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Abstract— Robots must complete their tasks in spite of 1) Solvability Can a given machine can solve a given
unreliable actuators and limited, noisy sensing. In this paper, problem?
we consider theinformation requirements of such tasks. What 2) Complexity If the machine can solve the problem, how

sensing and actuation abilities are needed to complete a given fficiently (in t 1 f |
task? Are some robot systems provably “more powerful” than efficiently (in terms of time or space, for example) can

others? Can we find meaningful equivalence classes of robot it do so?
systems? This line of research is inspired by the theory of  3) Comparison Are some machines strictly more power-
computation, which has produced similar results for abstract ful, in terms of the problems they can solve, than oth-

computing machines. The basic idea is a dominance relation
over robot systems that formalizes the idea that some robots
are stronger than others. We show that this definition is directly

ers? It is known, for example, that pushdown automata
can accept a strictly larger set of languages than can

related to the robots’ ability to complete tasks. Our prior work finite automata. Likewise, Turing machines are more
in this area assumes perfect control and sensing, requires that powerful than pushdown automata.
the robot begin with a single fixed initial condition within 4) EquivalenceAre there apparently dissimilar machines

a known environment, and models of time as a sequence of that can solve the same set of problems? For example
variable-length discrete stages, rather than as a continuum. In ) ’

this paper, we substantially improve upon that earlier work by it is a standard result that a Turing machine with
addressing these problems. multiple tapes is functionally equivalent to an ordinary

| INTRODUCTION single tape Turing machine. Less obviously, Turing

machines and recursive functions have been shown to
Suppose we want a robot to complete some task, such  pave equivalent computation power.

as navi'ga'tin_g 0 a.goal, manipulating an object, or lqui These ideas are well understood. In the sense that they
|tse|f.W|th|n Its en}nronment: M any different combinatof form the formal foundation of the discipline, they are part
sensing and motion modalities can be (and have been) us the core of computer science. Current robotic science

to complete each of these tasks. Indeed, much of the rObo'[il%\%ks a comparable foundation; the field needs a unified

literature is concerned with findingufficient conditionson theory in which meaningful statements can be made about
the sensing and actuation capabilities needed to compl%ee complexity of robotic tasks and the robot systems we
such tasks. In this paper we take a different approach. FBDiId to complete these tasks

a given task, we are interested in determining rieeessary Can we adapt standard models of computation to the

o P _
;(r)g?ggr?%r"%’gﬁ;:ig?iﬁgﬂ;ﬁﬁgﬁ tz;iarseksnf(;?;dlbnw tbotlcs context? Unfortunately, these models are fundame
q ’ 9 tally ill suited for studying robotics problems. They assm

term goa! of this resegrch IS to Qevelop a theqry of robo%at all of the relevant information is supplied ahead ofetim
and sensing that helps in answering such questions. Answer

o th tions are important b we expect th ¥ the machine’s tape. Sensing and uncertainty are central
0 these questions are important because we expect tha eq‘ining issues in robatics. This structure is destroyedrby a
deep understanding of the difficulty of tasks in terms o

- ) ) . ! priori encoding of the problem on a machine’s tape.
their information requirements will lead to simpler andsles : o . .
. . Research that studies the competitive ratios of online
expensive robot designs.

methods [10], [14], [15] is a step in the right direction.
A. Robots, sensors, and the theory of computation This work is useful for understanding how the quality of
This work is inspired in part by the theory of computationoptimal solutions is affected by sensing complexity. How-
which begins with precisely defined models of abstract maver, online algorithms generally are concerned only with
chines, such as finite automata, pushdown automata, Turiagtimality, rather than feasibility. Moreover, researatthis
machines, and so on [8]. In this contexip@blemis usually —area generally does not consider imperfect sensing oraontr
a language of strings; to solve the problem is to accept The aim of this paper is to develop a “sensor-centered”
strings in this language and reject all others. The theory dfieory for analyzing and comparing robot systems. Our
computation gives answers several kinds of basic questioggntribution is to develop such a theory more completelp tha
about these machines and problems. in prior work and to illustrate its usefulness with examples
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| aval | e}@s. ui uc. edu dominance and its properties are in Section IV. Section V



relates the continuous-time model we introduce in this pape

to our prior work that models time as a sequence of discrete u 6. v
stages. We make concluding remarks and discuss open prob- Robot ' Nature
lems in Section VI. We illustrate with examples throughout. Y

Il. RELATED WORK

We partially address issues issues of robot comparison aﬁi@. 1. As the robot interacts with its environment, an aitficecision
. . . . . . . maker nature generates disturbances.
dominance in prior work [13], in which we establistdami-
nancerelation over robot systems. Although it was intendegach region in the partition, the robot knows what action to
as a preliminary step toward a general theory of robots arsglect in order to make progress toward its goal.
sensors, that work has several important shortcomings thatOthers in artificial intelligence [2] and control theory [5]
limit its applicability. [7] have addressed related issues.

1) Perfect control— In [13], we assumed that the robot lll. BASIC DEFINITIONS
can execute all of its actions with perfect precision This section contains basic definitions for planning with
and complete reliability. The motions of real robotsuncertainty in the robot’s current state. In summary, thmto
are imprecise and unpredictable. lives in some state space, beginning at an unknown start
2) Perfect sensing- Although [13] accounts for the state and choosing actions that change the current state in
importance of sensing by assuming that the robot isome possibly noisy way. The current state is hidden from
uncertain of its current state and must rely on sensinghe robot, which must rely instead on observations that give
it assumes that sensor readings are uncorrupted mcomplete and possibly noisy “hints” about the true state.
noise. A more realistic sensor model would allowThe noise in control and sensing is generated by a fictional
information from sensors to be subject to error. external decision maker we calhture for which we assume
3) Modeling of time- In [13], time is managed in discrete some behavior model is known. See Figure 1. Details of the
stagesThe robot makes a single decision at each stagfrmulation follow.
This discretization of time may be unsatisfactory fora, State spaces and environment spaces
many kinds of systems, especially those that require
complicated control strategies. Continuous-time mOdf'ic
els have a more direct correspondence with reality.
4) Fixed, known environmert In [13], we assumed
(tacitly) that the robot operates in a fixed, known

The robot moves in a state spa&e which must be suf-
iently expressive to encode all of the relevant inforimati
about the condition of the world. In a simple cagémight

be defined as the configuration space [12] of the robot in a

. . : ) certain environment. Time proceeds continuously starding
environment. This assumption, which stems from th Lo L \ .
. , . T =0 and continuing indefinitely. The robot’s state at time
formulation of the current state as the robot’'s config-

. IR : . . ) is denotedz(t).
uration within its environment, is unsatisfactory in all . s
What happens when the robot begins with limited or no
but the most structured contexts.

. . L. knowledge about its environment, in the sense that position
5) Identical state spaces The dominance relation in [13] d geo?”netry of obstacles, map topology navigagility of

) n

'Sspgzg "’_‘gecf)omc;;?g?g%;?:?;z:h;rtest?slrf (t:i?sesisriirlr;? Stth%%rain, gnd so on are unknown? Ilmperfect knowledge about

frameWork must allow each robot to have a dist,inc e environment is a more drastic ms’_tance_of the general

state space Issue of sfcate uncertamt_y. If the §tate is _deflned to include

' a description of the environment in addition to the robot’s
In this paper, we present substantial revisions and extessi configuration, then uncertainty in the environment can be
to the framework of [13] to remedy these shortcomingsrepresented as an additional dimension of state uncestaint
These extensions illuminate several issues and subtieies  Concretely, choose amnvironment spacé of which each
evident in the former paper. elementE € £ is a potential environment for the robot.
Our goals are similar to those of Donald [4]. The reducPossibilities for€ (with varying degrees of realism, interest,

tions in that work are similar to our dominance relationpracticality, and amenability to analysis), include:

Donald’s notion of calibration is related to our idea of 1) the set of bounded planar grids with occupancy maps,
initial conditions. The most fundamental difference isttha 2) the set of simp'e po'ygons in the p|ane, and

that for robotic problems for which sensing is a crucial &ssu interiors and piecewise analytic boundaries.
the information space is the space in which the problem cang) the set of terrain maps frork? to R, giving the
most naturally be posed. elevation or navigability at each point in the plane.

A third line of related research is the work of Erdmann [6];1e state space is formed by combining the robot's configu-
which is itself grounded in the preimage planning ideas dugion space with &, so thatX = C x £. In our models, the
Lozano-Perez, Mason, and Taylor [11]. In Erdmann’s workye environmentz ¢ £ affects the robot by influencing the

sensors are modeled by giving a partition of state space. Thgyte transitions that the robot makes and the observations
problem of sensor design is choose a partition so that frofRat the robot receives.
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Fig. 2. When the environment is uncertain, the identity of therenment

becomes part of the state of the system. Above are three stteanf Fig. 3. [left] The robot in Example 2 gives velocity inputs thetermine
example system containing a mobile robot in the plane withrenment —a nominal trajectory. [right] Nature interferes with thigjectory, but error
uncertainty. bounds ensure that the final state is contained in a circladitis¢6,,q.

denote a bound on the magnitude of the commanded velocity,

B. Actions and transitions
and leté,,,, denote a bound on magnitude of the error in

The robot influences its current state by choosing actmqﬁe velocity. LetX = R?, U = {u € R? | [[u]| < tmaz},
from some action spacé&. At each instantt, the robot = {0 €R? | ||0]| < Omaz}, and B
chooses someu(t) € U. Let U, denote the space of aII B .
functions from[0,¢) into U, and letU = U,¢(g ) Ut For 3 (2(0), Uy, 0;) = z(0) +/ (u(s) + 0(s))ds.  (4)
simplicity of notation, adopt the convention thit 0) = 0. 0

Definew : [0,00) — U as the robot’s complete action history,At every timet, the robot can be certain that its state lies
and letu, € U denote the robot’s action history up to (butwithin a closed ball of radiug?,,,..., centered at the nominal
exclusive of) timet. (error free, i.ef = (0,0)) final point. See Figure 3.

We include a speciatermination actionur € U. The a
robot selectaur to indicate that it has finished its task andC Observations

intends to terminate execution. We require that(if) = ur, ) h bot ide feedback |
thenu(t') = ur for all ¢ > . As time passes, the robot’s sensors provide feedback in

How do these actions influence the state? Recall thil€ form of observationsdrawn from an observation space

we intend to model disturbances and unexpected events %sLetY; denote the space of functions mappifig/] into Y
interference from nature. Choices made by both the rob8f1d 18tY" = U,c(o ) Y¢- The robot's complete observation
and by nature affect changes in the state. @etlenote a history isy : [0, Oo) — Y. The observation history up

nature action spaceLet ©, denote the space of all functions (inclusive) isy; € Y;. _ _
mapping [0, 1) into ©, and let® — U @ Let § - Nature interferes with the observations by choosing a
- t€[0,00)

gature observation actiofrom a space¥. Let ¥; denote

[0,00) — O denote the complete hlstory of nature action
5 the space of functions mappirig, ) into ¥ and lety =

andd; € ©; the nature action history up to (and including)

L Useo,00) ¥+ The robot's complete nature observation action
We describe changes in the state witistate transition history is4 : [0,00) — ¥; the nature observation action
function history up to time (but not including) is ¢, € U,. The
d: X % U (ﬁt « (:)t) X, (1) observations received by the robot are governed by the

te[0.00) observation functiorh : X x ¥ — Y.

Example 3:Suppose the mobile robot has a sensor that
detects the distance to some landmark. Bet= R? and
Y = R. Without loss of generality, position the landmark
at the origin. Assume that the sensor has bounded additive
disturbance, so thall = [—¢Ymaz, Ymaz] @nd h(z, ) =
z(t) = <I>(x(0),ﬂt,5t). (2) |l=|[ +v. See Figure 4. At each instant, the robot knows

with certainty that its state is within an annulus of width
This notation of a “black box” state transition functiong,,  —centered at the origin. 0

follows notation employed in control theory, for example by
Chen [3]. . Information spaces and information mappings

To inform its decisions, the robot has access only to
the histories of actions it has selected and observations it

The intuition is that, given a starting stat¢0), and action
histories u; and #; of equal duration for the robot and
nature respectively, the state transition function coreptite
resulting state

_ Example 1:A familiar special case of (2) occursif and
# are smooth functions and there exists a functfosuch

that has received so far. That is, to seledt), the robot can
usewu; andy,. This motivates our definition of thhkistory

D(x(0), Uy, 0;) =z(0 / f(=x 0(s))ds.  (3) information space
Ihist - U Ut X Y;‘/ (5)

In this case, the system dynamics can be described by the

. . . te[0,00)
differential equationt = f(x, u, 6).

The tuplen(t) = (u:,yr) € Znist containing the robot’s
Example 2:Consider a point in the plane with velocity action and sensing histories is the robdiistory information
input, for which the motion is subject to noise. Lef,,, State



a memoryless information feedback stratégy. O
We assume that a given strategy is executed until it

\/\. o selectsur. The time when this occurs, the resulting final
. r * state, and the observations received along the way are all
(0,0) affected by the strategy itself, the starting stater(0),

and the actions of naturé and ¢). Assuming that the

robot executesr, the termination time ig'(w, x(0),0,¢) =

inf{t € [0,00) | w(n(t)) = wur}, and the final state
Fig. 4. [left] The robot in Example 3 has a sensor that reportmiay 1S F(W,x((l),f,l/}) = @(w(O),ﬂtf,Htf), in which ¢y =
estimate of the distance to the origin. [right] Accounting fmise bounded T(7r, gp(())7 0, q/))_

by ¥maz, the observation confines the robot’s state to an annulusdihw . ) .
2hmaz. Example 7 (Concatenating strategieskiven two strate-

giesm; andmg, a new strategy that concatenates them (that
The history information state, since it is composed ofs, executes them in sequence) is expressedr(oyt)) =
functions of time, is unwieldy in isolation. As a result, wem(n(t)) if m1(n(t)) # ur and w(n(t)) = m2(n(t)) other-
select aderived information spac€ and an information wise. By nesting this construction, arbitrarily many stgies
mappingx : Zn;s: — Z. Informally, a derived information can be chained together. O
space represents “compression” or “interpretation”
histories. ) ] .
We say that a stateis consistentvith an information state A_taSk(Qr proble.m) is defined by a g.oal regidey C nist
n(t) = (i, 3i;) if and only if there exists some starting statel” history information space. This notion is a generalizati

2(0) and nature historie@andzﬂsuch thath (z(0), @y, 0;) = of the traditional idea of a goal state or goal region in
2 andh(z(t'), b(t')) = y(t') for ' < t. The next ’exalmple i state space. Generallysalutionis an information feedback

an information mapping that arises directly from the notior?tr""ttegly tt:jat rea_chefﬁ. In thetpreselnce ?f ulnct:_ertalr;g/ n
of consistent states. control and sensing, there are two relevant solution cascep

1) A strategy is gpossible solutionif there exists some

of thﬁ. Tasks and solutions

Example 4 (Nondeterministic information mappind)et time t,, somef; € ©, and somej; € ¥, , such
Indet = pow(X) — 0. The relevant information mapping is thatn(t,) € Zg. The robot may reachics, but it is also
Fndet * Thist — Indet, Under which each history information possible that control or sensing errors will prevent it
state maps to the minimal subset &f consistent with it. from achieving this goal.

The intuition is that(¢) gives a set of “possible states” for 5y A strategy is uaranteed solutioif there exists some
the robot at timet. Because the robot's true state is always time t, such that, for anﬁf and anyzZt n(ty) € Ig
L) Lg gl .

consistent with its history information state, this set éver The robot can always reach its goal, regardless of any
empty. 0 interference by nature.
Other solution concepts, such as those based on performance
E. Information feedback strategies bounds or on probabilistic guarantees of reaching the goal,
are possible but we will not consider them here.
How does the robot decide which actions to select? We IV. COMPARING ROBOT SYSTEMS

describe the robot's strategy as a feedback strategy
Tnist — U that specifies an action for history information
state. As the robot executes the actions are given by

In this section, we show that the basic results of [13] still
hold in our generalized framework. We define a dominance

u(t) = 7(n(t)). We callw aninformation feedback strategy relation between robot systems to formalize the informal

. idea that some robots are “more powerful” than others, in

Even though we defing as a feedback strategy over the . : ) . o .

. . . . the sense of having richer sensing and motion abilitiess Thi
history information space, the next two examples illustrat

that feedback over a derived information space can Somree_latmn has direct implications on the ability of robotteyas

times be a natural way to express familiar kinds of straHagieto complete tasks.
A. Information preference relation

The first ingredient we need is some notion of when
fne derived information state is “better than” another. Fix
I;’Si/derived information stat& and an information mapping
k : Inist — I. EquipZ with a partial orderinformation

Example 5 (Open loop strategy)et Z;;,. = [0, 00) and
consider the information map;;...(n(t)) = t. In this case,
the derived information state is simply the time elapse
Then if the robot has an intended open loop action trajecto
w : [0,t) — U, a strategy to execute is w(n(t)) =
w(ktime(n(t)) if t <ty andm(n(t)) = ur otherwise. [ 1in [13], we used a slightly different observation model, inigthh

X xU — Y. In this context, the time period over which observations
Example 6 (Memoryless strategyinother possibility iS are available is the half-open interviél, t); 3 is undefined at itself. As

that it is enough to know the “most recent” observation s@ result, the closest we can come to a memoryless strategy istthes
7. —Y and . Gi | | ! “left-hand limit of g att, seps(n(t)) = lim,, _,— y(t'), provided the limit
obs =Y androps(n(t)) = y(t). Given a memoryless plan gyisis This technicality is part of the motivation for pretiag y from

~v:Y — U, the composed functioR,y; 0 v : Zp;s¢ — U IS depending directly omi, as we have done in this paper.



preference relation<, under whichn; < 7, means that,

is “more informed than);. The only constraint o is that
is must be a partial order satisfying the following consiste
property for anyt € [0, 0), u; € U; andy; € Ys:

(6)

“(771) = K’(TD) = H(nlvahgt) = "1(772717&@/),

in which the concatenation on the right side indicates tiat t

additional history information fromx; andy, is appended to

71 andns. The intuition is that information preference must
be preserved if the same actions are selected and the same

observations received from both ands.

Example 8:Recall x,4.; from Example 4. Define< so
thatn, < ne if and only if kpaet(n2) C Knaet(1). It is easy
to verify that the consistency property holds. |

B. Definition of dominance

Ry Ry

RV (82)) % w0 (t2)

a'y)

~(2)
1 Ui

2

w1 () % w(n® (1))

Fig. 5. An illustration of Definition 1.

then R, dominatesR; underZ, x, and=, denotedR; < Rs.
f Ry < Ry, and Ry < Ry, then R; and R, are equivalent
denotedR; = Ry. If Ry 4 Ry and Ry 4 R, then Ry and
Ry areincomparable denotedR; 5 Rs. )

Our goal is a formal way to compare the power of robot |nformally, Definition 1 means that, regardless of the

systems. Consider two robot systeids and R, defined as
in Section I

R, =
Ry

(X(l)jU(1)7y(1)7@(1)’\I;(l)’q)(l)’h(l)) (7)
(X® U y® o® v® @ p?) (8)

Becausd/ (") need not have any special relationshigtc),
and likewiseY' (V) need not be related 16(), the comparison

transitions made byR; (and regardless of the interference
from natureR; receives), there exists some strategy for

to reach an information state at least as good, in the sense
of information preference, as that reached By. This is
what we mean when we describe the statenféntd R, as
meaning thatR, can simulateR;. Figure 5 illustrates this
intuition.

cannot be made directly in the history information spacez. Dominance and solvability
which simply records actions and observations. Insteag, ma Now we can establish the relationship between dominance

the two history information spaces to the same derivegnd solvability. Fist, we define a class of *
information space. The corresponding information mappin : '

) L Tands® :7% T

arEKZ(l) :If(ist * “hist

To compare distinct robot systems (perhaps with distinct

well-formed”kas

%hased on the information preference relation.

Definition 2: Consider a sef C 7 of derived information

configuration spaces) operating in the same family of envit@tes. If, for anyy € I andn, € 7 with 7, < 7, we have

ronments, use the environment space construction dedcrigé € I, then1 is preference closed
in Section 1lI-A with R; and R, in the same environment

space, so thak (V) =) x £ and X =@ x €.

o

For any preference closed goal region, we have the follow-
ing result. A similar, but weaker (because of the limitation

Now we can state the dominance relation between robat robot models) result appeared in [13].

systems.
Definition 1 (Robot dominance)Consider two robotg?;
and R,. If, for all
. n(l)(tl) c I};)t'
e 1O (12) € T, with KO () (1)) < £ () (1)),
o th €]0,00), and
D - 7
b €U
there exists an information feedback strategy: I,(j.)t —
U®, such that for allz® ¢ X consistent with;") ()
and z(? € X consistent withy(®)(t,), there exists, €
[0, 00) such that for all
1e) (1)
L] 9t/ 6 @t/l y
e 1D ce®
0 gl
. z/;t(,l) € \I/( | and
(2 T.(2
° wt,z cv ,
if Ry executes]ff,1 ) from time t; to th and R, executesr(?)
from time ¢, to té, we have

k(N (t))) = k(n® (th))

o U

9)

Lemma 1 (Solution by imitation)Consider two robot
systemsR; and R, with R; < R, and a preference-closed
goal regionZg. If there exists a guaranteed solution ¢
to reachZg, then also there exists a guaranteed solution for
R, to reachZg.

Proof: Execute the strategy, implied by Definition 1
with R?. BecauseR; < R, the final derived information
state 77t:22) reached byR, will be preferred to the final

derived information statos),f,1 ) reached byRk,. Becaus€ls is

preference closed amzf,l) €Zq, we haven,f?) €Zg. O
1 2

D. Dominance examples

This section presents a few examples to illustrate the
implications of Definition 1.

Example 9 (Omniscient sensing and perfect control):
Consider a degenerate case with= X, and h(z,v) = =.
Let ® = ¥ = {0} be dummy singleton sets with no effect
on state transitions or observations. This situation gives
the robot perfect control and complete information about
its state. Choose:(n(t)) = y(t) = z(t). Let n; < no if
and only if 5, = ns. In this context, Definition 1 becomes



| R, in which z(t) is the position of the gate relative to the

cow at timet. For simplicity, assume perfect control and
perfect sensing by settin@ = ¥ = {0}. The action space

is U = [1, 1], with © = {0} and ®(=(0), @, 6;) = 2(0) +

Fig. 6. The lost cow of Example 11 searching for a gate. fot u(s)ds. We compare three distinct modef%, Cs», and

a statement about the regions of state space reachable%yundem”det'

Suppose three such systes, R, and R3 differ only in
their action space& "), U(®), andU®). Let Z(A) denote
the subset of state space reachable by a robot with action?
spaceA. SupposeR; < R,. Rs need not be comparable to
either R, or R,. Note that additional robot models can be
constructed from unions & V), U(?) andU (%), We have the
following results for which we omit the easy proofs because

3)

can determine both the direction and distance to the
gate.

) Co: Let Y?) = {-1,0,1} and h(z,) = sign(x).

This allows the cow to determine the direction it must
move to reach the gate, but not the distance.

Cs: Let YO = {0,1} and @ (z,4)) = 1if 2 = 0
andh® (z, 1)) = 1 otherwise. This is the standard lost

cow sensing model, in which the cow cannot see the

of space limitations: ! >
gate from a distance, but can detect the gate when it

ZwW) < zZwPuu®) (10) arrives.
zoWy = zZWWuu®) (11)  Perhaps surprisingly, these three models are equival¢hein
ZWUWuU®) c zZw®uu®) (12) sense of Definition 1. This comes about as a result of the fact

that each can eventually determine its state (by finding the
These results are somewhat analogous to Lemmas 2-4 jhte) and after the state is known, the state uncertaintyatan

[13]. Note that in combining action spaces in this way, Weecur. To simulate; with Cs, first execute the algorithm of
allow the robot to choossequentiallythe action set from 1] then move to the state occupied 6y. O

which to choose its action. The results fail if the robot is
somehow allowed to choose actions from each constituent
set in parallel. |

V. ADISCRETE-STAGE MODEL
This section describes how the continuous-time model

Example 10 (Varying error boundsRecall the incom- gi\{en in Section Il is related to the discrete-stage formu-
pletely specified models in Examples 2 and 3. Considé?t'on of [13].
two robot systemsR; and R, with state transitions as in A. Transforming from continuous time to discrete stages
Example 2 and observations as in ExampleR3; and R, Consider a division of time into variable length stages, in
differ only in the error bound8'ahy, 1z, 05ahe, andyars. which, in each stage, the robot executes a single informatio
feedback strategy to completion. We require of each of these

We will compare these robots undey, ..
Comparingfiss, t0 65k, and i), to Piek,, there are strategies the following special property:
Definition 3 (History invariance):If, for all 7(t) € Zps,

three cases:
1 2 1 2 ~
1) If 9%;}7« < 9%{%7 and %Eg%m < w%m thenR; < R. all z € X consistent withy(t), all § € ©, all /) € ¥, and
2) If en}aa: < 07n2a$ and’l/}mézw < wmfm; theng%l g R21 all y(O) cY, we have
3) If 97(m)1m < egm)zr and '(/)7('m)lm < 7/)7(ngm or 9$nt)zz < 97(77,()1m ~ ~ ~ ~
F(ﬂ-7 I? T](t)7 07 w) = F(ﬂ-’ Jj? 77(0)7 07 w)’
thenr is a history-invariantstrategy. o

anddjgt)zz S w'gr%t)lwa then R2 %Rl
(2)
The intuition of the definition is that the robot executing

This implies thatos), = 6.2, and i, = (2. if and
7 is free to use the observation and action history generated

only if Ry = R,. These results follow in a straightforward
manner from Definition 1. The intuition of this (perhaps

%%ring its own execution, but it cannot peer into the past
before its execution began in order to make decisions.

unsurprising) example is that one robot system dominat
the other if its error bounds are smaller.

Example 11 (A Lost Cow)A well-known probleminon- ~ Given a continuous-time robot system?
line algorithms is thelost cow problem[1], [9] in which (X,U.Y,0,¥,®.h) as in Section Il and a sefl of
a near-sighted cow moves along a fence searching forhéstory-invariant information feedback strategies, ¢oret a
gate, as illustrated in Figure 6. The difficulty under thediscrete-stage systefd = (X,U,Y,0, V¥, f,h) as follows:
standard sensing model is that the cow must systematicallyl) The state spac& is unchanged.
search in both directions from its initial position withcary 2) The action space & = II.

(13)

information about the distance or direction to the gate. The 3)
interest in this problem derives from potential applicato  4)
in (or at least the potential for better understanding of) 5)

exploration in unbounded environments. 6)
We formulate the lost cow problem and consider how the
sensing model affects the cow’s searching ability. Xet= 7)

The observation space 1§ = 17;

The nature action space &= ©. _

The nature observation action spacelis= W.

The state transition function i§: X x U — X, with
f(a,m) = F(x,z,0,1(0). -
The observation function is: X x U x ¥ — Y.



The system starts at some (unknown) initial stafec X. memory usage, sensing requirements and solution quality?
Letz, € X,u, €U, yp €Y, 0 € ©,andy;, € ¥ denote the Is there a satisfactory way to scalarize these competing
appropriate values at stage These sequences are related t@bjectives into a single-valued objective function, or ko
each other byt 11 = f(zk, ur, 0r) andyy, = h(xk, uk, ). We expect a single problem will lead to many different Pareto
The history information state consists of the action andptimal solutions?

observation historiesy, = (u1,y1,...,ux—1,yx—1). We
now argue that this discretized system faithfully représen
the underlying continuous-time system.

Lemma 2:Any action sequence,...,ux executed by
R reaches the same final stateand the analogous final
history information state as dods

Proof sketch:Use induction onk and the fact that the
strategies inU are history invariant to show that for each
1 < k < K, there existg, with the stater; for R equal to

B. Reductions and decision problems

One of the most powerful ideas in the theory of compu-
tation that we have not explored here is the ideaeafuc-
| tions, which hold promise for comparing robotic problems
themselves. The resulting statements would have the form
“Problem A is at least as hard as Problem B.” To make things
more concrete, we might considelecision problemsin
which the robot must determine if its environménte £ has
the stater(ty,) for R. a certain property. Such problems fit naturally as planning

Note, however, that in making this transformation, we maﬁroblems in information space. To decidfifhas a property
restrict the space of strategies that the robot can emgldy. | = € — {0,1}, the robot must reach the goal region
does not contain a sufficiently rich selection of informatio -

. . . . Iag== € This V(q,F) € knde ,Z2(E)=1
feedback strategies, there may be regions of information o= = {1 € Inist | V(g E) € fina t(n)_ (E) }
space that are no longer reachable under the discretized Y {7 € Znist | V(4 E) € Knaer(n), E(E) = 0}. (14)
model. It remains an open problem to find small (or at lea
succinctly described) sets of strategies that are complete _ _ _ _
nearly complete in the sense of not eliminating any reaehabl In this work we consider only a single independent robot.

%. Cooperation and coordination

regions in information space. We might also consider the performance of teams of coop-
S erative robots on the same tasks. Such work would require
B. The role of robotic primitives an investigation of the joint information spaces that would

In [13], a universe of robot models is generated by arise from the interaction of multiple agents, each having
collection of robotic primitives each of which gives partial only limited information.
action and observation sets. A complete model is formed
by choosing a nonempty subset of primitives. How are
they related to the continuous time models described il R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawlisafching

Section I11? What role do these primitives play’? in the plane,”Information and Computatigrvol. 106, pp. 234-252,
: ' 1993.

The robotic primitives serve two basic purposes. Firsty the [2] R. I. Brafman, J. Y. Halpern, and Y. Shoham, “On the knowledg
provide a clean way of discretizing time. In the discretayst requirements of tasksArtificial Intelligence vol. 98, no. 1-2, pp.

. . i 317-349, 1998.
model, the physical time taken to execute each primitiv 3] C.-T. Chen,Linear System Theory and Design New York: Holt,

is a concern secondary to the termination conditions under” Rinehart, and Winston, 1984.
which the primitive terminates. This behavior is analogousl4]l B. R. Donald, “On information invariants in roboticsArtificial

: : : ; Intelligence vol. 72, no. 1-2, pp. 217-304, 1995.
to the termination action used in the current paper, an 5] M. Egerstedt, “Motion description languages for multi-dab control

can be mimicked by concatenating motion strategies, as in" in robotics,” in Control Problems in Roboticser. Springer Tracts in
Example 7. Second, a catalog of primitives is an effective  Advanced Robotics, A. Bicchi, H. Cristensen, and D. Praitiro,

: : Eds., 2002, pp. 75-90.
way to generate a set of robot models to consider. Give M. A. Erdmann, “Understanding action and sensing by disig

nonempty sets of primitives, it is easy to combine, via usion action-based sensorsihternational Journal of Robotics Reseaych
of these sets, robots constructed from primitives, resyilith vol. 14, no. 5, pp. 483-509, 1995.

« » : : P [7] A. Girard and G. J. Pappas, “Approximation metrics for dite and
a sort of “calculus” over robot models in which individual continuous systemsfEEE Transactions on Automatic ContrdMar.

components can be added or taken away. The appropriate 2005, to appear.
analog for our new continuous time systems with nature id8] J. E. Hopcroft, J. D. Ulman, and R. Motwanintroduction to
less clear Automata Theory, Languages, and Computatidnd ed. Reading,
’ MA: Addison-Wesley, 2000.
VI. CONCLUSION [9] M.-Y. Kao, J. H. Reif, and S. R. Tate, “Searching in an uokm
. environment: An optimal randomized algorithm for the cow-path

Although the results we present here are a substantial problem,” in SODA: ACM-SIAM Symposium on Discrete Algorithms
improvement over those of [13], there are still important 1993, pp. 441-447. _ _ _

. - [10] R. M. Karp, “On-line algorithms versus off-line algdrins: How much
pieces missing. is it worth to know the future?” inProceedings World Computer
A. Computational issues congress 1992. : .

[11] T. Lozano-Rrez, M. T. Mason, and R. H. Taylor, “Automatic synthesis
We have focused mostly on the sensing and motion of fine-motion strategies for robotdfiternational Journal of Robotics
requirements of tasks. An important related question is_ Researchvol. 3, no. 1, pp. 3-24, 1984. _ _
. . . l£12] T. Lozano-Rrez and M. A. Wesley, “An algorithm for planning
to determine the kinds of computation power these tasks collision-free paths among polyhedral obstacl€mmunications of
require. What are the tradeoffs between computation time, the ACM vol. 22, no. 10, pp. 560-570, 1979.
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