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Abstract— This paper considers a fundamental, optimal path
planning problem that requires simultaneously minimizing path
length and maximizing obstacle clearance. We show that in even
simple planar settings with point and disc obstacles, the set of
alternative solutions such that no one is clearly better than
another (the set of Pareto-optimal solutions) is uncountably
infinite. In spite of this difficulty, we introduce a complete,
efficient algorithm that computes the Pareto front and a data
structure that finitely represents the complete set of all Pareto-
optimal paths. Particular optimal paths can then be selected
from the computed data structure during execution, based on
any additional conditions or considerations.

I. INTRODUCTION

Path planning is one of the fundamental problems in
robotics. It refers to computing a feasible path from an initial
state of the robot to a goal that avoids obstacles and satisfies
the constraints introduced by the robot motion model or
by the task specifications. It is also expected that the path
optimizes some problem-dependent criteria.

Path length and clearance are the two most common
criteria to optimize, yet they seem to be in conflict. Consider
the problem of finding the shortest path for a point robot
in plane, which can be computed using e.g., the visibility
graph [1] or the shortest-path map [2], [3] of the obstacles.
Such a length-optimal path usually grazes the obstacles, i.e.,
it has zero clearance (Fig. 1). This can be dangerous if
the environment representation or the robot state estimation
introduces uncertainties, especially for robots that move in
close proximity to humans [4]. It is also shown that paths
with low clearance induce discomfort to the passenger of
an autonomous personal mobility vehicle [5]. Paths with
maximum clearance can be obtained by computing the
generalized Voronoi diagram of the obstacles [6]. However,
maximizing path clearance can lead to significantly longer
paths while providing only a slightly better clearance for a
small portion (Fig.2).
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Fig. 1. The shortest path usually grazes obstacles.

Optimizing solely path length or clearance results in paths
that can be otherwise undesirable. Therefore, a significant
research effort is towards finding the best tradeoff between

*This work was supported by Academy of Finland project PERCEPT,
322637.

1 Authors are with Center of Ubiquitous Computing, Faculty of Infor-
mation Technology and Electrical Engineering, University of Oulu, Finland.
{basak.sakcak,steven.lavalle}@oulu.fi

these two [7]. Based on the generalized Voronoi diagram of
the obstacles or the skeleton of the environment, algorithms
that compute short paths, while favoring paths with higher
clearance are proposed (e.g., [4], [8], [9], [10], [11]). A
desired clearance value can be ensured by inflating the
obstacles (i.e., computing the Minkowski sum of the ob-
stacles and a disc with corresponding radius) and comput-
ing the shortest path [12], [13]. Visibility-Voronoi complex
(VV-complex) [14] implicitly contains the visibility graph
and parts of the generalized Voronoi diagram for all clearance
values. A weighted length metric is also proposed to query
VV-complex, which minimizes path length while penalizing
the vicinity to obstacles [15]. These approaches assume that
the tradeoff between path length and the clearance can be
made a priory. However, this is not true in general as it
depends on the task specifications and on the environment.
We argue that the conflicting nature of these two objectives
fits under the formulation of multi-objective motion planning.

Fig. 2. A path with slightly less clearance (dashed path) can be significantly
shorter than a path achieving maximum clearance for a small portion (solid
path) that connects the same start and goal positions.

Multi-objective motion planning arises often in robotics;
instances of this problem are tackled in the context of
multiple robots with independent goals [16], legged robots
[17], and human perception-optimized planning [18]. If
scalarization of objectives is possible, single-objective path
planning methods can be used to find a path with unique
optimal cost [19]. However, for the general case, multiple
paths associated with objective vectors such that not one
objective could be improved without deteriorating another
need to be computed. These paths are called Pareto-optimal.
Considering a grid representation, solution strategies can
be formulated as extensions to graph search algorithms
[20], [21] which renders the computed Pareto-optimal paths
sensitive to the underlying grid representation. In [22], a
sampling-based algorithm incorporated with an evolutionary
algorithm [23] is proposed to handle continuous configura-
tion spaces. Path planning that considers path length and
clearance as optimization objectives is also addressed within
the multi-objective optimization framework, and algorithms
based on evolutionary methods are proposed [24], [25]. Al-
though evolutionary algorithms correspond to a standard way



of handling generic multi-objective optimization problems,
they lack the formal guarantee in achieving Pareto-optimal
solutions. Related to our approach, a deterministic algorithm
that computes the set of all Pareto-optimal solutions, consid-
ering Manhattan distance, appears in [26].

This paper addresses path planning in plane that simul-
taneously optimizes path length and clearance. Rather than
adopting arbitrary weights for the objectives, we propose
an algorithm that characterizes the complete set of Pareto-
optimal solutions. Our approach relies on the introduced
Pareto-Optimal Paths Graph (POP-graph), which contains
edges on the visibility graph of the inflated obstacles that can
take part in the shortest path for all clearance values. Having
computed all Pareto-optimal combinations of path length and
clearance, one can then choose the best compromise between
the two conflicting objectives, according to the application at
hand, and retrieve the corresponding path from POP-graph.
To the best of our knowledge, this is the first method that
computes the entire set of Pareto-optimal paths considering
Euclidean length and clearance.

II. MULTI-OBJECTIVE PATH PLANNING

Multi-objective path planning is the problem of finding a
path that optimizes the multiple objectives while satisfying
the constraints of standard path planning problems. A path,
π, is a continuous mapping to the robot configuration space
X , i.e., π : [0, 1] → X . There are obstacles, which are
open sets and subsets of R2,3, that prohibit the robot to
have certain configurations due to collisions. The set of
configurations that the robot is not in collision with obstacles
is defined as Xfree. Furthermore, depending on the problem
and the robot motion model, additional constraints might
exist that depend on robot configuration or its derivatives
or both. Then, we can define the set of valid paths Πvalid

such that ∀π ∈ Πvalid, π(0) = x0, π(1) = x1, in which x0

is the initial configuration of the robot and x1 is the goal,
π(s) ∈ Xfree and constraints are satisfied ∀s ∈ [0, 1].

If Πvalid is an empty set, there is no feasible solu-
tion to the problem, if not, the goal is to find paths
in Πvalid that simultaneously optimize the criteria given
by the vector J ∈ Rdobj of objective functions where
J(π) = [J1(π), J2(π), . . . Jdobj (π)]T . The vector of objec-
tive functions induce a partial ordering, denoted by ≺, called
dominance. Considering the case where all the objective
functions are to be minimized, this relation is expressed
∀π, π′ ∈ Πvalid, as

π ≺ π′ ⇐⇒ ∀i, Ji(π) ≤ Ji(π′) ∧ ∃k | Jk(π) < Jk(π′)

in which i, k ∈ {1, . . . , dobj}.
If there are conflicting objectives, improving the solution

with respect to one objective function could result in de-
teriorating it with respect to another. Therefore, given two
dobj-dimensional vectors J(π) and J(π′), we can not always
establish a dominance relation between π and π′. A path
π? ∈ Πvalid is non-dominated, i.e., Pareto-optimal, if there
is no other path in Πvalid that dominates π?. Pareto set refers
to the set of all non-dominated solutions and computing this

set is the essence of multi-objective optimization. We reserve
the term Pareto front to describe the Pareto set of solutions
in the objective space.

In general, conflicting objectives result in an infinite
number of Pareto optimal solutions. Therefore, a standard
approach is to use evolutionary algorithms such as NSGA-
II [27] and find as many diverse solutions as possible to
compute an approximation of the Pareto front. However, in
certain problems, it is possible to represent infinitely many
solutions in terms of distinct families where each family has a
representation that is invariant to the solutions that belong to
it. This way, we can represent infinitely many Pareto optimal
solutions using a finite number of families. In the following,
we demonstrate this idea using a simple example.
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Fig. 3. Initial positions of the robots are marked with dashed lines with
respective colors. Red robot follows the solid line and blue robots follows the
dashed line. (left) Paths corresponding to different sacrifice values. (right)
Pareto front in the objective space. Each point (green and orange squares)
maps to the same colored path in the workspace.

Example 1: Consider the case where there are two unit
square robots that need to exchange places (Fig. 3). Both
robots can translate in R2 in four directions, i.e. right,
left, forward and backward, in constant unit speed, and can
change their direction of motion instantaneously. They have
their own independent objectives: minimize arrival time to
the destination. We can define a notion of sacrifice as the
distance each robot slides sideways in the opposite direction
of the other to make space. Let δ1,2 ∈ [0, 1] denote the
amount of sacrifice each robot makes. For instance, if robot
2 commits to going straight, then, the best solution for robot
1 is to slide 1 unit either to the left or to the right, thus,
δ1 = 1 and δ2 = 0 (orange paths in Fig. 3). The arrival time
of each robot is then computed as T1,2 = τ+2δ1,2, in which
τ is the time it takes to reach the goal by going straight at
constant speed. Therefore, we can represent the Pareto front
in the objective space as a single family of solutions such
that δ2 = 1− δ1, ∀δ1 ∈ [0, 1].

III. MINIMIZING LENGTH AND MAXIMIZING CLEARANCE
PATH PLANNING PROBLEM

We address a specific instance of multi-objective path
planning, a bi-objective problem, which corresponds to find-
ing all the non-dominated paths that simultaneously mini-
mize the path length and maximize the path clearance. We
consider a robot that is capable of translating in any direction
in plane, whose position with respect to an absolute reference
frame is denoted by q ∈ R2. A path πq0,q1 is a continuous
curve connecting an initial position, q0, to a goal, q1, i.e.,



πq0,q1 : [0, 1] → R2, such that 0 7→ q0 and 1 7→ q1. The
obstacles O := {O1, O2, . . . , On}, O ⊂ R2, correspond to
a set of points (discs) or interior-disjoint polygons. Given
the distance metric d(q1, q2) = ‖q1 − q2‖, in which ‖.‖ is
the Euclidean norm on R2, JL(πq0,q1) is the path length.
Clearance of a path measures the minimum distance between
the path and the obstacles, i.e.,

JC(πq0,q1) = min
s∈[0,1]

min
p∈

⋃
O

(d(πq0,q1(s), p))

in which p denotes a point in the obstacle set.
Let Πq0,q1 be the set of all paths that connect the initial po-

sition q0 to goal q1 without intersecting with the obstacles. To
each path πq0,q1 ∈ Πq0,q1 , we can attribute a 2-dimensional
vector J = [JL(πq0,q1), JC(πq0,q1)]

T that contains the path
length and the clearance. As we are minimizing the path
length and maximizing the clearance, path πq0,q1 dominates
path π′q0,q1 , i.e., πq0,q1 ≺ π′q0,q1 , if JL(πq0,q1) < JL(π′q0,q1)
and JC(πq0,q1) ≥ JC(π′q0,q1) or if JC(πq0,q1) > JC(π′q0,q1)
and JL(πq0,q1) ≤ JL(π′q0,q1). Based on these definitions, the
problem is formulated as follows.

Minimizing length and maximizing clearance path
planning problem (MinLMaxC): Find the set of all non-
dominated paths Π?

q0,q1 ⊆ Πq0,q1 such that

Π?
q0,q1 = {π?q0,q1 ∈ Πq0,q1 | @ πq0,q1 for which

πq0,q1 ≺ π?q0,q1}. (1)

In the case that the goal q1 is visible from q0 for all admis-
sible clearance values such that both q1 and q0 have enough
clearance or all the paths in Πq0,q1 have zero clearance, the
set Π?

q0,q1 contains a single element. However, these are
trivial instances and for the remaining settings, Π?

q0,q1 has
the following property.

Proposition 1: There exists an interval [c0, c1] ⊂ R, in
which c0 < c1, such that Π?

q0,q1 contains a path with
clearance c, ∀c ∈ [c0, c1].

Proof: Let πq0,q1 be the shortest path with clearance
c = JC(πq0,q1) that is not the line segment connecting q0 and
q1. Similarly, let π′q0,q1 be the shortest path with clearance
c′ = JC(π′q0,q1) in which c0 ≤ c < c′ = c1. Let Mc and
Mc′ be the sets of points such that for each point in the
set, the distance between the point and the closest obstacle
is less than c and c′, respectively. Since the clearances of
πq0,q1 and π′q0,q1 are c and c′ respectively, πq0,q1 ∩Mc = ∅
and π′q0,q1 ∩M

c′ = ∅. If we allow π′q0,q1 to have a clearance
c < c′, we can shorten it thanks to the triangular inequality,
since now it can intersect with Mc′ \Mc. Then, it is true
that the length JL(π̃q0,q1) of this shortened path π̃q0,q1 is less
than JL(π′q0,q1), i.e., JL(π̃q0,q1) < JL(π′q0,q1). Furthermore,
since πq0,q1 is the shortest path with clearance c, it is also true
that JL(πq0,q1) ≤ JL(π̃q0,q1) < JL(π′q0,q1). Since c′ > c and
JL(πq0,q1) < JL(π′q0,q1) both solutions take part in Π?

q0,q1,
∀c < c′.

Since [c0, c1] is an uncountably infinite set, the following
is true for Π?

q0,q1 .
Corollary 1: Set of Pareto optimal paths Π?

q0,q1 defined
in (1) is an uncountably infinite set.

We can formulate MinLMaxC as a graph search on
a grid and apply a suitable multi-objective graph search
algorithm, such as Multi-objective A* (MOA*) [20], to find
an approximation of the Pareto set. However, the level of
approximation will be tightly related to the selected grid
and increasing the grid resolution would not necessarily
improve the diversity of the solutions as this depends on
the environment. Thanks to Proposition 1, we can also take
a different approach and augment the search space with one
of the objectives. To this end, we introduce the notion of c-
feasibility; a path πq0,q1 is called c-feasible if JC(πq0,q1) ≥
c. Consequently, we can define the shortest c-feasible path
planning problem (MinLc) as the problem of finding the
minimum length c-feasible path. Therefore, MinLMaxC
can be reformulated such that it translates to the set of
MinLc for all admissible clearance values (c-values), i.e.,
c ∈ [cmin, cmax]. The endpoints of the admissible clearance
interval are determined such that cmin is the c-value when
the goal is no longer reachable by a straight line incident
to1 q0 and cmax is the maximum attainable clearance, i.e.,
the clearance of the path with maximum clearance on the
Voronoi diagram connecting the initial and goal positions. To
solve a single MinLc, we can rely on the visibility graph of
the obstacles. To this end, the shortest c-feasible path can be
found by inflating all the obstacles by c, i.e., computing the
Minkowski sum of the obstacles and the open disc centered at
the origin with radius c, and computing the shortest path on
the visibility graph formed by the bitangents of the inflated
obstacles.

Since Π?
q0,q1 is an uncountably infinite set (Corollary 1),

solving all the corresponding MinLc is not possible. We can
obtain an approximation of the Pareto set of MinLMaxC
by sampling the interval [cmin, cmax] (either discretizing
using a fixed step-size or adopting a more tailored sampling
strategy) to obtain a finite number of clearance values and the
corresponding MinLc. It is clear that, the level of approxima-
tion is related to the particular discretization strategy that is
selected and the number of MinLc to solve. To overcome the
discrepancies introduced by an arbitrary discretization, we
propose to rely on an event-based discretization and compute
a finite number of families that collectively represent all the
Pareto-optimal paths for MinLMaxC. To achieve this, we
first compute a set of critical events which might have an
impact on the Pareto front defined in the objective space.

IV. PROPOSED STRATEGY

This section introduces our strategy to solve the
MinLMaxC by means of creating a data structure that
carries the solution to MinLc for all admissible c-values,
i.e., [cmin, cmax]. We first introduce the POP-graph, which
contains the potential edges that can take part in the shortest
path from a start position q0, to a goal q1, for all c ∈
[cmin, cmax]. In the following, we explain how to construct

1If the goal, q1, is visible from q0 for c = 0, the path length
equals d(q0, q1) for all 0 < c ≤ cmin. Thus, the objective vector
[d(q0, q1), cmin]

T will dominate [d(q0, q1), c′]
T , ∀c′ < cmin.



and query this data structure to compute the Pareto front,
considering point (disc) obstacles.

A. Implicit Graph Representation

While constructing the POP-graph, we rely on an implicit
representation for the edges, that we adopt from VV-complex
[14]. Graph nodes do not explicitly map to a point in R2,
instead, they are supported by the circles centered at the ob-
stacles. Each circle is the boundary of the disc corresponding
to an obstacle inflated by c. Note that the inflated obstacle
is an open disc, thus, the path can intersect with the circle.
Consequently, the edges are the bitangents to the circles.

u

v

c

uvll

uvlr

uvrl

uvrr

αuv

Fig. 4. The four bitangents to the circles Cc(u) and Cc(v) of radius c,
centered at u and v, respectively.

For two distinct point obstacles u and v, ~uv represents
the ray starting from u and passing through v. Each pair of
circles with radius c > 0 centered at u and v, corresponding
to the inflated obstacles, Cc(u) and Cc(v), respectively, can
have at most four bitangents. They are denoted as uvll, uvrr,
uvlr, and uvrl, in which the subscripts denote the tangency
side with respect to ~uv (Fig. 4). In the following, we will use
uv to denote a generic edge without specifying the tangency
sides. Let αuv be the angle between the absolute x-axis
(aligned with −−→q0q1) and the ray −→uv. The outer bitangents
uvrr and uvrr retain the same slope, αuv for all c > 0.
The inner bitangents uvlr and uvrl rotate about the midpoint
between u and v, i.e., 1

2 (u + v), clockwise and counter-
clockwise, respectively. Hence, the slope of uvlr is equal
to αuv − arcsin 2c

d(u,v) , consequently, the slope of uvrl is
equal to αuv + arcsin 2c

d(u,v) for varying c. Note that, for
c > 1

2d(u, v), uvlr and uvrl disappear since two circles
intersect.

Each edge is associated with a validity range, i.e., a set
of disjoint clearance intervals, in which it is potentially on
the shortest path from a start position to goal. Therefore,
the graph topology varies with the clearance. The interval
boundaries, i.e., the endpoints of the intervals forming the
validity range of an edge, are determined by critical events.

The resulting POP-graph 〈LE ,R〉 is a list of implicit
edges, together with their validity ranges R, such that each
edge e ∈ LE is valid only for a range of c-values, i.e., for
c ∈ R(e).

B. Critical events and event handling

We construct POP-graph by progressively adding edges as
they interact with the existing ones, i.e., as they get involved
in critical events. Assuming general position for the point
obstacles, in particular, assuming that no three points are
collinear, the edge list starts with LE = {q0q1}. Every
time we add a new edge to the list LE we compute the

corresponding critical events that it is involved in. Each
event, 〈c, e1, e2,type〉, in which type refers to the type
of the critical event, is added to the event list Q. While
Q is not empty we pop the event with the smallest c-
value and proceed according to its type. To this end, we
identified three critical events: split event, blocking event and
unblocking event. In the following, we explain what each
event corresponds to and how we handle the changes that it
induces to the graph topology.

u

v

w
uvlr

vwrl

(a) Split

u

v

w

uvll
uvlr

uwlr

(b) Blocking

u

v

w

uvlr

vwrr

(c) Unblocking

u

w

v

uvll

vwll

uvlr

(d) No Unblocking

Fig. 5. Critical events. (a) uwll is split by the obstacle centered at v, uvlr
and vwlr are created. (b) uvlr is blocked since it can not take part in a
shortest path to goal. (c) uvlr can get unblocked once it gets equally sloped
with uwlr, i.e., once obstacle at v splits uwlr . (d) If an outer tangent gets
blocked, it will not get unblocked since its slope is constant.

Split Event: When an edge, uv, becomes tangent to
the circle Cc(w) corresponding to the obstacle centered at
w at c, then uv is split into two by Cc(w). This can
also be seen as the event when the bitangents uv, uw
induced by the same obstacle vertex (same tangency side)
are equally sloped. This event closes the clearance interval
of uv definitely at c (Theorem 2 in [14]) and it is replaced
by two edges, uw and wv. If uw and wv are not part of
LE they are included. Furthermore, if it is the first time
that we considered bitangents to obstacle w, we also add
two more edges: q0w and wq1. The validity ranges of newly
added edges start at max{c,minR(uv)}. This ensures that
the newly included edges will not take part in POP-graph
before the edge that they interacted with.

Blocking Event: An edge can get temporarily blocked,
which means that for the interval that it is blocked it can not
be a part of the shortest path. This happens if two edges uw
and uv get equally sloped at c such that Cc(v) splits the edge
uw, and vw is an inner tangent (Fig. 5a). It is possible that
uv is not a part of POP-graph yet. Then, the shortest path to
any point that falls the opposite side of the ray aligned with
uv with respect to Cc(v) will not contain uv. Any edge that
proceeds uv in the shortest path will be contained in the area
limited by the circular arc on Cc(v) and vw. Therefore, when
the circles Cc(v) and Cc(w) intersect at c = 1

2d(v, w), uv gets
blocked since the corresponding discs create a discontinuity
in the free space for inflation radius c > 1

2d(v, w) (Fig. 5b).
Note that, same is true also for the case when uv is an inner
tangent. In this case, vw gets blocked when Cc(u) and Cc(v)



intersect at c = 1
2d(u, v). This situation can be reverted,

i.e., uv (or similarly vw) can regain its valid status, by an
unblocking event. When an edge gets blocked, we close its
validity interval at c. Similar to split event, we add the edges
connecting the blocking obstacle to start and goal, if they are
not already in LE .

Unblocking Event: Unblocking event happens when an
edge that lost its validity due to a blocking event, regains
its validity. Each unblocking event has a blocking pair, yet
the reverse is not always true. In other words, a blocked
edge may never regain its validity. An edge uv that got
blocked can get unblocked once it becomes outer bitangent
to the circles Cc(v) and Cc(w) (Fig.5c). However, if the
blocked edge is already an outer bitangent, then it will not
get unblocked since the slope of outer bitangents are constant
(Fig. 5d). Note that, for a blocking event associated with
the clearance value cblock, it is also possible that unblocking
event happens at c < cblock, in this case, uv will not get
blocked. In the case of an unblocking event, we are not
creating new edges but updating only the validity range of
uv by including a new interval starting at c.

C. Computing the Pareto front

Once the POP-graph is created, we can query it to solve
MinLMaxC. This corresponds to finding a set of intervals
such that within each interval, solution to MinLc is rep-
resented as a sequence of implicit edges. We start with
computing all the branches from q0 to q1 represented on
POP-graph such that the intersection of the validity ranges of
the edges forming the branch is not empty. For each branch
S = {e1, e2, . . . eK}, in which K is the number of implicit
edges in the sequence, together with the corresponding
validity ranges R(ej), j = 1, . . . ,K, we can compute the
interval that this branch is valid, i.e.,

R(S) =

[
max
ej∈S
{minR(ej)}, min

ej∈S
{maxR(ej)}

]
.

Therefore, S is capable of representing a family of infinitely
many paths, denoted as ΠS , in terms of a sequence of
bitangents ∀c ∈ R(S). Furthermore, there is a bijective map
µS : R(S) → ΠS such that each c ∈ R(S) maps to a
unique c-feasible path πcq0,q1 ∈ ΠS . Note that all paths in ΠS
belong to the same homotopy class. If S contains edges with
validity ranges composed of disjoint intervals, then, we can
replicate this sequence and compute the range of each replica
accordingly until each sequence has a continuous validity
range.

A path πq0,q1 ∈ ΠS is constructed as a concatenation
(denoted by ;) of M sub-paths, i.e., πq0,q1 = π1;π2; . . . ;πM ,
such that π1(0) = q0, πM (1) = q1 and πm(1) =
πm+1(0),∀m ∈ {1, . . . ,M − 1}. In our case, each sub-path
πm, m = 1, . . . ,M , is either a line segment corresponding
to a bitangent or a circular arc and follow the rule that if πm
is a bitangent then πm+1 is a circular arc, moreover, π1 and
πM are tangents to the corresponding circles from q0 and q1

respectively. Therefore, for a path πcq0,q1 = µS(c), the path
length is given as the sum of the lengths of these sub-paths,

i.e., JL(πcq0,q1) =
∑M
m=1 lπm(c). Length of each sub-path,

lπm can be computed as a function of c such that

lπ(c) =


√
d(u, v)2 − 4c2 if π is a bitangent

θ · c if π is a circular arc√
d(u, v)2 − c2 if π ∈ {π1, πM}

in which u and v are the centers of the two circles supporting
the bitangent and θ corresponds to the angle difference
between the slopes of two consecutive bitangents πm−1 and
πm+1, in which πm is the circular arc. Recall that the slope
of an outer bitangent is constant, while an inner bitangent
rotates about the midpoint between the centers of the two
supporting circles.

Once all the edge sequences from initial position to
goal are found, we can divide [cmin, cmax], the interval of
admissible c-values, into a set of disjoint sub-intervals such
that

⋃N
i=1 Ii = [cmin, cmax], in which N is the total number

of sub-intervals and Ii = (cimin, c
i
max]. The endpoints of the

sub-intervals, cimin and cimax, correspond to the endpoints
of the validity ranges of the computed sequences, which are
determined by the critical events. A sequence S, hence the
path family ΠS , is valid in an interval Ii iff Ii ⊆ R(S).
By the way we construct the sub-intervals, it is not possible
to have the endpoints of the validity range of a sequence
to be in a sub-interval (excluding the boundaries). Then, the
Pareto front in the objective space can be expressed through
the bijective map l? : [cmin, cmax] → R>0 which is the
length of the non-dominated path as a function of clearance,
i.e.,

l?(c) =


minS∈Ψ{JL (µS(c)) | I1 ∈ R(S)} if c ∈ I1
...
minS∈Ψ{JL (µS(c)) | IN ∈ R(S)} if c ∈ IN

in which µS maps c to πcq0,q1 which is the shortest c-feasible
path represented by the sequence S that is valid in the
corresponding interval and Ψ is the set of all sequences. Note
that even though the map l? is bijective, we can not guarantee
that the corresponding shortest path for each clearance value
is unique as this depends on the environment topology.

We can easily compute the Pareto front in the objective
space, i.e., compute the minimum of two or more functions.
However, finding at which c-value a path dominates another
(if that is the case) within an interval is more involved since
it requires finding the zeros of the length difference of these
two paths. This is not an easy task in general and it might call
for numerical methods. Furthermore, due to the circular arcs,
path length may not be algebraic for certain c-values [13],
which can prohibit finding the roots exactly. However, we
can easily make a tradeoff between the conflicting objectives
using the Pareto front in the objective space and select the
shortest path with desired clearance among the paths in the
corresponding interval. Recall that this operation does not
require us to construct or search the visibility graph for
the corresponding clearance value since we already know
the representation of each family (corresponding branch of



POP-graph as a sequence of edges) that corresponds to the
selected clearance.

D. Numerical example

Here, we present a numerical example to show the ef-
fectiveness of the proposed approach. The considered en-
vironment is populated with 10 point (disc) obstacles. Fig.
6 shows the computed Pareto front in the objective space.
Non-dominated paths, i.e., elements of the Pareto set, with
different c-values are shown in Fig. 7. In total, the Pareto-
optimal paths correspond to 6 families. As expected due to
Proposition 1, there is a non-dominated path for each c-
value that is admissible. However, the inverse is not true.
As clearance increases, certain homotopy classes reach a
limit clearance. This happens when a path represented on
the visibility graph of the inflated obstacles intersects with
the one on the Voronoi diagram for the same homotopy class.
Thus, it can no longer dominate a longer path in a different
homotopy class if the latter one has higher clearance, i.e. if
that class continues to be valid. This is the reason for the
discontinuities in Fig. 6, since the families corresponding
to the paths shown in Fig. 7 for c-values of 28.25 and 35,
respectively, reach the end of their validity range. For 100
trials of 10 randomly generated obstacles in the environment
shown in Fig. 7, it took on average 0.06 seconds to construct
the POP-graph and 0.0314 seconds to compute the Pareto
front on a laptop equipped with an Intel Core i7-9750H CPU
and 32 GB of RAM. There were at most 13 Pareto-optimal
families and the median was 7.
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Fig. 6. Pareto front represented in the objective space.

E. Computational efficiency

Since two edges, of which there are are at most O(n2)
in the POP-graph, can get involved in an event only once,
there are at most O(n2) events in which n is the number of
obstacles (vertices). In the worst case, each event requires us
to add new edges and check for their corresponding events.
Adding new edges and updating the validity range of the
corresponding edge require a constant number of operations
to be done, resulting in O(1) time. For each edge, checking
for new events have time complexity O(n), resulting in
a total time complexity of O(n3) to build the complete
POP-graph. Extracting the representation of the set of Pareto-
optimal families is sensitive to the total number of classes
for a given problem. At present, we know only that the set
of families is finite, but do not have an upper bound on the
worst case over all possible planar environments. In practice,
we have observed that very few families arise, even from
fairly complex environments. It remains an open problem
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Fig. 7. Non-dominated paths with different clearance values. Initial and
final points are marked as green squares, the obstacles are red dots, and the
dashed circles correspond to inflated obstacles.

to determine tight bounds on the number of Pareto-optimal
families in terms of the input representation.

V. CONCLUSION

In this paper, we proposed a method to compute the Pareto
front for path planning that simultaneously optimizes path
length and clearance. The core of our approach is to compute
critical events that determine the clearance intervals in which
Pareto optimal paths belong to the same family and share
a common implicit representation. Event-based nature of
our method enables a discretization of the Pareto front that
does not suffer from the resolution limitations of standard
methods. Having computed all non-dominated combinations
of path length and clearance, one can make the most suitable
tradeoff given the problem at hand.

Extension to polygonal obstacles is a subject of ongoing
research and requires us to compute the events when each
vertex (incident edges) takes part in POP-graph. Another
possible extension is to compute a clearance varying decom-
position of the plane, similar to continuous Dijkstra [2], [3],
in which the critical events would correspond to changes in
the partitions. Note that a geometrically exact decomposition
may not be possible due to circular arcs. At the moment, the
POP-graph needs to be reconstructed if there is a change in
the environment. Although this seems to be amenable for a
real-time implementation, “repairing” relevant parts of the
graph can be interesting.
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