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Abstract— Minimalist models have been studied for a broad
array of tasks in robotics. In this paper, we consider the task-
completing power of robots in terms of the sensors and actuators
with which the robot is equipped. Our goal is to understand the
relative power of different sets of sensors and actuators and
to determine which of these sets enable the robot to complete
its task. We define robots as collections ofrobotic primitives
and provide a formal method for comparing the sensing and
actuation power of robots constructed from these primitives.
This comparison, which is based on the how the robots progress
through their information spaces, induces a partial order over
the set of robot systems. We prove some basic properties of this
partial order and then apply it to a limited-sensing version of
the global localization problem.

I. I NTRODUCTION

Among many researchers in robotics, there is a movement
towardminimalism. The minimalist philosophy is to use robots
with very simple sensing and actuation capabilities. A given
task will partition any sufficiently rich set of robots into two
subsets, one containing robots that can complete the task
and another containing robots that cannot. In this context,it
is natural to identify thesimplest robots that can complete
the task. An alternative view of the same approach is to
seeknecessary conditionson robot systems that are able to
complete the task.

To this end, we ask two central questions in this work.
What combinations of sensors and actuators enable a robot
to complete a given task? What does it mean for one robot
to be “simpler” than another? We address these questions by
carefully defining a set of robot systems and presenting a
formal method for comparing the robots in this set.

We want to study a robot’s ability complete certain tasks as
determined by the “complexity” of the robot. To be precise,
we consider the capabilities of the robot in terms of the set of
sensors and actuators to which the robot has access. We allow
the robot to perform computations, but we we do not restrict
the time nor space complexity of this computation.

A. Overview

We are interested in problems for which sensing (or the
lack of sensing) is important. At the heart of the issue is the
idea that the robot does not know its true state. Instead, it
must use its history of actions and sensor readings to draw
conclusions about its state. Since different robot systemshave
distinct spaces of actions and sensor readings, the sensor-
action histories cannot be directly compared. Therefore, we
use aderived information spaceas the meeting ground on

which comparisons can be made. By mapping sensor-action
histories from a variety of robots into the same derived
information space, we can compare the abilities of these robots
in a concrete, formal way.

Our objective is to compare the power of robots with vary-
ing combinations of sensorimotor components. To formalize
the set of robots to which our analysis applies, we introduce
the idea of robotic primitives. A single robotic primitive
represents a self-contained “instruction set” for the robot that
may involve sensing, motion, or both. A robot model is defined
by a set of primitives that the robot can use to complete its
task.

The central idea is the notion of thedominanceof one robot
model over another. In informal terms:

A robot R2 dominatesanother robotR1 if R2

can “simulate”R1, collecting at least as much
information asR1.

The meaning of this definition hinges on the idea of one
derived information state giving the robot “at least as much”
information as another. This leads us to augment the derived
information space with a partial order that indicates prefer-
ences for some information states over others.

For concreteness, we apply these ideas to the task of
global localization, in which the robot must move from total
uncertainty to total certainty in its state. What sensor sets
are minimal for localization, in the sense that eliminatingany
prevents the robot from localizing itself? Using the dominance
idea described above, we give a partial answer to that question.

In this paper we make three primary contributions: First,
we present the idea of robotic primitives for modeling robot
systems as collections of independent components. Second,we
give a definition for dominance of one robot system over an-
other that formalizes the imprecise definition above. We prove
some basic properties of this relation. Third, we apply these
ideas to a limited-sensing version of the global localization
problem. We define a catalog of 4 robotic primitives and fully
determine which of the 15 robotic systems induced by these
primitives can solve the localization problem.

B. Related work

Several lines of research are closely related. The minimalist
approach has a long history, dating perhaps to Whitney [42].
Minimalist approaches have been used in manufacturing con-
texts for part orientation [2], [3], [17], [18], [19], [31],[40],
[43] and in mobile robotics for navigation and exploration [1],
[10], [25], [22], [30], [32], [39].



More directly, a few works have attempted to identify
sensing requirements of tasks. Brafman et al. [9] consider
very similar issues for distributed teams of physically identical
robots in discrete state spaces. Donald [14] also performs
a similar analysis, characterizing tasks according to their
complexity measured in bit-seconds. Erdmann [16] applies
preimage backchaining to the problem of sensor design. Al-
though we are strictly interested in the physical abilitiesof the
robot, other work has explored the computation power needed
for various tasks [7], [8], [21]. Our work is distinguished
from these antecedents in at least two important ways. First,
rather than holding the robot’s motor capabilities fixed, we
allow interactions between sensing and motion to be explicitly
modeled with robotic primitives. Second, by considering the
problem in the robot’s information space, we can, in a general
way, explicitly reason about the robot’s state uncertainty.

Since we consider a global localization task in some detail,
it is worth mentioning the enormous body of work on localiza-
tion methods for robots with many different kinds of sensing
systems. Some methods [5], [6], [11], [12], [13], [20], [37],
[26], [41] passively observe the motions of the robot in order
to draw conclusions about the robot’s state. Others [15], [23],
[24], [33], [34], [35], [36] actively drive the robot to reduce
uncertainty.

While the examples in this paper use nondeterministic
uncertainty, which is based on set membership, the basic struc-
ture of our analysis is compatible with probabilistic uncertainty
models like those of [38]. Many probabilistic methods (for
example, [4], [28]) can be characterized as operating in an
information space whose members are probability distributions
over state space. In this sense, the model of uncertainty we
use is orthogonal to the questions we address in this work.

C. Organization

This paper is organized as follows. Section II lays a
foundation of basic definitions for robotic planning problems.
Section III introduces the concept of a robotic primitive and
defines the set of robots induced by a catalog of primitives. In
Section IV we describe the information preference relation, a
partial ordering over derived information space that formalizes
the idea that some information states are better than others.
The definition of dominance and some basic properties thereof
appear in Section V. In Section VI, we apply the results
from Sections III, IV, and V to the global localization task.
Section VII contains discussion and conclusions.

II. BASIC DEFINITIONS

In this section we present some general definitions for
robotic planning problems.

A. States, actions, and observations

We allow a robot to move in a state spaceX. GenerallyX
will be the configuration space [29] of the robot. The examples
in this paper are for a point robot with orientation in the plane.
In these examples, we useX = W × S1, in whichW ⊂ R
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is the robot’s environment andS1 = [0, 2π]/∼, where∼ is

Fig. 1. A robot in a planar environmentW . Its state space isX = W ×S1.

an equivalence relation identifying0 and 2π, represents the
robot’s orientation.

Time proceeds in variable-lengthstages, indexed by consec-
utive integers starting with1. In each stage, the robot selects
an actionu from its action spaceU and moves to a new
state according a state transition functionf : X × U → X.
At the conclusion of each stage, the robot’s sensors provide
an observationy from an observation spaceY , according to
h : X × U → Y . Call h the robot’sobservation function.
Let xk, uk, andyk denote respectively the state, action, and
observation at stagek. These sequences are related to each
other byf andh:

xk+1 = f(xk, uk) (1)

yk = h(xk, yk). (2)

For convenience, we also define an iterated version off that
appliesk actions in succession:

fk(x, u1, . . . , uk) = f(· · · f(f(x, u1), u2) · · · ), uk). (3)

The robot’s capabilities are modeled in the action and obser-
vation setsU andY and in the mapsf andh that interpret
these sets.

Although we are assuming in this paper that both state
transitions and observations are deterministic, we believe that
in a broader context, managing unpredictability in motion and
sensing is a crucial issue. We omit such uncertainty here
only because it would unnecessarily complicate the analysis
without providing many new insights. A discussion of the
extensions needed to allow this kind of uncertainty appears
in Section VII-A.

B. Information spaces

Although the robot does not know its state, it does have
access to the history of actions it has selected and observations
it has made. The space of such histories is the robot’shistory
information space(history I-space), denotedIhist. After k
stages, the robot’shistory information state(history I-state)
is a 2k-dimensional vectorη = (u1, y1, . . . , uk, yk). We
occasionally abuse notation by writing(η, uk+1, yk+1) for the
history I-state formed by appendinguk+1 andyk+1 to η.

We may define apolicy π : Ihist → U over history I-space.
As a shorthand, we define a functionF that applies a policy
several times in succession, starting with some statex:

F 0(η, π, x) = η (4)

F k(η, π, x) = (ηk−1, π(ηk−1), h(x, π(ηk−1))), (5)



in which ηk−1 = F k−1(η, π, x). Note thatF k depends on
the true statex (which is unknown to the robot) becausex
influences the observation sequence that the robot receives.

The history I-space is not particularly useful by itself. For
pairs of robots whose action or observation spaces differ,
the history I-spaces also differ, making the history I-space
unhelpful for comparing robots. For these reasons, we select
a derived information space(derived I-space)I and aninfor-
mation mapping(I-map)κ : Ihist → I. If the history I-spaces
of several robot models are mapped to the same derived I-
spaceI, then the robots can be compared by examining their
progression throughI.

An important special case is the value ofκ for an empty
history, i.e.κ( ). This value gives aninitial condition for the
robot, reflecting any knowledge the robot may have before
its execution begins. In principle, we may selectI and κ
arbitrarily. The usefulness of a derived I-space lies in itsability
to fully capture the information relevant to the task of interest.

Example 1:We define thenondeterministic I-spaceIndet,
in which derived I-states are nonempty subsets ofX. The
interpretation is that the robot’s derived I-state is a minimal
set guaranteed to contain the true state. The I-mapκndet :
Ihist → Indet can be defined recursively

κndet( ) = X (6)

κndet(η, u, y) =

{f(x, u) | x ∈ κndet(η), y = h(x, u)} (7)

In Equation 6, we assume the robot initially has no information
about its state. �

C. Tasks and solutions

We define atask for the robot as a goal region inIG ⊆ I
that the robot must reach. Asolutionis a policyπ under which,
for any x ∈ X, there existsl such thatF l(η1, π, x) ∈ IG.

III. D EFINING A SET OF ROBOT SYSTEMS

In this section we discuss how a set of robots can be defined
in terms of a set of independent components.

A. Robotic primitives

At the most concrete level, a robot is a conglomeration
of motors and sensors connected to some sort of computer.
Between these components there may be interactions via
open- or closed-loop controls. We abstract this complexity
by defining the notion of arobotic primitive. Each robotic
primitive defines a “mode of operation” for the robot. When
primitives are implemented, they may draw on one or more of
the robot’s physical sensors or actuators. Every kind of motion
or sensing available to the robot must be modeled as a robotic
primitive. Formally, we define robotic primitives in terms of
the action and observation abilities they provide.

Definition 1: A robotic primitive (or simply aprimitive) is
a tuple

(Ui, Yi, fi, hi) (8)

PC

PA

u = π

2

u = π

2

y = π

2

y = 0

Fig. 2. Sample executions of the primitives of Examples 2 and 3. [top] PA

allows the robot rotate relative to its current orientation. [bottom] PC allows
the robot to rotate relative to a globally defined “north” direction.

giving an action setUi, an observation setYi, a state transition
function fi : X × Ui → X, and an observation functionhi :
X × Ui → Yi.

We now give several examples to illustrate the idea. Exam-
ples 3-7 apply to a point robot with orientation in the plane,
so X = R

2 × S1. Illustrations of these primitives appear in
Figures 2-4. We will revisit these examples in Sections V and
VI.

Example 2:Let PA = (S1, {0}, fA, hA). Let fA compute
relative rotations, so that from a statex = (x1, x2, θ), we have
fA(x, u) = (x1, x2, θ + u). SinceYA = {0} contains only a
dummy element,hA is a trivial function always returning0.
This primitive can be implemented with an angular odometer
on a mobile robot capable of rotating in place. �

Example 3:Let PC = (S1 ⊔ {0}, S1, fC , hC). The ⊔
notation indicates a disjoint union operation, under which
identical elements from different source sets remain distinct.
DefinefC(x, u) to set the rotation coordinate ofx to equalu
if u ∈ S1 or to leavex unchanged ifu ∈ {0}. The observation
functionhC returns the robot’s final orientation. This primitive
amounts to allowing the robot to orient itself with respect to
a global reference frame, or to sense its current orientation
without rotating. This primitive can be implemented using a
compass on a robot that can rotate in place. �

Example 4:Let PT = ({0}, {0}, fT , hT ). Define fT to
compute a forward translation to the obstacle boundary. This
primitive can be implemented with a contact sensor on a
mobile robot that can reliably move forward. �

Example 5:Let PL = ([0,∞), [0,∞), fL, hL). For x ∈ X
andu ∈ U , definefL(x, u) to compute a forward translation of
distance at mostu, stopping short only if the robot reaches an
obstacle first. The observationhL(x, u) is the actual distance
traveled. This primitive can be implemented with a linear
odometer. Depending on implementation issues, a contact
sensor may be needed as well. �

Example 6:Let PR = ({0}, [0,∞), fR, hR). Again
f(x, u) = x for all x and u. The observationh(x, u) is
the distance to the nearest obstacle directly in front of the
robot. This primitive models the capabilities of a forward-
facing unidirectional range sensor. �
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Fig. 3. Sample executions of the primitives of Examples 4-6. [top] PT allows
the robot to translate forward until it reaches an obstacle.[middle] PL allows
a robot to specify a distance to translate. [bottom]PR allows the robot to
measure the distance forward to the nearest obstacle, but does not change the
robot’s state.

(x, y)PG

y = (x, y)u = 0

Fig. 4. A sample execution of the primitive of Example 7. The robot senses
its position, but its state does not change.

Example 7:Let PG = ({0},R2, fG, hG). For all x ∈ X,
fG(x, 0) = x, so that this primitive never changes the robot’s
state. For a statex = (x1, x2, θ), let h(x, 0) = (x1, x2). This
primitive roughly corresponds to a GPS device that the robot
can periodically poll to determine its location in the plane. �

Others possibilities for primitives include landmark sensors,
wall followers, visibility sensors, etc. A more complete list-
ing of sensors suitable for adaptation into robotic primitives
appears in Section 11.5.1 of [27].

We believe there are several benefits to modeling robot sys-
tems as collections of primitives. First, we claim that robotic
primitives represent roughly the right level of abstraction at
which planning problems are interesting but manageable. If
we consider sensors at too fine a level of detail, the problem
takes on the character of a closed-loop control system. If the
primitives are too sophisticated, we risk trivializing theplan-
ning problem while creating an unbearable modeling burden.
Second, by dividing time into stages, we avoid the technical
difficulties of describing the robot’s progression throughI in
continuous time. This consideration is increasingly important

if we allow noise to affect state transitions or observations.

B. A catalog of primitives

Let RP = {PA, . . . , PN} denote a catalog of primitives.
A robot model(or simply a robot) is a nonempty subset of
RP. A robot R = {Pi1 , . . . , Pim

} ⊆ RP has action set
UR = Ui1⊔· · ·⊔Uim

and observation setYR = Yi1⊔· · ·⊔Yim
.

The state transition functionfR : X × UR → X, and
observation functionhR : X × UR → YR, are formed by
unioning thef andh maps from the relevant primitives. Since
robots are defined by sets of primitives, it is meaningful to
apply standard set operations such as union or intersection
directly to robots. It is also helpful to define theglobal history
I-space Îhist, which contains all sensor-action histories that
may be encountered by any robot constructed from primitives
in RP.

As we have already discussed, different types of robots have
distinct action and observation sets. Therefore the histories
cannot be directly compared. Instead, choose a derived I-
spaceI and an I-mapκ : Îhist → I in which to make the
comparisons. Since the domain ofÎhist includes actions and
observations for any primitive,κ fully defines a map from the
history I-space of any robot model intoI. The choice ofκ and
I is crucial because our definition of dominance (Definition 4)
is parameterized byκ andI. Our analysis is task-independent
only to the extent thatI can encode the tasks (that is, the goal
regions) in which we are interested.

IV. T HE INFORMATION PREFERENCE RELATION

Our goal is a dominance relation under which we can
declare one robot “better than” another. To do so, we need
a formal notion of one I-state being “more informed than”
another. To that end, equipI with a partial order we call an
information preference relation. Write η1 � η2 to indicate that
η2 is a refinement ofη1. We require� to have the property
that for anyη1, η2 ∈ Ihist, and for anyu ∈ U andy ∈ Y ,

κ(η1) � κ(η2) =⇒ κ(η1, u, y) � κ(η2, u, y). (9)

This is a consistency property requiring preference for oneI-
state over another to be preserved across transitions in I-space.

Example 8:Regardless ofI or κ, it is well-defined (but
perhaps unhelpful) to use a trivial relation under which
κ(η1) � κ(η2) if and only if κ(η1) = κ(η2). �

Example 9:Under nondeterministic uncertainty, we can
define κ(η1) � κ(η2) if and only if κ(η2) ⊆ κ(η1). It is
straightforward to show that Equation 9 is satisfied. �

The information preference relation we choose affects the
goal regions that are sensible to consider. We should selecta
region in which, for every I-state in the region, we also include
any I-states preferable to it. Definition 2 codifies this ideaof
a rational goal region.

Definition 2: Consider a setI ⊂ I of derived I-states. If,
for any η1 ∈ I and η2 ∈ I with η1 � η2, we haveη2 ∈ I,
thenI is preference closed.



κ(ηA) � κ(ηB)

uA πB

RB

κ((ηA, uA, h(x, uA))) � κ(F l(ηB , πB))

RA

Fig. 5. An illustration of Definition 4. IfR2 can always reach an I-state
better than the one reached byR1, thenR1 E R2.

Alternatively, we can view preference closure as a constraint
on �. Fixing a spaceG of potential goal regions, we admit a
partial order� only if every region inG is preference closed
under �. The trivial definition of� in Example 8 always
passes this test, regardless ofG.

V. A DOMINANCE RELATION OVER ROBOT SYSTEMS

Now we turn our attention to a definition of dominance
of one robot system over another. This dominance relation
induces a partial order over robot systems according to their
sensing and actuation abilities. We begin with a technical
definition.

Definition 3: A state x ∈ X is consistentwith a his-
tory I-state η = (u1, y1, . . . , uk, yk) if there exists some
x1 ∈ X such that x = fk(x1, u1, . . . , uk) and yj =
h(f j−1(x1, u1, . . . , uj−1), uj) for eachj = 1, . . . , k.

We can now define the dominance relation. The intuition is
that dominance is based on one robot’s ability to “simulate”
another.

Definition 4 (Robot dominance):Consider two robots
R1, R2 ⊆ RP. If, for all

• η1 ∈ I
(1)
hist,

• η2 ∈ I
(2)
hist with κ(η1) � κ(η2), and

• u1 ∈ U1,

there exists a policyπ2 : I
(2)
hist → U and a positive integerl

such that for allx consistent with bothη1 andη2,

κ(η1, u1, h(x, u1)) � κ(F l(η2, π2, x)) (10)

thenR2 dominatesR1 underI andκ, denotedR1 ER2.
Informally, the definition says thatR2 can always select

actions that take it to an I-state at least as good as the one
reached byR1. See Figure 5. Definition 4 enables us to define
robot equivalence in the natural way.

Definition 5 (Robot equivalence):For anyR1, R2 ⊆ RP,
if R1ER2 andR2ER1 thenR1 andR2 areequivalent, denoted
R1 ≡ R2. The set of robots equivalent toR1 is denoted[R1].

A. Dominance examples

Several examples will clarify the definition.

d d

R2 = {PA, PL}R1 = {PR}

Fig. 6. An illustration of Example 10. The robotR2 = {PA, PL} dominates
the robot R1 = {PR} because the former can simulate the latter. [left]
A distance measurement made directly byR1. [right] Distance is measured
indirectly by R2 using its linear odometer.

Example 10:Let R1 = {PR} andR2 = {PA, PL}. Recall
the definitions of these primitives from Examples 3, 5, and
6. We argue under nondeterministic uncertainty thatR1 ER2

by showing thatR2 can simulateR1 in the precise sense of
Definition 4. Let η1 ∈ I

(1)
hist and η2 ∈ I

(2)
hist with κ(η1) �

κ(η2). SinceU1 = {0}, there is only one choice foru1. Let
l = 4 and defineπ2 so thatR2, starting fromη2, executes
these actions in succession:

(1) Use PL with a very large input to move forward to
the nearest obstacle. Letd = h(x, u) denote the distance
moved.

(2) UsePA with u = 180° to perform a half turn.
(3) Use PL with u = d to return the robot to its initial
position.

(4) UsePA with u = 180° to perform a half turn, returning
the robot to its original orientation.

This policy is illustrated in Figure 6. From here it is easy to
verify that from anyx ∈ X, we haveκ(η1, u1, h(x, u1)) �
κ(F 4(η2, π2, x)). �

Example 11:Let R1 = {PT } andR2 = {PL}. We show
under nondeterministic uncertainty thatR1 E R2. Let η1 ∈
I

(1)
hist andη2 ∈ I

(2)
hist with η1 � η2. There is only one choice

for u1. Choosel = 1 and defineπ2 to choose an input forPL

larger than the diameter of the environment. This causes the
motions ofR1 andR2 to be identical. The resulting derived
I-statesη′1 and η′2 for R1 and R2 are be the same, except
thatR2 receives a meaningful sensor reading that may cause
one or more candidates to be pruned. This sensor information
only makesη′2 smaller, so the preferenceη′1 � η′2 is preserved.
Conclude thatR1 ER2. �

It bears emphasis that the relation induced by Definition 4
depends onκ. The next two examples illustrate this.

Example 12:Let R1 = {PA} andR2 = {PC}. We argue
that R1 E R2 under the usual nondeterministic I-map with
the initial condition of total uncertainty. Letη1 ∈ I

(1)
hist and

η2 ∈ I
(2)
hist with η1 � η2. Let u1 ∈ U1 = S1. Choosel = 2

and defineπ2 to select the following two actions:

(1) Use PC with u = 0 to sense the robot’s orientation
without changing the state. Letθ denote this orientation.

(2) UsePC to rotate the robot to orientationθ + u in the
global frame.



As in Example 11, the resulting states forR1 and R2 are
identical but, sinceR2 knows its orientation, it may be able
to eliminate some candidates thatR1 cannot. This establishes
thatR1 ER2.

Are R1 andR2 equivalent under this I-map? No, because
R2 can, with a single action, sense its orientation, but this
information can never be gathered byR1. ThereforeR2 6E R1

andR1 6≡ R2. �

Example 13:Consider a situation identical to that of Ex-
ample 12, but modifyκ for a different initial conditionκ( ) =
R

2×{π/2}. That is, the robot begins its execution knowing its
initial orientation. Then at every step,R1 knows its orientation
in the global frame, and can simulateR2 using angle addition.
Therefore we haveR2 ER1. But using the same reasoning as
in Example 12, we knowR1 ER2. Therefore, for thisκ, we
haveR1 ≡ R2. �

B. Properties of the dominance relation

We conclude this section with some basic properties that
follow from Definition 4.

Lemma 1:The dominance relationE is partial order. Like-
wise≡ is indeed an equivalence relation.

Lemma 2 (Adding primitives can only help):For any
R1, R3 ⊆ RP, R1 ER1 ∪R3.

Proof: Let η1 ∈ I
(1)
hist, η13 ∈ I

(13)
hist , andu1 ∈ U1. Assume

κ(η1) � κ(η13). Choosel = 1 andπ13(η) = u1 for all η. Then
we have

κ(η1, u1, h(x, u1)) � κ(η13, u1, h(x, u1))

= κ(F l(η13, π13, x)), (11)

completing the proof. �

Lemma 3 (Redundancy doesn’t help):If R1 E R2, then
R2 ≡ R1 ∪R2

Proof: SinceR2 ∪ R2 = R2, it follows from Lemma 2
thatR2 ER1 ∪R2. It remains to show thatR2 ∪R1 ER2. Let
η2 ∈ I

(2)
hist, η12 ∈ I

(12)
hist , andu2 ∈ U2. Assumeκ(η2) � κ(η12.

Choosel = 1 andπ12(η) = u2 for all η. Then we have

κ(ηB , uB , h(x, uB)) � κ(η12, uB , h(x, uB))

= κ(F l(η12, π12, x)), (12)

completing the proof.
�

Lemma 4 (No unexpected interactions):If R1 E R2, then
R1 ∪R3 ER2 ∪R3.

Proof: Let η13 ∈ I
(13)
hist , η23 ∈ I

(23)
hist , andu13 ∈ U1 ⊔U3.

Assumeκ(η13) � κ(η23). Either u13 ∈ U1 or u13 ∈ U3. If
u13 ∈ U1, then becauseR1ER2 there existπ3 andl satisfying
the definition forR1∪R3 ER2∪R3. If u13 ∈ U3, then choose
l = 1 andπ23(η) = u13 for all η. Then for allx, we have

κ(η13, u13, h(x, u13)) � κ(η23, u13, h(x, u13))

= κ(F l(η23, π23, x)), (13)

completing the proof. �

Corollary 5: If R1 ≡ R2, thenR1 ∪R3 ≡ R2 ∪R3.

Lemma 4 might be misleading. Certainly, hardware com-
ponents can be made to interact in interesting ways. For
example, a control system might combine information from
linear and angular odometers to execute circular arc motions.
This apparent contradiction is an artifact of the selectionof the
primitive catalog. To be considered in this framework, low-
level interactions should be modeled as members ofRP in
their own right.

Finally, we connect the idea of dominance to the ability of
robots to complete tasks.

Lemma 6 (Solution by imitation):Consider two robotsR1

and R2 with R1 E R2 and a preference-closed goal region
IG.

(a) If R1 can reachIG thenR2 can reachIG.
(b) If R2 cannot reachIG thenR1 cannot reachIG.

Proof: For part (a) use the policyπ2 implied by
Definition 4 to complete the task withR2. Part (b) is the
contrapositive of part (a). �

VI. EXTENDED EXAMPLE: GLOBAL LOCALIZATION

In this section we present a detailed example illustrating
the definitions of Sections IV and V. We consider aglobal
localization task, in which the robot has an accurate map of
its environment but has no knowledge of its position within
that environment.

A. Task definition

Let W ⊆ R
2 denote a planar environment in which a point

robot moves. Assume thatW is polygonal, bounded, closed,
and simply-connected and that the rotational symmetry group
of W is trivial. The robot’s state space isX = W × S1,
accounting for its position withinW and its orientation.

We consider a catalogRP = {PA, PC , PT , PL} of four
primitives from Examples 2-4. From these primitives we can
form 15 distinct robots. For brevity, we use concatenation to
indicate the primitives a robot is equipped with, so that CT
refers to a robot with primitive set{PC , PT }; similar names
apply to the other 14 robot models.

SelectI = pow(X) − ∅. For κ, use the nondeterministic
map defined in Example 1. The initial condition is total
uncertainty, soκ( ) = X. For � use the definition from
Example 9. The goal region for the localization task is

IG = {η ∈ I | |η| = 1}. (14)

That is, we want to command the robot so that only a single
final state is consistent with its history I-state. If the robot can
complete the task for anyW consistent with the assumptions
above, we say that the robot can localize itself.

B. Equivalences and dominances

Although RP generates 15 robot models, we can use the
results of Section V to group them into equivalence classes.

Theorem 1:The following equivalences hold:
(a) CA≡ C
(b) CTA ≡ CT
(c) TL ≡ L



C CACAL CTL CTAL CLALTALCTA CT ATTATLL
Fig. 7. Fifteen robot models grouped into their eight equivalence classes.

(d) TAL ≡ AL
(e) CAL ≡ CTL ≡ CTAL ≡ CL

The three remaining robot models, A, T, and AT, are in
singleton equivalence classes.

Proof: (a) Combine Example 12 and Lemma 3. (b)
Combine Example 12, Lemma 3, and Corollary 5. (c) Com-
bine Example 11 and Lemma 3. (d) Combine Example 11,
Lemma 3, and Corollary 5. (e) Combine Examples 11 and 12,
Lemma 3, and Corollary 5. �

These equivalences are illustrated in Figure 7. From each,
select the unique robot with the fewest primitives and discard
the remaining 7 robots. We can state a number of dominances
between these classes.

Theorem 2:Between representatives of the equivalence
classes from Theorem 1, the following dominances hold:

(a) CE CT E CL
(b) A E AT E AL E CL
(c) L E AL E CL
(d) T E AT E CT E CL

Proof: Combine Examples 11 and 12 with Lemma 2.�

C. Completing the localization task

Which equivalence classes contain robots that can complete
the localization task? First, notice that several robot models
are so absurdly simple that we can rule them out immediately.

Lemma 7:None of C, A, L, and T can localize themselves.
Proof: For C and A, notice that no action changes the

robot’s position and no observation is influenced by position.
Therefore neither robot can ever gather information about its
position. For L and T, notice that the robot can never change
its orientation. Information available to the robot is limited to
the ray extending from its initial state to the nearest obstacle
forward. SinceW may contain continua of starting states
consistent with this information, neither robot can localize
itself. �

Two prior results are helpful for the remaining cases.
Lemma 8 ([33], [34]): AL and CT can localize themselves

but AT cannot.
Finally, we can finish the classification:
Lemma 9:CT can localize itself.

Proof: Combine Lemma 6 with Lemma 8. �

The results of Lemmas 7-9 are summarized in Figure 8.

VII. D ISCUSSION AND CONCLUSION

There are several issues that space limitations prevent us
from fully describing.

CLAT CTTALL CA
Fig. 8. Classification of robot models under which the localization task
can be completed. Shaded models do not admit a solution. Arrows indicate
dominances.

A. Uncertainty in transitions and sensing

First, as we have already mentioned, we require state
transitions and observations to be deterministic. To relax
this restriction, extend the state transition and observation
functions to include a third parameter chosen by an external
decision maker “nature”. This leads tof : X × U × Θ → X
and h : X × U × Ψ → Y . In each stage, nature selects a
θ ∈ Θ and aψ ∈ Ψ. Nature’s selections are governed by
a nondeterministic or probabilistic uncertainty model which
must be specified as part of the problem description. This
extension can be incorporated into Definition 4 by the addition
of universal quantifiers overΘ andΨ.

B. Reachable sets and preference closure

The form of Definition 4 is local in an important sense.
Comparisons are made based on a robot’s ability to simulate
another robot’s trajectory inI, step by step. An equivalent
“global” definition can be defined in terms of reachable sets
and preference closure. LetZ(Ri) ⊆ I denote the I-states
reachable byRi and forN ⊂ I, let Pc−(N) denote the set of
all I-statesη1 for which there exists anη2 ∈ N with η1 � η2.
ThenR1 ER2 if and only if Z(R1) ⊆ Pc−(Z(R2)).

C. Probabilistic uncertainty

We have focused our attention on nondeterministic un-
certainty. Our results also apply, at least in principle, to
probabilistic uncertainty. In this context, the relevant derived I-
spaceIprob is a space of probability distributions overX. It is
not immediately clear what the “right” information preference
relation over such a space would be. Depending on the models
used, it may also be necessary to relax Definition 4 to require
only thatR2 can simulateR1 with sufficiently high probability.
More generally, the differences between nondeterministicand
probabilistic uncertainty models warrant further exploration.
For example, nondeterministic uncertainty has the property
that sensing can only help – actions from primitives likePG

(Example 7) orPR (Example 6) that do not change the state
will always lead to a derived I-state at least as good as the
current one. Under probabilistic uncertainty, this property does
not hold; sensing can sometimes increase uncertainty.



D. Finiteness ofRP

Another avenue for extension is to consider the case when
RP is not a finite set. For example, we may extendPL (from
Example 5) to a family

{PL,ǫ = (S1, {0}, fLǫ
, hLǫ

) | ǫ ≥ 0} (15)

of primitives, each using a noisy linear odometer whose error
is bounded byǫ. With reasonable choices forI, κ, and�, one
can show thatPL,ǫ1 E PL,ǫ2 if and only if ǫ2 ≤ ǫ1. If RP
contains many such families of primitives, and we assume
each robot has at most one primitive from each family, then
the space of robot models is a cube inR

n. The problem of
identifying the region in which a given task can be solved is
correspondingly more difficult.
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[29] T. Lozano-Ṕerez and M. A. Wesley. An algorithm for planning collision-
free paths among polyhedral obstacles.Communications of the ACM,
22(10):560–570, 1979.

[30] V. Lumelsky and S. Tiwari. An algorithm for maze searchingwith
azimuth input. In Proceedings IEEE International Conference on
Robotics and Automation, pages 111–116, 1994.

[31] M. Moll and M. Erdmann. Manipulation of pose distributions. Interna-
tional Journal of Robotics Research, 21(3):277–292, 2002.
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