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Abstract— We introduce a method for constructing provably
safe smooth feedback laws for car-like robots in obstacle-
cluttered polygonal environments. The robot is taken to be a
point with motion that must satisfy bounded path curvature
constraints. We construct a global feedback plan (or control
policy) by partitioning the environment into convex cells,
computing a discrete plan on the resulting cell complex, and
generating local control laws on the state space that are safe,
consistent with the high level plan, and satisfy smoothness
conditions. The trajectories of the resulting global feedback plan
are smooth and stabilize the position of the robot in the plane,
neglecting the orientation. We also extend our basic results to
the case of a disc robot moving among polygonal obstacles.

I. INTRODUCTION

Navigation is a fundamental problem in mobile robotics.

In contrast to free-flying robots, mobile robots must navigate

to a goal location while satisfying nonholonomic constraints

which restrict how they can move. For example, differential

drive (or unicycle) robots can drive forward and rotate in

place, but cannot slide sideways. Car-like robots, which are

another important class of mobile robots, are even more

restricted in their motion. They have a limited steering

angle which prevents them from rotating in place, causing

them instead to move along paths of bounded curvature.

In environments that are free of obstacles, feedback control

techniques provide a highly robust and effective solution to

the global navigation problem. Feedback controllers define

a vector field over the state space, the integral curves of

which are guaranteed to asymptotically converge to the goal

state. This guarantees that the goal will be reached, regardless

of the initial state. Unfortunately, the presence of obstacles

typically invalidates standard control techniques because it

is difficult or impossible to guarantee both convergence

to the goal state and obstacle avoidance. Motion planning

algorithms offer an efficient solution to the difficulties posed

by the presence of obstacles, but at the cost of producing

only open loop trajectories rather than closed loop feedback

controls. In this work, we describe an algorithm that com-

putes global feedback controllers that provide guarantees

that trajectories from any initial state will converge to the

goal state and avoid obstacles.

Stabilization of nonholonomic systems in obstacle-free

environments has been studied in depth [4], [6], [9]. Car-like
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robots are common and have received significant attention

[10], [21], [22], [26], [27]. Important research goals include

stabilization to a point or trajectory and path following.

Obstacles are generally not considered. The standard way

to solve problems with obstacles is to plan an open loop

path using a motion planning algorithm, and then use the

local controller to track the path or move from waypoint

to waypoint. This approach can be reasonably successful in

practice, assuming that the distance to the obstacles is large

relative to the intra-waypoint distance. However, we again

emphasize that this approach cannot generally guarantee both

obstacle avoidance and global convergence. This is a result

of decoupling planning and feedback; by integrating the two

more closely together, we will be able to make stronger

guarantees.

One of the primary motivations of the decoupled approach

is that non-convex obstacle constraints make traditional

feedback control ideas difficult to apply. One solution is to

use state space sampling along with dynamic programming

to achieve not only feedback, but approximately optimal

trajectories [3], [17], [31]. This may be feasible for low-

dimensional spaces, but both the time- and space-complexity

is exponential in the dimension of the state space. Even for

the four-dimensional state space we consider here, dynamic

programming is quite slow relative to our algorithm.

Other approaches to feedback navigation in the presence

of obstacles typically rely on scalar potential functions [15],

[24]. For fully actuated systems, the gradient of the potential

function is used as the feedback control. If the potential

function is uniformly maximal along the obstacle boundary

and has no local minima other than the goal state, then the

potential function serves as a suitable Lyapunov function and

convergence can be guaranteed. However, constructing such

functions is quite difficult, and it is difficult to apply potential

function or navigation function methods to systems with

nonholonomic constraints (see [29], [30] for an approach for

robots with unicycle dynamics).

Our approach is based on decomposing the two-

dimensional environment into simple cells, constructing local

controllers on the region of the state space corresponding

to each cell, and combining them together. Several other

approaches based on cell decompositions include [2], [8],

[12], [25]. These generally consider the problem of control

of an affine system on a arbitrary dimensional simplex or

polytope. We have previously addressed a fully actuated

robot [19], [20] and a point unicycle robot [18]. The present

work is much more challenging because curvature bounds

force solution trajectories to have velocity reversals, which

are not necessary for a fully actuated or unicycle robot.



II. PROBLEM FORMULATION

In this work, we consider the global feedback navigation

problem for car-like robots. The input to our algorithm is

a polygonal environment and a goal state, xg. We construct

a feedback controller (equivalently, a vector field) such that

from any initial state, following the integral curves of the

vector field causes the robot to asymptotically converge to

the goal state. Moreover, our algorithm computes a smooth

feedback controller, which guarantees that all system trajec-

tories are C∞ differentiable.

Car-like robots are characterized by a bounded curvature

constraint. This can be expressed as a constraint on the

angular velocity: |θ̇| ≤ αvf , in which α > 0 and vf is the

forward velocity. The state transition equation for the system

is then:
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in which we again have |vθ| ≤ αvf . This is illustrated in

Figure 1. The control variables for this model are vθ and

uf . Car-like robots pose a much more challenging control

problem than differential drive (unicycle) robots due to the

bounded curvature constraint. A unicycle is capable of going

around a sharp corner without any difficulty because of its

ability to rotate in place. A car-like robot, however, may need

to reverse directions a number of times to move through an

area with small clearance. The classic example of this is the

problem of parallel parking a vehicle in a tight space.

Note that for car-like robots, there is no smooth (or

even continuous) vector field over the configuration variables

(x, y, θ) alone that can reverse the velocity of the vehicle.

Any such trajectory could at best converge to vf = θ̇ = 0,

since vf = θ̇ = 0 is an equilibrium, and there is no way to

go from vf > 0 to vf < 0 except through the equilibrium.

Taking vf as a state variable allows us to define smooth

controls that reverse velocity. In the examples in Section IV,

what may appear to be “cusps” in the configuration space are

actually smooth curves in the expanded (x, y, θ, vf ) space.

Although we include vf in the state space, note that there

are no bounds on the inputs. This is important for obstacle

avoidance, because there is no way to guarantee that the

obstacles will be avoided without having unbounded inputs

as the robot approaches the obstacle boundary.

Another notable feature of this model is the absence of a

steering angle. In standard car models, the angular velocity

is typically θ̇ = vf/L tan φ, in which L is the length of the

car (i.e., the distance between the front and rear wheels), and

φ is the steering angle. In our model, however, the robot is

a point, and L = 0. As a result, steering angle ceases to

be meaningful. That said, an implicit steering angle can be

computed from the vθ determined by our feedback controller,

given some L > 0.

Brockett’s condition [5] implies that no static, smooth

vector field (feedback control) can stabilize the complete

state of the system; therefore, we only attempt to stabilize the

vf vfslope = 1/α
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Fig. 1. Angular versus linear velocity, for a car-like robot (left) and a
unicycle (right).

position of the robot, neglecting the orientation. If desired,

other controllers can be used to stabilize the full state

of the system after the robot reaches a sufficiently small

neighborhood of the goal state. This is still a significant

result, because other approaches are either open loop (losing

the robustness of feedback control) or cannot guarantee

obstacle avoidance as well as global asymptotic convergence.

Our algorithm quickly and automatically computes smooth

feedback plans for car-like robots in polygonal environments.

Consider a system with state space X , input space U , and

state transition equation ẋ = f(x, u). For some goal state

xg , a smooth feedback plan is a vector field V on the free

space (i.e., the state space minus the obstacles) that satisfies

the following properties:

1) At every point x, V (x) is admissible (i.e., there exists

a u ∈ U such that V (x) = f(x, u)).
2) All integral curves of V are smooth.

3) All integral curves of V avoid the obstacles and

asymptotically converge to the goal state.

By smooth we mean infinitely differentiable, i.e., C∞. Since

the vector field V is admissible, it is by definition equivalent

to a feedback controller defined as a mapping π : X → U .

III. FEEDBACK PLANS FOR CAR-LIKE ROBOTS

In this section, we describe how to compute smooth

feedback plans for car-like robots among obstacles. Initially,

we will restrict our discussion to point robots; in the next

section, we will discuss the extension to the case of a disc

robot. As in our previous work, our strategy is as follows:

1) Decompose the environment into convex cells and

compute a discrete plan over the cell connectivity

graph.

2) Define local controllers (vector fields) corresponding

to each cell and each face separating adjacent cells.

3) Construct a global controller by interpolating between

vector fields defined in each cell.

By using a smooth interpolating function, we are able to

guarantee smoothness in the interior of each cell as well as

across cell boundaries.

A. Constructing a Smooth Feedback Plan

First, the environment (a polygonal subset of R
2) must

be decomposed into convex cells and a discrete plan com-

puted. Computing convex decompositions is well-studied;
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Fig. 2. An environment, corresponding face vector fields, and the graph
showing how to reach the goal cell from any other cell.

algorithms by Keil [14] and Greene [11] compute con-

vex decompositions with a minimum number of cells, and

algorithms exist which compute more restricted types of

decompositions such as vertical decomposition [13], [28] and

triangulation. Keil’s algorithm requires O(nr2 log n) time,

in which n is the number of vertices and r the number of

reflex vertices. Triangulation can be done in linear time [7],

and a practical implementation based on Seidel’s algorithm

that requires O(n log∗ n) time is available [23]. Vertical

decomposition (also known as trapezoidal decomposition)

requires O(n log n) time. In addition to having favorable

asymptotic performance, these algorithms are very practical.

For example, the triangulation algorithm based of Seidel’s

algorithm can compute decompositions with hundreds of

cells in a few milliseconds on a standard workstation.

Once the decomposition has been computed, consider the

connectivity graph of the cells which is the dual of the

decomposition. Let the cell containing the goal point, xg,

be denoted as Cg . Then, beginning with Cg , search the

connectivity graph to obtain a chain of cells from any cell

to Cg . Any graph search algorithm can be used, with or

without any optimality criteria. For example, breadth-first

search can be used, with a corresponding linear time bound.

The resulting directed graph defines a “successor” for every

cell except the goal cell; the successor of a cell is the next cell

on the route to the goal. We call every cell with a successor

an intermediate cell, in distinction with the goal cell, which

has no successor. See Figure 2.

The remaining task is to construct local controllers that

avoid obstacles, are consistent with the computed discrete

plan, and satisfy the smoothness requirement. Since each

node in the graph corresponds to a convex cell, consistency

with the high level plan is equivalent to solving the control

to facet problem: that is, all integral curves must exit from a

particular facet in finite time while avoiding all other facets.

We will construct such controllers by defining a vector field

over the cell, as well as one corresponding to each face. In

the interior of the cell, we will interpolate between these

vector fields in such a way that all the requirements are met.

In particular, the vector field at a point p in a particular cell

is defined as

V (p) = b(p)Vi(p) + (1 − b(p))Vc(p), (2)

in which b is the interpolating function, Vi is the vector field

corresponding to some face fi, and Vc is the vector field

corresponding to the cell.

Interpolation is accomplished using the generalized

Voronoi diagram (GVD) [1]. See Figure 3. The GVD parti-

tions the cell into regions corresponding to each face, such

that face fi is the closest face to every point p in the region

corresponding to fi (denote this as the region of influence

of fi). Within the region of influence of fi, we interpolate

between the cell vector field (on the GVD faces) and the

vector field corresponding to fi (on the face itself). We

smoothly interpolate using bump functions, which are defined

as follows:

Definition 1 Let X be a smooth manifold, and let K be a

closed set and U an open set, K ⊂ U ⊆ X . A bump function

over U is a smooth, real-valued function ρ : X → [0, 1] such

that:

1) The support of ρ is contained in U .

2) For every x ∈ K, ρ(x) = 1.

We construct a bump function that transitions smoothly

from 0 to 1 on the unit interval as follows. First, define

λ(s) = (1/s)e−1/s. (3)

The bump function is then defined as

b(s) =











0 s ≤ 0
λ(s)

λ(s)+λ(1−s) 0 < s < 1

1 1 ≤ s.

(4)

An illustration of this bump function is given in Figure 4. The

bump function has the important property that all derivatives

equal zero at the endpoints of the unit interval. The parameter

we use for the bump function is the product of a number of

analytic switches. The parameter function must be smooth

over the interpolation region, and the bump function makes

sure that the derivatives match across the cell and GVD

boundaries. For any point p in the region of influence of

face fi, let

s(p) = 1 −
∏

j 6=i

d(p, fj) − d(p, fi)

d(p, fj)
. (5)

This function is smooth (except at the cell vertices), and has

the desired property of being identically equal to zero on the

cell face and one on the faces of the GVD, where points are

equidistant from multiple faces. Using the shorthand, b(p) =
b(s(p)), we obtain the interpolation function in Equation 2.

Now, we describe the cell and face vector fields in detail.

The vector field corresponding to the cell, Vc, contains only

a rotational component. The purpose of the rotational vector

field is to orient the robot so it may freely cross the exit

face into the next cell, without encountering another face

first. Assume that we are in an intermediate cell (we will

consider the case of the goal cell later), and that we are given

a point on the exit face of the cell; such a point is trivial to

compute. Define θe as the angular error of the robot to the
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Fig. 3. An individual cell, partitioned using the generalized Voronoi
diagram.
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Fig. 4. The bump function given by Equation 3.

point, given the current orientation. The absolute angle to

the point from the robot is θp = atan2(yp − y, xp − x).
We then have θe = min{θ − θp, 2π − θ + θp}. Clearly, this

has a maximum of π when the robot is pointing directly

away from the point and a minimum of zero when the robot

is oriented directly at the point. Let θe = θ − θp. For any

simple control law of the form θ̇ = −Kθe = −K(θ − θp)
with K ¿ 0, it is clear that θe will remain less than π for

all time and therefore θe = θ − θp always (a transition to

θe = 2π−θ+θp is never made). The importance of this fact

will be made clear. Define the cell vector field:

Vc = −α|vf |sgn(θe)b(θe/ǫ)
∂

∂θ
, (6)

for some ǫ ¿ 0, with b the bump function above and vf the

velocity. The presence of αvf in the product guarantees that

the bounded curvature constraint is satisfied by this vector

field. Also, θe never switches between terms in the min

expression, which is important for preserving smoothness.

Finally, the sign of θe never changes, as we argued above;

this is also necessary for smoothness. The effect of the

rotational vector field is to orient the robot toward the point

p on the exit face. Even though the value of θe is not

monotonically decreasing, it should be clear that it will

eventually converge to zero. We will prove this later.

Now we consider the vector fields {Vi}
n
1 corresponding to

the faces {fi}
n
1 . The face vector fields will have no rotational

component, but will consider only the forward velocity. The

purpose of the face vector fields is to prevent the robot from

reaching any face other than the exit face (by reversing the

velocity of the robot). We will construct each face vector

field using two other vector fields; one to decelerate the robot

and prevent it from hitting the face, and one to accelerate the

robot in the opposite direction.

A couple of preliminary definitions are required. Assume

that the point q = (x, y, θ, vf ) is in the region of influence of

fi (i.e., the Voronoi region corresponding to fi). Then, define

the hitting time th to be the time until the robot hits the fi,

while maintaining the current heading and forward velocity.

If the integral curve through q does not hit fi but leaves the

region of influence of fi, let th = ∞. Note that the integral

curve containing q does not depend on the velocity vf , since

the rotational component defined by Vc is proportional to

vf ; thus, whether or not the integral curve hits fi can be

determined without considering Vi. Define the saving vector

field:

Vs(q) = −(vf/th)
∂

∂vf
. (7)

Observe that if the robot travels in a straight line, this

is sufficient to stop the robot before the edge is reached,

assuming |vf | ≤ 1.

In addition to the saving vector field, we need a vector

field over the entire cell that accelerates the robot away

from the face. This will increase the forward velocity if the

robot is moving away from the face (i.e., th = ∞) and slow

the robot down if it is moving toward the face (th < ∞).

Let V+ = sgn(vf )(1 − b((|vf |/ǫ) − (1 − ǫ))); this vector

accelerates the robot to its maximum speed of one. Also

define V− = −sgn(vf ), which decelerates the robot. Let

θi be the absolute value of the angle between the robot’s

velocity and the inward pointing normal of face fi; then

define the acceleration vector field:

Va(q) = b((θi/ǫ)V+(q) − (1 − b((θi + ǫ)/ǫ))V−(q) (8)

If the integral curve does not hit the face (with th = ∞ as

a result), simply let Va(q) = V+(q). Simply, this vector field

decelerates if θi < 0 and accelerates if θi > 0, smoothly

interpolating between the two in the interval (−ǫ, ǫ).
The face vector field for face fi is then defined as:

Vi = b(th − tsafe)Vs(q) + (1 − b(th − tsafe))Va(q), (9)

for some tsafe > 0. The face vector field smoothly inter-

polates between the saving vector field (when collision is

imminent) and the ordinary acceleration vector field (when

collision is at least tsafe time from occurring). The only

exception is when the face is the exit face, in which case we

set Vi = Va, since we want the integral curve to reach the

exit face.

We have completely described the construction of the

vector field over the intermediate cells; now we consider the

case of the goal cell. In this case, the target point is the goal

point xg which is in the interior of the cell, rather than on

the boundary as in the previous case. This would seem to
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Fig. 5. A goal cell, subdivided. On the right, an infinite sequence of cells
is created, each of which is guarantee that the robot is within ǫ/2

i for some
i.

complicate things because it is no longer trivial to argue that

rotating in the same direction will lead to orientation toward

the target point. Since xg is in the interior of the cell, it

is possible for the integral curves to converge to a circular

orbit about the goal point. The most straightforward way to

remedy this to partition the goal cell into new cells such that

the goal point is once again on the boundary. This is easily

accomplished; partition the cell into triangles, one per face,

the vertices of which are the vertices of that face together

with the goal point. Then, for some ǫ > 0, add a new edge

with vertices on the two edges incident on xg and ǫ distant

from it. Thus, crossing that edge ensures that the robot is

no more than ǫ away from the goal point. At this point,

the vector field is constructed exactly as we have already

described. This procedure is illustrated in Figure 5. Inside

the new “corner” cell, the procedure can be repeated by

trimming off the corner at distance ǫ/2, and so on. This will

guarantee global convergence to the goal state (in position,

not orientation).

B. Theoretical Analysis

To establish that our algorithm correctly computes feed-

back plans, we need to prove several important results. First,

we verify that the controller satisfies the bounded curvature

constraints. Second, it is straightforward to show that the

controller is safe, avoiding all obstacles. Then, we need to

show that all integral curves of the global vector field V are

smooth. Finally, we prove that the controller stabilizes the

position of the robot. These results directly follow from the

construction of the vector fields over the individual cells.

Theorem 2 The vector field V satisfies the bounded curva-

ture constraint.

Proof: Our two control inputs, as determined by V , are

v̇f and θ̇. From the definition of the cell vector field Va, we

see that θ̇ ≤ αvf , which is precisely the bounded curvature

constraint.

Theorem 3 The controller defined by V avoids all obsta-

cles.

Proof: Each obstacle face is a face on one of the cells

in the convex decomposition. Consider first the case of a

trajectory approaching a point in the interior of a face fi.

From the construction of V , we see that V = Vi on the face.

Therefore, we need only consider the face vector field Vi.

As the robot approaches the face, the hitting time th goes to

zero and Vi → Vs, the saving vector field. We have already

mentioned (and it is trivial to verify) that the saving vector

field is always strong enough to reverse the velocity before

the face is reached.

The other important case is when the integral curve

approaches an endpoint of the face, rather than a point in

its interior. It is somewhat more difficult to show that safety

is preserved in this case. The difficulty lies in the fact that V
does not approach Vi as the robot nears the vertex, due to the

(unavoidable) non-smoothness in the interpolation function.

We do not give the details here, but it suffices to show that

for any 0 < β < 1, V = βVi is sufficient to keep the robot

from reaching the vertex. Showing this result covers all cases

except that in which the integral curve is tangent to the GVD

face at the vertex. One can show that it is always possible to

choose the saving vector field Vs large enough that obstacle

collision is avoided in this case as well.

Theorem 4 All integral curves of V are smooth.

Proof: This is also simple to verify from the construc-

tion of V . The bump function b is smooth, as is the analytic

switch we use to interpolate between the face and cell vector

fields in each face’s region of influence. So we simply need

to consider the smoothness of the cell and face vector fields.

Consider the face vector fields. If the velocity-independent

integral curve does not lead to the face, then we have th = ∞
and the velocity along that integral curve smoothly increases

to the maximum velocity, |vf | = 1. Consider, then, the

integral curves along which the system must reverse direction

so that the face is not reached. In this case, the vector field

is a smooth interpolation of the saving vector field Vs and

the acceleration field Va. The saving vector field is clearly

smooth, since the hitting time and velocity are smooth. The

only potential issue is when the the hitting time goes to

infinity, which happens when vf = 0 or θ becomes parallel

to the face. At this point, however, we have Vi = Va and

all derivatives of the bump function are identically zero;

therefore, smoothness is preserved. Likewise, Va is also

smooth.

Now, consider the cell vector field, which controls rotation.

The velocity vf is smooth, as we have shown above. We

have also discussed the fact that θe is smooth, since the

system always rotates in the same direction. Therefore, the

cell vector field Va is smooth. Therefore, all component

functions and vector fields are appropriately smooth, so all

integral curves of V are smooth.

Theorem 5 All integral curves of V converge to the goal

state, xg .

Proof: To show this, we will prove that for any cell,

all integral curves will reach the exit face of that cell in

finite time. After a number of such faces are crossed, we



can guarantee that the robot is at most ǫ, ǫ/2, ǫ/4, . . ., distant

from the goal state, which establishes convergence.

First, we verify that when the robot changes direction to

avoid hitting a face, it actually changes direction rather than

simply converging to a point. The robot will not converge

to a point under the acceleration vector field Va, because

the only place where Va = 0 is when θ = θi. The only time

when vf = 0 is when the robot reverses direction, but it is not

possible for θ to equal θi at this point, because then the robot

would not be at risk of hitting the face (i.e., it would proceed

to another face’s region of influence instead). Therefore, the

robot would not decelerate and change direction. The case

where vf = 0 and θ = θi does correspond to an equilibrium

point, but one which has no region of attraction (if the system

starts at this point, perturb it; otherwise, no integral curve

converges to the state).

Consider, then, the saving vector field Vs. The term vf/th
implies that the deceleration applied is independent of the

magnitude of the velocity, since th depends linearly on vf .

Since the deceleration is velocity-independent, this will never

lead to the robot converging to a point.

One potential problem is on the faces of the GVD, where

V = Vc. There is no linear acceleration on the GVD face

since Vc is purely rotational, and since Vc depends linearly

on vf , any point on the GVD such that vf = 0 is an

equilibrium point. However, it can be seen that these have

no region of attraction, since any perturbation will lead away

from the equilibrium region. This means that the robot will

never converge to this region. If the robot is in this location

due to an initial condition, a random perturbation will free

it from the equilibrium, so there is no problem. Note that

while we do not describe it here, it is possible to add a linear

acceleration component to Vc which will eliminate this issue

entirely.

Now, we need to show that with respect to its orientation,

the robot will eventually be oriented toward the target point

enough that it will be able to leave via the exit face of

the cell. Recall that we have already discussed the fact

that within a cell, the robot will always rotate in the same

direction, due to the cell vector field. Define a trajectory

segment to be an interval of an integral curve between two

velocity reverals. Consider a sequence of trajectory segments

t1, t2, t3, t4. Denote by e1, . . . , e4 the linear extrapolation of

the endpoints on the faces of the polygon. Assuming that

we are rotating in the positive direction, we know that e3 is

located counter-clockwise of e1 along the boundary of the

polygon, and e4 is likewise counter-clockwise of e2. Taking

then a sequence of every other endpoint, we can see that

this must eventually reach the exit face. There can be no

limit point at any other point along the boundary, because

this would imply that the angular change over the trajectory

segments goes to zero, which is impossible. Therefore, the

robot will always rotate in such a way to be oriented toward

the exit face and therefore exit the cell via that face.

Fig. 6. On the left, the robot makes an extra reversal but always crosses
edges moving forwards. On the right, the robot crosses moving backwards
but saves a reversal.

IV. EXTENSIONS AND PRACTICAL RESULTS

Our feedback planning algorithm can be improved and ex-

tended in a number of ways. First, we will discuss alternative

vector field choices that may lead to more desirable system

trajectories. We will also describe how to modify the method

for the case of a disc robot, as opposed to the point robot

which we have considered so far.

In Section III, we defined the cell vector field in such

a way that the robot always rotates in the same direction.

We utilized this in the convergence proof above. Practically,

this means that the robot will leave a cell with a velocity

identical in sign to the velocity it entered with. This means

that if the robot enters the cell moving forward, it will exit

the cell moving forward. This is desirable behavior, if there

is a practical difference between forwards and backwards

for the robot. If there is not such a distinction, then it may

be possible to improve path quality by allowing the robot to

reverse the direction with which it crosses the edge. This can

be seen in Figure 6. In order to do this, the robot may no

longer always rotate in the same direction, but may reverse

the direction of rotation when the robot is moving away

from the target point. Following this strategy may lead to

many fewer path reversals, especially when the robot must

go around sharp corners. We have not proven convergence

for this approach, but we conjecture that it will hold.

A second way to modify the vector field is to permit the

robot to reverse direction even when a collision with the edge

is not imminent. For example, if the robot is moving away

from the exit face but oriented toward it, it is advantageous

to for the robot to immediately reverse directions rather than

waiting until an edge is approached. We have not investigated

this approach at present.

It is straightforward to extend this method to the case of a

disc robot. Computing the configuration space obstacles for

a disc robot is well-known [16]; each obstacle is transformed

to its Minkowski sum with the robot body. The obstacle

boundary, then, no longer consists solely of line segments

but line segments and circular arcs. Two ways to deal with

this are readily apparent. First, the arcs can be conservatively

approximated with line segments, and our method applied as

we have already described. If this approach is followed, care

must be taken to preserve the topology of the configuration

space, so that completeness is preserved.

The second method is more complicated. First, replace

each arc with a single line segment (the chord of the circle

sharing the endpoints of the arc), and perform the cell

decomposition as before. Reinsert the chords into the de-
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Fig. 7. A disc robot with a square obstacle. On the right, the grown obstacle
and an example decomposition. Target points on the exit edges are drawn;
the goal cell must be subdivided because it is not star-shaped with respect
to the goal.

composition, yielding cells which are no longer polygonal or

convex. Further decompose cells containing circular arcs so

that every cell is star-shaped with respect to its target point.

Then, the method we described above can be applied (with

appropriately modified GVD, distance functions, etc.). The

star-shaped requirement is important because the robot must

be able to travel directly to the exit edge if it has converged

sufficiently in rotation. See Figure 7 for an example.

Although our method defines a global feedback plan, it

can also be used to generate open loop trajectories. In fact,

dynamic programming can be used to reduce the number of

path reversals in an individual open loop trajectory consid-

erably, in the following way. Consider an initial state xi. If

there are n possible exit edges, then there are n possible

choices of cell vector field; add an open node corresponding

to each choice to a priority queue. For each of these, the

integral curve through the initial state will reach some face,

either crossing it or reversing velocity. For each possibility,

insert a new node in a priority queue with cost equal to the

number of reversals so far (in the first iteration, the node

corresponding to crossing the edge would have lower cost

with zero reversals, and the state remaining in the current

cell would have high cost with one reversal). Each time a

cell is reached, new nodes are added based on the number of

possible exit edges. Using dynamic programming, continue

to extend each trajectory segment, adding new elements to

the queue every time a cell boundary is reached. Once the

goal is reached, we can guarantee that the minimum number

of reversals has been achieved for that open loop query, from

the class of all possible controllers constructed according to

our basic method.

Finally, we present several examples of paths computed

using our method in Figures 8 and 9. These figures de-

pict only two-dimensional projections of individual integral

curves; however, our method determines a global feedback

plan over the entire four-dimensional state space. In some

cases, it may seem that there are unnecessarily many path

reversals. To some extent, reversals are unavoidable because

of the bounded curvature restriction; several properties of our

algorithm increase the number of path reversals. In particular,

many reversals can be induced by the requirement that once

a robot enters a particular cell, it cannot leave that cell except

via the exit face (small cells greatly magnify this problem).

xgoal

xgoal

xgoal

Fig. 8. Several paths through an obstacle cluttered environment, for two
robots with different turning radii.

Other factors that contribute to reversals are the choice of

the target point and the fact that edges are crossed with zero

angular velocity. It is simple to modify the choice of target

point; for example, it could be replaced with a target interval

on the exit face, which would still guarantee convergence

but would not “compress” the integral curves to the target

point as is seen in the examples (in the examples, the target

point is the midpoint of the edge). It may be possible to

add a rotational component to the face vector fields, which

would likely improve path quality; however, we have not

investigated whether global convergence would hold under

such a scheme.

V. CONCLUSION

In conclusion, we have described a method for construct-

ing provably safe smooth feedback laws for kinematic car-

like robots in obstacle-cluttered polygonal environments. We
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Fig. 9. Paths through a winding corridor, for robots with different turning
radii.

have proven that the vector field constructed by our algorithm

has the appropriate safety and smoothness properties and

that it stabilizes the position of the robot in the plane.

We neglect orientation because Brockett’s condition implies

that no smooth time-invariant feedback law can stabilize the

entire state of the robot. We have also presented several ways

to extend our method through different choices of component

vector fields and have extended our method to the case of a

disc robot.

Our primary goal in future work is to extend our approach

to robots with polygonal bodies. Although some robots can

be reasonably approximated with discs, many cannot be; in

these cases, we would still like to compute global smooth

feedback plans. This is a challenging problem, but one with

significant practical impact.
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