive the robot to any desired target state, or else
decide that no such sequence exists.
Sketch of proof: In the synchronizing word problem in
automata theory, we seek a word in the input alphabet of
a given deterministic finite automata (DFA) that will send
any state of the DFA to one and the same state [30]. In our
problem, this is equivalent to finding a sequence of sensor
readings that would cause a robot with known structure and
plan to be in a specified I-state after the sequence. For n-state
DFAs over a k-letter alphabet, algorithms exist to find the
existence of and example of a synchronizing word of length
polynomial in n and k, in polynomial time [6]. �

The above is an “open-loop” approach to inducing targeted
behaviors in a known robot; we do not observe the actions
that the robot takes or use them to estimate the current I-
state. The problem of adaptively estimating the I-state is
an interesting open problem. If we can control some or all



(a) HMD (b) Optical system

Fig. 3: (a) For human-based VR, the human vision system is
spoofed by wearing a screen on the head and blocking external
light. (b) A lens is placed between the screen and eye so that the
display appears to be further away.

inputs to a robot’s sensors, then under what conditions can
observing its resulting actions give us enough information
to conclusively determine its I-state? Can the approach be
extended to the case where we are attempting to infer the
structure of the information space, or deciding between a
few candidate information space models?

IV. DESIGNING DISPLAYS

The mathematical framework of Section III is simple but
abstract. This section provides more details on how displays
are designed to confuse particular sensors. This results in the
spoof mapping σ : D → Y .

A. Displays for a camera
Suppose the robot uses a standard RGB camera, for

example, with VGA resolution, global shutter, and standard
lens. A sensor observation y = h(x) would correspond to a
complete specification of an image captured by the camera.
The observation space Y is large, containing 640 × 480 ×
256 × 3 elements. We want a display so that for any y
of interest, there exists a display output d ∈ D for which
y = σ(d).

A common means to spoof a camera is by placing an
ordinary RGB screen in front of it; this approach has been
taken to spoof security systems in [12]. For VRR, the
approach is analogous to a human wearing an HMD; see
Figure 3a. Each display output d would specify the eight-bit
RGB values every pixel in a display image. For a standard
1080p display panel, this would imply that the display output
space D contains precisely 1080× 1920× 256× 3 values.

Placing a standard smartphone or tablet display over a
camera causes several issues: 1) ambient light, if not blocked,
also affects the camera input; 2) A lens is required between
the display and the camera to make the camera focus
correctly (see Figure 3b), unless an exotic alternative, such
as a light field display [13], is used; 3) The camera might
capture the rolling scanout of the display images, rather than
a complete image, which suggests that vsync must be used to
control the display and its frame rate should be significantly
larger than that of the camera; 4) The resolution of the
display should be significantly higher than that of the camera,
in terms of pixels per degree; even though in theory matching
resolution should suffice, the display is almost impossible
to align perfectly to avoid severe quantization artifacts; 5)
numerous other problems might affect performance, such
as noise, limited dynamic range of the display, and optical
aberrations.

In the case of a black-box robot, it is generally assumed
that the robot’s internal processing is unknown. However,
in the case of a white-box robot, algorithms such as image
processing, computer vision, and SLAM, could be known.
What if the camera is merely used to detect and track large
blobs of solid colors? In this case, a much simpler display
might be sufficient, which could have a lower resolution
or frame rate. Whereas this may not be a meaningful use
case for the presented white box purposes of verification and
learning, it is a powerful idea for grey box (where we have
partial knowledge of the robot’s internal algorithms) versions
of spoofing and reverse engineering because in these cases
we often have an idea how the algorithms behave and we
strive for minimalism, due to practical reasons, in display
and virtual world design.

B. Displays for contact or proximity sensors
Next, consider simple sensors for which Y = {0, 1}, such

as a mechanical contact or bump sensor. In one mode, y = 0,
there is no contact. In the other mode, y = 1, the bumper is
pressed and contact is made. In this case, the display needs
only to press the bumper to spoof the robot, which can be
accomplished by a mechanical attachment. In this case, D =
{0, 1}, and the spoof mapping takes an obvious form: y =
σ(d) = d. Thus, a “display” in this case merely smacks
the contact sensor so that it reports contact! The situation is
similar for a typical proximity sensor. If proximity is detected
by a simple infrared detector, then an object needs to be
placed into its field of view to report detection. The set D
and mapping σ remain the same as for the contact sensor.
Naturally this interference must occur at desired intervals to
create a “virtual world” for the robot. Thus, the VWG must
maintain information from which occlusions are rendered as
appropriate to make the robot perform the targeted behavior.

C. Other display examples
A display could be designed for any sensor aboard a robot.

A force/torque sensor can be fooled by a more complicated
smacker, such as a robot arm. A method for building a
display for LiDAR was presented in [26], such that objects
can appear closer than the display, or are even erased from
the LiDAR. Although we did not find existing work for other
sorts of distance sensors, it is not difficult to imagine displays
such as a fully sound-absorbing surface with a microphone
and a loudspeaker for a sonar, or a system of adjustable
mirrors for infrared.

A display that would fool wheel encoders is challenging
to consider. Without tampering with the electronics, either
the wheel or the whole robot must be somehow altered. An
interesting example is fooling ants’ odometers by shortening
or lengthening their legs [34]. If the geometry of the robot
allows, the size of the wheels could be altered to mimic
systematic errors in wheel encoders. If the robot is suspended
in the air, then an external clamp could be used to impede the
movement of the wheels by a desired amount by increasing
friction, allowing dynamic control of wheel movement, but
this also depends on the mechanical design of the robot.
However, in many use cases, such as detecting slippage or
getting stuck, a more useful VRR design would be to spoof
the other sensors and allow the real wheel encoder data.



V. VIRTUAL WORLD AND RENDERING CHALLENGES

Rendering in the classical computer graphics sense means
generating an image from a model [25]. To render into an
HMD, an additional element of tracking is required because
rendering depends on the device’s location, thus combining
the virtual and real worlds. Whereas rendering on an HMD
and a visual display meant to fool a robot’s camera may
sound similar at first thought, subtle differences must be
taken into account. For an HMD and any screen meant
for humans, displays have been optimized to “fool” human
eyes, for which there is an accepted notion of normal vision.
However, because of the wide variety of possible cameras,
it can be difficult to design a display that would fool any
camera, due to challenges explained in Section IV-A.

Rendering and virtual world models are also required for
other sensors, and the additional corresponding displays may
also carry unique tracking challenges. Consider human-based
VR. Whereas audio rendering requires only head tracking,
for haptic rendering all relevant degrees of freedom, for
example hands, must also be tracked. For VRR, the chal-
lenges regarding the virtual world and tracking are similar but
broader. In tracking, all parts of the robot that contain sensors
to be spoofed must be tracked in the real world. Moreover,
the idea of VWG and rendering to a haptic display or an
IMU is a concept that must be properly defined. Whereas
for a touch display the idea is simple, such as outputting
0 or 1, the possible delays in rendering (smacking) must
also be considered. A display for an IMU would be more
complicated because internal mechanical elements would
have to be manipulated.

Finally, any knowledge of the robot’s internal algorithms
can be used to simplify the complexity of the VWG, as ex-
plained in Section III. However, in many modern algorithms,
the robot’s internal state space may be intractably large.
State-space coarsening or approximation strategies should be
explored to make testing these systems more feasible.

VI. A SIMPLE PROOF OF CONCEPT

We performed a simple experiment to demonstrate how a
vacuum cleaner robot, Neato Botvac D5, can be fooled to
think it is in a smaller passable area than it really is. The
setup is shown in Fig. 4. The human is holding a piece of
cardboard that acts as a haptic display to stimulate senors
so that the robot believes it cannot move beyond. In Fig. 5
are two maps created by the robot, where in (a) the haptic
display is used, and in (b) the robot is free to use the whole
room. Interestingly, we also observed that this haptic display
is insufficient to fool the range finder, because most of the
room was mapped but simply deemed impassable, thereby
demonstrating the concept of partial VR being useful for
inducing behaviors.

VII. CONCLUSION

This paper has introduced the notion of virtual reality for
robots (VRR), by drawing parallels between VR applied
to humans (and other organisms) and ways in which a
robot could be tricked by spoofing its sensors. This has
led to a mathematical framework that contains general and
formalized notions of displays, rendering, and VWG, which
are directly interleaved with standard notions from robotics,

Fig. 4: A human (Markku) with cardboard, acting as a VWG,
haptic renderer and display for a Neato vacuum cleaner robot.

(a) (b)
Fig. 5: Two maps created by the Neato robot. (a) is the map where
the robot thinks it cannot pass any further, and (b) is the full room.

including state spaces, actions, sensor mappings, state tran-
sitions, and information states. Using this framework, we
clearly see many open and interesting questions for further
research by identifying both the similarities and differences
between standard VR and VRR, and also for conduct-
ing extensive testing and experimentation. These are worth
pursing because of the enormous potential for applications
such as reliability testing, reverse engineering, security, and
machine learning, as explained in Section I. For example,
better anti-spoofing sensor fusion could be developed after
spoofing possibilities and connections to human-based VR
are properly understood, perhaps by building on a language-
theoretic view of planning and filtering [22].

We expect significant future work to emerge in both VR
and robotics by leveraging the parallels and distinctions
made in this paper. Interesting VRR questions are inspired
by human-based VR, and vice versa. For example, most
“information” that would correspond to activation of pho-
toreceptors on the retina is discarded or compressed by
the ganglion, amacrine, horizontal, and bipolar cells before
neural impulses are passed to the brain along the optic nerve
[20]; this is analogous to the calculation of information states
in a robot. Furthermore, photoreceptor density, sensitivity,
and activity rates vary substantially along the retina. Such
understanding has motivated techniques such as foveated
rendering for human-based VR [8], and leads to questions
such as how knowledge about sensor limitations and sensor
fusion methods can be exploited to facilitate VRR solutions.
Likewise, the ability to completely know the inner workings
of a robot may offer insights into the improvement of
human-based VR, for which sensory systems, perception,
and physiological effects are not fully understood (we did
not engineer ourselves!).
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