
Smoothly Blending Vector Fields for Global Robot
Navigation

Stephen R. Lindemann and Steven M. LaValle
Department of Computer Science

University of Illinois
Urbana, IL 61801 USA

{slindema, lavalle}@uiuc.edu

Abstract— We introduce a new algorithm for constructing
smooth vector fields for global robot navigation. Given a d-
dimensional cell complex with each cell a convex polygon,
our algorithm defines a number of local vector fields: one for
each cell, and one for each face connecting two cells together.
We smoothly blend these component vector fields together
using bump functions; the precomputation of the component
vector field and all queries can be done in linear time. The
integral curves of the resulting globally-defined vector field are
guaranteed to arrive at a neighborhood of the goal state in
finite time. Except for a set of measure zero, the vector field
is smooth. The resulting vector field can be used directly to
control kinematic systems or can be used to develop dynamic
control policies. We prove convergence for the integral curves of
the vector fields produced by our algorithm and give examples
illustrating the practical advantages of our technique.

I. INTRODUCTION

Finding smooth vector fields for global robot navigation
is a long-standing problem in mobile robotics. Traditional
feedback control methods fail due to non-convex constraints
induced by obstacles in the environment. In the motion plan-
ning community, however, most approaches compute open-
loop plans while relegating important feedback concerns to
secondary status. Some have tried to make feedback more
central through the construction of potential fields that have
no local minima other than the goal state. If such a potential
field can be found, the gradient of the field can be used
as the velocity command for the robot. We adopt a more
direct approach. Instead of beginning with a potential field
and taking the gradient, we directly construct a smooth
vector field to use as the velocity command. We do this by
smoothly combining locally-defined vector fields using bump
functions. The result is a globally-defined smooth vector field
the integral curves of which converge to a goal state. 1 An
illustration of a vector field produced by our algorithm is
given in Figure 1. Our vector fields can be used directly for
kinematic systems, or they can be used to develop dynamic
control policies. For example, a control policy

u = K(V (p) − ṗ) + V̇ (p)

1To be precise, the vector field is smooth except for a set of measure
zero; however, all integral curves obtained by starting at an initial state
and following the vector field are smooth. This qualification is assumed
throughout the paper.

Fig. 1. A smooth vector field generated using our algorithm in a two-
dimensional environment.

can be used [18]. Under certain conditions, it can be shown
that the system will converge to the integral curves of V (p)
[4], [18].

An important advantage of our algorithm is that it requires
little preprocessing to compute our vector field and the value
of the vector field at any point can found extremely quickly
during operation. In particular, the vector field can be com-
puted in O(n) time in the complexity of the environment2.
During operation, the value of the vector field at any point
can be found in O(n) time, in which n is the complexity of
the cell in which it is located.

In the following section, we will review related work,
focusing on the different ways this problem has been ad-
dressed within the robotics community. We will then describe
our algorithm in detail and give proofs of the convergence
of the integral curves of our vector field to the goal state.
Finally, we examine several practical issues with the goal of
illustrating how to use our technique to develop good paths
for mobile robotics applications.

II. RELATED WORK

The problem of finding a global motion plan in com-
plex environments is difficult. Motion planning problems in
robotics typically involve non-convex constraints resulting

2The complexity is defined to be the total number of k-cells in the
complex, summing k from 0 to d



from obstacles in the environment. This presents a sig-
nificant problem for traditional feedback control methods.
One solution might be to use state-space sampling along
with dynamic programming to achieve not only feedback,
but approximately-optimal trajectories [1], [13], [21]. This
may be feasible for low-dimensional spaces, but both the
time- and space-complexity is exponential in the dimension
of the state space, assuming that the sampling resolution
remains fixed. The difficulty of feedback control for these
problems motivates the development of open-loop motion
planning algorithms, which can at least find feasible paths
through obstacle-cluttered environments. Such algorithms
have been extensively studied [10], [12]. Many motion plan-
ning algorithms have been developed for kinematic systems;
several, such as RRTs [14] and PDST-EXPLORE [8] are
specifically designed for systems with dynamics. Kinematic
motion planning algorithms find paths which need post-
processing (e.g., time-scaling [2], [20], steering [9], [16],
or other transformations [11], [19]) to be transformed into
trajectories for dynamical systems. In contrast, RRTs and
similar planners find such trajectories directly. In either
case, an open-loop trajectory for the system is found. This
trajectory can then be tracked using feedback.

This approach has several disadvantages, however. First,
paths generated by motion planning algorithms often appear
to be of poor quality, having unnecessary turns and bends in
them. This may result in them being difficult to follow for a
dynamical system. Second, this approach does not produce
a global feedback plan, but only a local feedback plan in a
neighborhood of the nominal trajectory. It would be better
to solve the feedback problem once for the entire space.

Another approach, made plausible through tremendous
advances in computational power, is to use motion planning
algorithms themselves as the feedback mechanism. In such
a model, any time the system deviated from the prescribed
trajectory, the trajectory would be re-planned (probably from
scratch) based on the new state of the system. This approach
is extremely problematic as well. First, it has a very high
computational cost, and may not be suitable for real-time
applications. Second, this approach is not even guaranteed
to bring the system to the goal state, although in practice
might expect it to.

These approaches, which add feedback almost as an af-
terthought to open-loop trajectories, have significant prob-
lems, as we have seen. Consequently, there have been some
attempts within the robotics community to incorporate feed-
back more directly. For example, the sampling-based neigh-
borhood graph (SNG) covers the free space with balls, each
of which is equipped with a local navigation function which
is guaranteed to convey the robot into a ball nearer to the
goal state. Other approaches to feedback motion planning in
the presence of obstacles are often based on potential fields.
Khatib [6] developed a method which utilized a potential
field over the operational space to guide a manipulator or
mobile robot to the goal. His approach suffers from local
minima, however, as do many potential field methods. A
highly-influential potential field method is that of Rimon and

Koditschek [17], who show how to develop navigation func-
tions (potential functions with a unique minimum at the goal
and meeting certain other criteria) using potential functions
in a generalized sphere world. Waydo and Murray give a
stream function method for navigation in two-dimensional
environments [22].

Recent work by Conner et al. [4] bears similarity to the
present work. They consider an cell-complex environment in
d-dimensional Euclidean space. They then impose a potential
field over each individual cell, taking as the field the pullback
of a potential function on a disk, which has a closed-form
solution. They require that the gradients of the potential fields
be perpendicular to the cell boundaries, so that adjoining
potential fields can be easily pieced together. Putting the
individual “component control policies” together guarantees
that the global control policy brings the robot to the goal. In
addition to specifying a control policy for kinematic systems,
they develop control policies for systems with dynamical
constraints. Conner’s work (and ours) can be seen in the
context of the sequential composition of funnels approach
[15], in which a collection of controllers is developed, each
of which converges to a goal set which is either the actual
goal state or in the domain of another controller. Following a
sequence of these controllers will cause the system to arrive
at the goal state. This idea was further developed in [3], [18]

III. OUR ALGORITHM

Consider a point robot whose environment is a d-
dimensional cell complex; each cell is a (bounded) d-
dimensional convex polytope. Typically, the complex might
result from the convex decomposition of a general polygonal
environment. Let the goal state be xg , and let the cell
containing xg be Cg . Then, using the connectivity of the
convex cells, construct a graph and use a graph search
algorithm (such as Dijkstra’s algorithm) to determine a path
from each cell to Cg . Hence, for each cell other than Cg ,
we have a “successor” that represents the next cell on the
path to the goal cell. We call every cell with a successor an
intermediate cell, in distinction with the goal cell, which has
no successor. See Figure 2 for an illustration. Within each
cell, we will define a vector field that will take every point
in that cell to the face between it and its successor (denote
this face the exit face of the cell). In the case of the goal
cell, the vector field will take every point to the goal point.

At this point, two primary issues must be addressed. First,
how can the vector fields for the individual cells be designed
so that the global vector field is smooth on the boundaries
between cells? Throughout this paper, the term smooth is
used to denote C∞-continuous. Second, how can the cell
vector fields be designed so that they guarantee that any
trajectory beginning in the cell will not exit that cell except
at the exit face? Conner et al. address these issues through
the careful construction of their potential fields. We deal with
these issues through the use of face vector fields. Each face
(specifically, each (d−1)-dimensional boundary hyperplane)
of each cell is assigned a vector field, and we require that our
eventual global vector field agree with the face vector fields



xg

Fig. 2. Paths found using the graph representation of the cells in the
environment.

xg

Fig. 3. Vector fields assigned to faces of cells in the environment.

on the faces. The face vector fields are constructed in such
a way as to guarantee that the above issues are satisfactorily
addressed; formal proofs are given in Section IV.

Figure 3 shows face vector fields for an example. Note
that although the vector fields are shown to be perpendicular
to the faces (similar to Conner et al.), this is not required.

Through the use of face vector fields, the problem of
constructing a global smooth vector field is reduced to
constructing a smooth vector field within each individual
cell. In the case of the goal cell, the integral curves should
all converge to the goal point; for all other cells, the integral
curves should all go to the exit face of the cell (and hence
continue to the successor cell). In order to construct this
vector field, we need to smoothly transition between face
vector fields (since the overall vector field is required to
match the face vector fields at the boundary of the cell). We
achieve this using the interior generalized Voronoi diagram
(GVD) of the cell. Using the GVD, the region of influence
of each face (and hence each face vector field) is defined to
be the set of points inside the polygon which are closest to
that particular face.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

b(
t)

Fig. 4. A bump function. If we let λ(t) = (1/t)e−1/t, then b(t) =
1− λ(t)/(λ(t) + λ(1− t)).

Within each cell, the face vector field is blended with an
attractor vector field, which is defined over the entire cell.
The resulting vector field is equal to the face vector field on
the boundary of the cell, and equal to the attractor vector
field on the GVD. However, we still need a way to smoothly
blend the face vector field and the attractor vector field. We
accomplish this through the use of bump functions, which
are defined as follows:

Definition 3.1: Let X be a smooth manifold, and let K

be a closed set and U an open set, K ⊂ U ⊆ X . Then
a bump function over U is a smooth, real-valued function
ρ : X → [0, 1] such that:

1) ρ has support contained in U .
2) ρ(x) = 1 for every x ∈ K.
For our purposes, we will use a bump function on the

real line which transitions smoothly from 1 to 0 on the unit
interval. An illustration of such a bump function is given in
Figure 4.

The parameter we use for our bump function is essentially
the product of all fractional distances to the faces of the
GVD. Formally, for any point p we have

t(p) = 1 −
n∏

i=1

d(p, fi)

d(p, fi) + d(p, fx)
, (1)

in which {fi}
n
1

are the faces of the GVD and d(p, fi) is the
distance from p to face fi. This function is smooth (except
at the vertices of the cell), and has the desired property of
being identically equal to one on the exit face and zero on
all other boundaries.

Since the bump function smoothly blends the face and
attractor vector fields together, we obtain a vector field which
is smooth over the entire cell. With small modifications, the
above approach can be used in the goal cell as well; piecing
the cells together, we obtain a vector field which is smooth
over the entire free space. At each point, the global vector
field V (p) is defined as V (p) = norm(b(p)Vf (p) + (1 −
b(p))Va(p)), in which Vf is the face vector field for that



point, Va the attractor vector field, b the bump function, and
norm is the normalization function, so that V is a unit vector
field. Formal proofs and conditions on the face and attractor
vector fields are given in the following section.

IV. THEORETICAL ANALYSIS

In this section, we formally show that the integral curves
of the vector fields our algorithm produces are guaranteed
to terminate at the goal state. In so doing, we give sufficient
conditions to be satisfied by the face and attractor vector
fields. In the following section, we give examples of how
to automatically construct vector fields which satisfy these
conditions and offer good practical performance. The most
difficult result to show is that for every intermediate cell,
every integral curve goes to the exit face of the cell. We will
begin by showing that this is the case; after this is complete,
we will briefly show that the vector field in the goal cell will
bring every integral curve to the goal state.

We begin by formally defining attractor vector fields for
intermediate cells. Recall that the GVD consists of subsets of
hyperplanes which are equidistant from two faces of the cell.
Essentially, we require that for any such subset, the vector
field can only cross it in a single direction. This enables is
to construct a directed graph corresponding to the possible
transitions between Voronoi regions of the cell. We then
require that the paths through this graph all terminate in the
node corresponding to the Voronoi region of the exit face.
Formally, we have the following:

Definition 4.1: Let C be a convex cell with exit face fx,
and consider the interior GVD of C. An attractor vector field
Va is a smooth unit vector field on C which satisfies the
following:

1) Va is always directed toward some point in fx.
2) Let h be a hyperplane of the GVD with normal n. If

Va · n = 0 anywhere on the intersection of the GVD
with h, then Va ·n = 0 everywhere on that intersection.

3) The resulting directed transition graph is acyclic and
every path through the graph terminates at the node
corresponding to the exit edge.

While this definition permits many different types of
attractor vector fields, we use a particular formulation. Con-
sider a convex cell C with exit face fx, having normal nx,
and consider all neighboring faces of fx. If the neighboring
faces intersect at a single point p, then let Va be a unit vector
field which always points toward p or away from p (the
appropriate choice will have positive dot product with nx in
C). If the faces do not intersect at a point (i.e., two or more
faces are parallel), then let Va be a constant vector field, the
projection of nx onto one of the parallel faces.

Observation 4.2: Va is an attractor vector field.
Note that an attractor vector field is also attained if Va is

assigned to always point to some point p on the exit face
(the centroid, for example). We will make use of this fact
later. The definition for an face vector field is simple:

Definition 4.3: Let C be a convex cell with exit face fx.
A face vector field corresponding to a face f (with inward

normal n) is a smooth unit vector field Vf such that for every
p ∈ f , Vf · n < 0 if f = fx, or Vf · n > 0 otherwise.

Now, given an additional condition on the face vector
fields, we are able to show that the integral curves all reach
the exit face. It is obvious that they do so without leaving
the cell, because the face vector fields all point inward at
the boundary (except at the exit face, where the vector field
points outward). As before, consider a convex cell C with
exit face fx. Consider a non-exit face f , and denote the
hyperplane of points equidistant to f and fx by bf . Denote
the unit normal vector of this hyperplane to be nbf and let it
be oriented so that nbf · nx ≥ 0. Finally, consider a point p

in the Voronoi region corresponding to f , and let Vf (p) be
the value of the face vector field at that point.

Theorem 4.4: If f = fx, then let Vf (p)·nx ≥ 0, otherwise
let Vf (p) · nbf ≥ 0. Then all integral curves of V reach the
exit face.

Proof: First, we know that at any point p not in the
Voronoi region of the exit face, the attractor vector field
satisfies Va(p) · nbf > 0. the total vector field at p, V (p), is
a linear sum of Va and Vf , this implies that V (p) · nbf > 0.
In other words, on any integral curve the distance to the
hyperplane bf is always decreasing. As a result, two things
can happen: either the hyperplane is reached or some other
hyperplane in the GVD is reached. If the hyperplane itself
is ever reached, then the integral curve has reached Voronoi
region of the exit face and will clearly continue to the exit
face.

Assume that another hyperplane in the GVD is reached.
On the GVD, the vector field is equal to the attractor field,
and the hyperplane is crossed in one direction only. If the
attractor field is such that the integral curve stays in the
Voronoi region corresponding to f , then the same argument
holds: the distance to bf continues to decrease. Recall that
we used the attractor vector field to build a directed, acyclic
graph with all paths terminating at the exit cell. Hence, if
the integral curve continues to another Voronoi cell, this
corresponds to following an edge in the graph from one node
to another. Eventually, we must reach a node in which the
only outgoing edge is to the node corresponding to the exit
region. Since the integral curve cannot cross any hyperplane
but bf , and the distance to bf is always guaranteed to
decrease, we obtain the result that bf must eventually be
reached. At this point, we have reached the Voronoi region
of the exit face and the integral curve will continue to the
exit face.

We have shown that for every intermediate cell, every
integral curve of the generated vector field will reach the
exit face of that cell, and hence continue to the next cell.
Consequently, we have shown that all integral curves will
reach the goal cell. However, it remains to be shown that all
integral curves in the goal cell will reach the goal point.

For intermediate cells, we divided each cell into regions
of influence for each edge vector field using the GVD. In the
goal cell, we divide the cell somewhat differently. The region
of influence for each face is defined to the convex hull of
the vertices of that face together with the goal point. Doing



this for every face clearly results in a subdivision of the cell.
As before, we blend the face vector field with the attractor
vector field over each region. We again use the product of
fractional distances as the parameter in the bump function.

We also simplify our requirements on the attractor vector
field. We now require only that Va(p) · (xg − p) > 0 for any
point p. Practically, we use an attractor vector field which
is always oriented toward xg to satisfy this condition. For a
convex cell C containing a goal point xg, consider a point p

in the region of influence of some face f . Let Vf (p) be the
value of the face vector field at that point.

Theorem 4.5: All integral curves in C reach the goal point
if for all such p and f , Vf (p) · (xg − p) ≥ 0.

Proof: For any point p, the distance to the goal point
is always decreasing for any V resulting from a linear com-
bination of Va and Vf , since the distance is decreasing for
Va and non-increasing for Vf . Consequently, every integral
curve must terminate at xg .

Given the previous theorems, the following theorem holds
true:

Theorem 4.6: The integral curves of the vector field V ,
defined over the entire free space, all terminate at the goal
state xg .

Proof: From Theorem 4.4, any integral curves in an
intermediate cell proceeds to the exit edge as defined by
the shortest-path through the graph corresponding to the cell
complex. All integral curves consequently proceed to the
goal cell. Then, Theorem 4.5 implies that the integral curves
terminate at the goal state.

Thus far, we have claimed that the global vector field
resulting from the blending of individual face and attractor
vector fields is smooth, excepting only a set of measure zero.
We now elaborate on this qualification. First, it is obvious
that if the cell complex is not simply connected, then the
resulting vector field cannot be globally smooth. There will
be some faces for which the integral curves move in opposite
directions on the opposite sides of the face. An example
of an environment which is not simply connected can be
seen in Figure 5. Second, it is clearly not smooth at the
goal point because all integral curves of the unit vector field
arrive there. Practically, it is simple to apply a deceleration
policy as the robot approaches the goal state, which still
allows you to arrive at a neighborhood of the goal state
in finite time. Finally, the vector field is not guaranteed
to be smooth on the (d − 2)-dimensional intersections of
neighboring cells. This is the case because the face vector
fields must have different values. If these are cut out of
the free space (which can be done without consequence),
smoothness is preserved. Note that in the two-dimensional
case, this corresponds to eliminating any Steiner points used
in the convex decomposition of the free space. While this is
the case, simple computations show that the vector field and
all its derivatives match on the (d − 1)-dimensional faces
connecting adjacent cells, so our claim of smoothness on
them is correct.

Finally, we claimed in the introduction that our method is
extremely fast to compute. There are three primary computa-

Fig. 5. An environment which is multiply connected, with two different
goal states shown.

tion costs. First, there is the cost to compute the component
vector fields given an environment and a goal state. Second,
there is the problem of “initializing” the vector field given a
new initial state. Finally, there is the problem of computing
the new vector field values when following an existing
trajectory. All of these can be done quickly. First, consider
the precomputation phase. If breadth-first search is done on
the graph corresponding to the cell complex, the successor
of each cell can be found in O(n) time, in which n is the
complexity of the cell complex3. The face vector fields can be
assigned in linear time if perpendicular face vector fields are
used. The attractor vector fields likewise require only linear
time, since they can be assigned to point to the centroids of
the exit faces.

Second, consider the initialization. A point location query
must be answered to determine in which cell the point lies.
This can clearly be answered in linear time, and may be
answered in logarithmic time if some preprocessing is done.
In two dimensions, the optimal preprocessing bound is O(n)
time, but practical algorithms typically require O(n log n).
Also, only linear space is required in two dimensions. A
good algorithm for this purpose is Kirkpatrick’s triangulation
refinement method [7]. In higher dimensions, the results
are not as good: logarithmic query time (more precisely,
O(d log n), in which d is the dimension) can be attained,
but only at the cost of exponential space: O(n2

d

) [5].
After the initialization is complete, no more point location

3Note that both the cells and the faces connecting cells are included in
n, justifying the O(n) bound.



queries must be answered in the course of computing a
trajectory. Consider two successive query points: they must
either lie in the same cell, or the second one lies in the cell
which is the successor to the first one. This is guaranteed
as long as we assume that the vector field is queried at a
high enough rate. This is a very weak assumption, since if
this does not hold, having a smooth vector field is without
benefit. The most reasonable assumption is that the vector
field is queried nearly continuously, which will result in
the condition holding true. Once the cell of a query point
is known, it requires linear time (in the complexity of the
cell along with one neighboring cell). to compute the vector
field value. Finding the closest edge requires only linear
time in the complexity of the current cell. If the radius of
the ball in the Voronoi cell must be computed, this could
require examining all the faces in the current cell and in
one neighboring cell. Hence, the vector field value can be
computed in linear time.

V. PRACTICAL CONSIDERATIONS

In the previous section, we stated fairly general conditions
on the face and attractor vector fields under which conver-
gence is guaranteed. The purpose of doing this is to permit
a great deal of design flexibility, rendering our algorithm
highly practical. In this section, we will outline our approach
for designing face vector fields. We also give several concrete
examples to illustrate the impact of the choice of convex
subdivision, face, and attractor vector fields on the quality
of the resulting paths.

Consider an face vector field for some face other than the
exit face of a cell. As we have seen, such a vector field must
be directed inward at the face itself and must always point
toward to hyperplane bisecting the face and the exit face.
Moreover, in the case when the face is also the exit face of
another cell, this places additional restrictions on the field,
since in that cell the vector field must always point toward
the exit face. While these requirements are satisfied by a
variety of different vector fields, we prefer constant vector
fields for the sake of simplicity. In general, there still remains
a great deal of design freedom under the constant vector field
restriction.

First, consider the case where we have a constant face
vector field with only the restriction that it must be inward-
pointing at the face itself. If we have this much freedom,
where might we want the vector field to point? Four possi-
bilities are obvious. First, we might want the vector field to
point toward the exit face as much as possible, to promote
short paths. Second, we might want it to point as far away
from the exit face as possible, to avoid the sharp turns that
the first approach might induce. Third, it might be preferable
to make each face vector field perpendicular to its face; this
is the simplest approach. Finally, we might wish to compute
the centroid of the cell or of the exit face and direct the
vector field toward it (say, from the centroid of the face).
In different situations, each of these approaches could offer
advantages; we have not investigated this in depth at present.

So, we have made general comments about what a con-
stant face vector field might look like, in the absence of
constraints. It is trivial to apply constraints to the desired
vector field, since each is a simple hyperplane constraint (i.e.,
each constraint requires that the vector field have positive
dot product with the normal of some hyperplane). As in
the previous section, let f be a face under consideration,
and denote the “bisector” hyperplane between f and fx by
bf . Denote the unit normal vector of this hyperplane to be
nbf . Recall that nbf satisfies the following inequality with
the outward-pointing normal of the exit face: nbf · nx ≥ 0.
Then, we require that the face vector field have positive dot
product with nbf . If the desired vector field does not satisfy
this, simply project the vector field onto bf , also adding
an arbitrarily-small fraction of nbf to attain a positive dot
product.

If the face vector field is also the exit face vector field
of a previous cell, we have more constraints to apply. Their
application, however, is identical to that just described. Now,
consider an exit face vector field, and take any adjoining face
f . Then we again have a bisecting hyperplane and its normal.
The exit face vector field must satisfy a positive dot product
constraint with each bisector normal nbf . In doing so, the
vector field is guaranteed to cross the exit face as required.
Finally, it is worth noting that a perpendicular vector field
always satisfies all the constraints we have outlined. If a
different vector field is desired, however, each constraint
must be examined and satisfied in order for convergence to
be guaranteed. In our experience, we have found that a good
paths are typically attained if the exit face vector fields are
set to point to the centroid of the next exit face and all all
other face vector fields set to be perpendicular. Assuming a
reasonable choice of face vector fields, the attractor vector
fields seem to exert a stronger influence on path quality.

In addition to the choice of attractor field discussed above,
a variety of other choices are possible. One possibility is to
place the “attractor point” on the exit face, and have the
vector field always oriented toward that point. Depending on
where this point is placed on the exit face, it tends to strongly
influence the vector field to leave the cell near the attractor
point. Sometimes, it may also result in sharp turns, which
can be undesirable.

Finally, the choice of convex decomposition can greatly
affect the quality of the resulting paths. This is particularly
important when the face vector fields are chosen to be
perpendicular to the edges. See Figure 6 for an illustration
of this point.

VI. CONCLUSION

In conclusion, we have introduced a new algorithm for
addressing the problem of global robot navigation. In contrast
with previous work, which uses the gradient of a suitable
potential field as a velocity command, we directly build
a smooth vector field suitable for robot navigation. Using
bump functions, we combine face and attractor fields so
that the integral curves of the resulting vector field are
guaranteed to terminate at the goal state. In addition to giving



Fig. 6. The influence of different convex decompositions. On top, a path
with sharp turns arising from the choice of decomposition and perpendicular
face vector fields; on bottom, the artifacts eliminated through a better
decomposition.

theoretical proofs of the convergence of the vector fields
generated with our algorithm, we show illustrations of how
to make design choices which result in high-quality paths for
practical applications. This vector field can be used directly
to control kinematic systems, or can be used to develop
dynamic control policies as in [4], [18].

In the future, we plan to continue to improve our methods
of choosing component vector fields and blending strategies.
In addition to this, we intend to extend these ideas to the
case of a polygonal robot translating and rotating in the
plane. We would also like to integrate the ideas in this paper
with sampling-based motion planning techniques in order to
develop global or local feedback motion plans for arbitrary
robotic configuration spaces.

ACKNOWLEDGMENTS

This work was funded in part by NSF Awards 9875304,
0118146, and 0208891.

REFERENCES

[1] D. Bertsekas. Dynamic Programming and Optimal Control: Volume
I. Athena Scientific, Belmont, MA, USA, 2000.

[2] J. E. Bobrow, S. Dubowsky, and J. S. Gibson. Time-optimal control
of robotic manipulators along specified paths. Int. J. Robot. Res.,
4(3):3–17, 1985.

[3] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. Sequential
composition of dynamically dexterous robot behaviors. Int. J. Robot.
Res., 18(6):534–555, 1999.

[4] D. C. Conner, A. A. Rizzi, and H. Choset. Composition of local
potential functions for global robot control and navigation. In
IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, pages 3546–
3551, 2003.

[5] J. E. Goodman and J. O’Rourke. Handbook of Discrete and Com-
putational Geometry, Second Edition. CRC Press, Boca Raton, FL,
2004.

[6] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. Int. J. Robot. Res., 5(1):90–98, 1986.

[7] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J.
Computing, 12:28–35, 1983.

[8] A. M. Ladd and L. E. Kavraki. Fast exploration for robots with
dynamics. In Proc. Workshop on Algorithmic Foundation of Robotics,
2004.

[9] F. Lamiraux and J.-P. Laumond. Flatness and small-time controllability
of multibody mobile robots: Applications to motion planning. IEEE
Transactions on Automatic Control, 45(10):1878–1881, April 2000.

[10] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Boston, MA, 1991.

[11] J. P. Laumond, S. Sekhavat, and F. Lamiraux. Guidelines in nonholo-
nomic motion planning for mobile robots. In J.-P. Laumond, editor,
Robot Motion Plannning and Control, pages 1–53. Springer-Verlag,
Berlin, 1998.

[12] S. M. LaValle. Planning Algorithms. [Online], 2005. Available at
http://msl.cs.uiuc.edu/planning/.

[13] S. M. LaValle and P. Konkimalla. Algorithms for computing numerical
optimal feedback motion strategies. International Journal of Robotics
Research, 20(9):729–752, September 2001.

[14] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees:
Progress and prospects. In B. R. Donald, K. M. Lynch, and D. Rus,
editors, Algorithmic and Computational Robotics: New Directions,
pages 293–308. A K Peters, Wellesley, MA, 2001.

[15] T. Lozano-Pérez, M. T. Mason, and R. H. Taylor. Automatic systhesis
of fine-motion strategies for robots. Int. J. Robot. Res., 3(1):3–24,
1984.

[16] R. M. Murray and S. Sastry. Nonholonomic motion planning: Steering
using sinusoids. Trans. Automatic Control, 38(5):700–716, 1993.

[17] E. Rimon and D. E. Koditschek. Exact robot navigation using artificial
potential fields. IEEE Trans. Robot. & Autom., 8(5):501–518, October
1992.

[18] A. A. Rizzi. Hybrid control as a method for robot motion program-
ming. In IEEE Int. Conf. Robot. & Autom., pages 832–837, 1998.

[19] S. Sekhavat, P. Svestka, J.-P. Laumond, and M. H. Overmars. Mul-
tilevel path planning for nonholonomic robots using semiholonomic
subsystems. Int. J. Robot. Res., 17:840–857, 1998.

[20] K. G. Shin and N. D. McKay. Minimum-time control of robot
manipulators with geometric path constraints. IEEE Trans. Autom.
Control, 30(6):531–541, 1985.

[21] J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories.
IEEE Trans. Autom. Control, 40(9):1528–1538, September 1995.

[22] S. Waydo and R. M Murray. Vehicle motion planning using stream
functions. In IEEE Int. Conf. Robot. & Autom., pages 2484–2491,
2003.


