
Bang-Bang Boosting of RRTs

Alexander J. LaValle, Basak Sakcak, and Steven M. LaValle

Abstract— This paper presents methods for dramatically
improving the performance of sampling-based kinodynamic
planners. The key component is a complete, exact steering
method that produces a time-optimal trajectory between any
states for a vector of synchronized double integrators. This
method is applied in three ways: 1) to generate RRT edges
that quickly solve the two-point boundary-value problems, 2)
to produce a (quasi)metric for more accurate Voronoi bias in
RRTs, and 3) to iteratively time-optimize a given collision-free
trajectory. Experiments are performed for state spaces with up
to 2000 dimensions, resulting in improved computed trajectories
and orders of magnitude computation time improvements over
using ordinary metrics and constant controls.

I. INTRODUCTION

Rapidly exploring random trees were originally introduced
as an approach to motion planning with differential con-
straints and dynamics [21]. The idea was to incrementally
grow a space-filling tree by applying controls so that two-
point boundary-value problems could be avoided if popular
methods such as probabilistic roadmaps [17] were applied to
these problems. Curiously, RRTs have found more success
over the past decades for basic path planning (no differential
constraints and dynamics), rather than their intended target,
the kinodynamic planning problem [6].

Although this phenomenon is partly due to larger main-
stream interest since the 1990s in basic path planning,
it is primarily due to the additional challenges posed by
the harder problems. Computational performance depends
greatly how well the RRT nearest-neighbor metric approxi-
mates the true, optimal cost-to-go function, which is presum-
ably unattainable. Furthermore, efficient steering methods or
motion primitives are often needed to enhance performance,
rather than applying constant controls as in [21]. Indeed,
the most successful kinodynamic RRT planning methods
have exploited the existence of simple cost-to-go functions
and steering methods (ignoring obstacles) for special classes
of systems [8], [10], [19], [27], [30], [32] or have relied
on numerical solutions computed offline for more general
systems and optimization objectives [29]. Learning-based
approaches to estimate the cost-to-go function have also been
proposed [3], [22], [26], [33]. Inspired by all of these works,
we enhance RRT performance by using metrics and steering
methods based on bang-bang time-optimal controls [28]. It
was already shown that RRT exploration seems to improve
with bang-bang metrics [10], [15].

We continue in this direction by developing a steering
method (and proving its correctness) that completely solves

The authors are with Center for Ubiquitous Computing, Faculty of
Information Technology and Electrical Engineering, University of Oulu,
Finland. Email: firstname.lastname@oulu.fi

the problem of time-optimally steering a vector of double
integrators from any initial state to any goal state with a
synchronized arrival time. Optimal solutions are easily and
exactly computed as two- to four-piece constant controls
for each double integrator, resulting in piecewise-constant
controls for the whole system, and trajectories as parabolic
arcs in the configuration and state (phase) spaces. The
challenge is to ensure that all double integrators arrive at
their goal states at the same time, which is often impossible
due to momentum, unless some form of time-stretching or
waiting is inserted.

We then show experimentally that the steering method
improves RRT performance by orders of magnitude when
compared to the original method that uses weighted Eu-
clidean metrics and constant controls over fixed time inter-
vals. The study presented here is focused on double integrator
dynamics, which lies at the core of fully actuated systems,
with the intention of extending it to more general dynamics
of arbitrary stabilizable systems (similar to the way it was
accomplished in [13]). As a step in this direction, we also
present some preliminary results for a non-double integrator
system, representing a vehicle on a curved surface.

This paper also presents methods that rapidly optimize
collision-free trajectories by iteratively applying the simple
time-optimal steering method to the output of sampling-
based planners. We consider two cases: 1) directly optimizing
the result of a kinodynamic RRT-based planners, and 2)
converting the piecewise-linear path produced by an RRT-
based planner for basic path planning [18] into a trajectory
by applying bang-bang controls along each segment and
then further iteratively optimizing the result. Our experiments
indicate that the second method is more efficient; however,
it is limited to problems in which the initial and goal
states are at zero velocity (if some form of completeness is
demanded). An alternative to these optimizations would be
to apply asymptotically optimal extensions of RRTs, such
as RRT* [16] or SST* [23]; however, we are motivated
by the evidence that “plan first and optimize later” often
produces optimal paths more quickly and consistently than
asymptotically optimal planning [12], [25].

The paper continues as follows. Section II defines the
problem. Section III develops the algebraic details of bang-
bang time optimal control for single and multiple, parallel
double integrators. Section IV presents the new planning
and optimization methods. Section V gives implementation
details, computed results, and performance analysis. Section
VI summarizes the results, their implications, and discusses
the logical next steps.



II. PROBLEM DEFINITION

Let C be the robot configuration space, assumed to be
an n-dimensional smooth manifold with points referenced
using local coordinates on Rn. Geometric models (typically
piecewise-linear) are given for the robot and its (static)
environment, and the robot model transforms for each q
depending on robot kinematics. Let Cfree be the open subset
of C in which the robot does not intersect obstacles. See [4],
[20] for more details.

The first problem is:

Problem 1 (Basic path planning) Given any qI , qG ∈
Cfree, compute a path τ : [0, 1]→ Cfree such that τ(0) = qI
and τ(1) = qG.

This problem ignores kinematic constraints and dynamics,
leading to a second, harder problem that takes these into
account. Building upon C and Cfree, let x = (q, q̇) be a 2n-
dimensional state vector for every configuration q ∈ C. The
set of all x forms X , the state space, which is the tangent
bundle T (C). Assume Cfree is lifted into X as Xfree =
{(q, q̇) ∈ X | q ∈ Cfree}.

Let ẋ = f(x, u) define a standard control system on X ,
in which u belongs to a compact action set U ⊂ Rm. For
convenience in this paper, we will equivalently define the
control system in terms of the accelerations that actions u ∈
U induce at a particular q ∈ C. Thus, let A(x) = A(q, q̇) be
the set of all accelerations q̈ that can be obtained at (q, q̇) by
applying an action u ∈ U for the system f . Let a ∈ A(x)
denote a particular acceleration vector (a = q̈) that may be
applied. Let A = ∪x∈XA(x). Let Φ(x, ã) denote the state
trajectory x̃ : [0, tF ] → X obtained by integrating a control
ã : [0, tF ]→ A from state x. This leads to the next problem:

Problem 2 (Kinodynamic planning) Given any xI , xG ∈
Xfree, compute an acceleration control ã : [0, tF ]→ A for
which ã(t) ∈ A(x̃(t)) for all t ∈ [0, tF ], and that produces
a state trajectory x̃ = Φ(xI , ã), with x̃ : [0, tF ] → Xfree

and x̃(tF ) = xG.

We also consider time optimality in some cases, which means
that a solution is chosen for which tF is as small as possible
among all possible solutions.

These restricted versions will be considered in this paper:

1) Stabilizable: For all x ∈ X , A(x) contains an open set
that contains the origin 0. This implies that for any xI ,
xG, there exists a finite-time acceleration control that
solves the kinodynamic planning problem if Xfree =
X (no obstacles).

2) Rest-to-rest: These problems require that for xI =
(qI , q̇I) and xG = (qG, q̇G), q̇I = q̇G = 0.

3) nD-double-integrator: Each qi is independently actu-
ated within global acceleration bounds amin,i < 0
and amax,i > 0. In this case, A(x) is an axis-aligned
rectangle that contains the origin, fixed for all x ∈ X .

III. TIME-OPTIMAL ACCELERATIONS

The task in this section is to calculate time-optimal
solutions to the kinodynamic problem for the nD double
integrator model and no obstacles: Xfree = X = R2n.
The solutions will work out so that controls are piecewise-
constant,

ã = ((a1, t1), (a2, t2), . . . , (an, tn)), (1)

which means that each ai is applied for duration ti, starting
at time t1 + t2 . . . ti−1. Initially, a1 is applied at time t = 0.

A. Time-optimal control of a double integrator

Consider one double integrator, for which every q ∈ R.
The allowable accelerations form a closed interval A =
[amin, amax], in which amin < 0 and amax > 0. It is a
control system of the form q̈ = a for a ∈ [amin, amax] and
has an associated phase plane, with coordinates (q, q̇) ∈ R2.
The task is to determine an acceleration control ã : [0, tF ]→
A for which Φ(xI , ã) = xG and tF is as small as possible.

Pontryagin’s maximum principle provides necessary con-
ditions on the time-optimal trajectory by considering a co-
state vector (λ1, λ2) that serves as a generalized Lagrange
multipliers for the constrained optimization problem [24].
Following the standard theory, the Hamiltonian is defined as

H(x, a, λ) = 1 + λ1x2 + λ2a, (2)

in which x1 = q and x2 = q̇, and the optimal ã is constrained
to

ã∗(t) = argmin
a∈A

{1 + λ1(t)x2(t) + λ2(t)ã(t)} . (3)

Solving the adjoint equation λ̇i = − ∂H
∂xi

results in λ1(t) = c1
and λ2(t) = c2 − c1t for unknown constants c1 and c2.
If λ2(t) < 0, then ã∗(t) = amax, and if λ2(t) > 0, then
ã∗(t) = amin. Thus, the action may be assigned as ã∗(t) =
−sgn(λ2(t)), if λ2(t) ̸= 0. At the boundary case in which
λ2(t) = 0, any a ∈ A may be chosen. Since λ2(t) is linear,
it may change signs at most once, implying that the optimal
control involves at most two “bangs”, each corresponding
to an extremal acceleration applied over a bounded time
interval. Thus, the time-optimal control is of the form ã∗ =
((a1, t1), (a2, t2)), with degenerate possibilities of t1 = 0 or
t2 = 0.

Further algebraic analysis is needed to precisely determine
a1, t1, a2, and t2 for a given (qI , q̇I) and (qG, q̇G). See
Figure 1. If a constant acceleration a is applied at any phase
(q0, q̇0), then a parabolic curve is traced out in the phase
plane. If q0 = q̇0 = 0, then its equation is q = 1

2 ẋ
2. More

generally, it satisfies q − 1
2 q̇

2 = c, in which the coefficient
c = q0− 1

2 q̇
2
0 corresponds to the parabola’s intersection with

the q̇ = 0 axis.
Next consider four parabolas based on all combinations of

initial and goal states, and extremal controls. Let I+ denote
the parabola obtained from setting (q0, q̇0) = xI = (qI , q̇I)
and applying constant control amax; let c(I+) denote its
q̇ = 0 intercept. Similarly, I− is obtained by applying
amin. Furthermore, G+ and G− are obtained by setting



q̇ = 0

xswitch

a
=
am

ax
a
=
a
m
in

xI

xG

Fig. 1. Intersecting parabolas and traveling forward in time produces the
time-optimal trajectory in the phase plane, which generally involves two-
piece constant controls and parabolic trajectories.

(q0, q̇0) = xG and applying amax and amin, respectively.
Assuming xI ̸= xG, consider all possible intersections of
I+, I−, G+ and G−. There are only two possible types:
I+G− and I−G+. The first results in amax applied until the
intersection point, xswitch = (qswitch, q̇switch), is reached,
followed by applying amin. The second type applies amin

first, followed by amax.
The type I+G− intersection occurs if c(I+) > c(G−).

The intersection position is the midpoint qswitch =
(c(I+) + c(G−))/2, and the velocity is q̇switch =√
2(qswitch − c(I+)). Similarly, the type I−G+ intersection

occurs if c(I−) < c(G+). The intersection position is the
midpoint qswitch = (c(I−) + c(G+))/2, and the velocity is
q̇switch = −

√
2(qswitch − c(G+)).

To determine the control timings to go from xI to xswitch

to xG note that changing velocity by an amount d with
constant acceleration a requires time d/a. The timings are:

t1 = (q̇switch − q̇I)/a1 (4)

and
t2 = (q̇G − q̇switch)/a2, (5)

respectively.
There will always be at least one intersection, but some-

times there are both I+G− and I−G+. In this case, t1
or t2 may be negative for one intersection, but the other
intersection provides a valid control. It is also possible to
obtain valid controls for both cases, in which case the one
that requires least time must be selected (Figure 2 will
provide more details).

The arguments above lead to the following proposition:

Proposition 1 The time-optimal control for the double in-
tegrator problem is ((a1, t1), (a2, t2)), in which a1 = amin

and a2 = amax, or a1 = amax and a2 = amin, and the
durations t1 and t2 are given by (4) and (5).

B. Time-optimal control of a vector of double integrators

To extend the result to a vector of double integrators, a
waiting method is needed so that each double integrator
arrives at its goal in its phase plane at the same time.

xlimit

xmirror

q̇ = 0

a =
amax

xswitch

xG

xI

a =
a
min

a =
a
min

a =
amax

Fig. 2. If both I+G− and I−G+ intersections occur, then there is a
gap interval, which disallows certain waiting times. This poses a significant
challenge to synchronizing the arrival times of n double integrators, which
is overcome in our paper and is critical to our new planning algorithms.

This problem was considered in [7], [15], but only for
the limited case in which their final velocities are zero.
Our work builds upon the observations in [11], [19]. We
introduce an explicit, complete, provably time-optimal, and
computationally efficient solution to the general problem of
steering of n independent integrators for any initial and goal
state pairs in their respective phase planes in O(n lg n) time.

For a fixed xI and xG, let t∗ be the time to reach the
goal by applying the bang-bang solution of Section III-A.
Now consider some tw > t∗. Does a control ũ necessarily
exist that will cause xG to be reached at exactly time tw?
The answer is yes if there is only one intersection type
(I+G− or I−G+). However, if both intersections occur, then
the situation depicted in Figure 2 occurs (or its symmetric
equivalent for q̇ < 0). The path from xI to xlimit =
(qlimit, q̇limit) to xG corresponds to the slowest trajectory
that reaches xG while remaining in the q̇ > 0 half-plane.
The critical switching point xlimit can be calculated using
the parabola intersection algebra from Section III-A. The
time taken by this trajectory is calculated as

tlimit = (q̇limit − q̇I)/amin + (q̇G − q̇limit)/amax. (6)

Thus, if tw ∈ [t∗, tlimit], then a solution exists (and requires
only two constant control segments). If tw > tlimit, then xG

can no longer be reached while remaining in the q̇ > 0 half-
plane. The next available time is obtained by continuing to
apply a = amin until the second parabolic intersection point,
called xmirror is reached, in the q̇ < 0 half-plane. Note
that xmirror = (qlimit,−q̇limit). Once xmirror is reached,
a = amax is applied to arrive optimally at xG. The time
required to traverse this trajectory is

tmirror = tlimit + 2q̇limit/amax − 2q̇limit/amin. (7)

Thus, there may generally be a gap interval (tlimit, tmirror)
for which no solution exists.

Now suppose that tw ≥ t∗ and there is no gap interval,
or tw ∈ [t∗, tlimit] ∪ [tmirror,∞). A two-piece control



((a1, t1), (a2, t2)) can be calculated as a solution to the fol-
lowing equations corresponding to the boundary conditions:

q̇It1 +
a1t

2
1

2
+ (q̇I + a1t1)t2 +

a2t
2
2

2
= qG − qI , (8)

a1t1 + a2t2 = q̇G − q̇I , (9)

while satisfying a1, a2 ∈ [amin, amax]. Note that t2 = tw−t1
and 0 ≤ t1, t2 ≤ tw. The solution is usually not unique, and
can be selected either arbitrarily or by optimizing a relevant
optimization objective, such as energy.

Proposition 2 If a solution exists for prescribed time tw to
reach xG from xI , then the above waiting method generates a
control that achieves it; otherwise, it reports failure (implying
that tw lies in the gap interval).

Proof: Let ãu and ãl be two control trajectories de-
fined as ãu = ((amax, tu), (amin, tw − tu)) and ãl =
((amin, tl), (amax, tw − tl)). Furthermore, for given xI and
xG, tu and tl satisfy that q̇u(tw) = q̇l(tw) = q̇G, in which
(qu, q̇u) = Φ(xI , ãu) and (ql, q̇l) = Φ(xI , ãl). Suppose a
solution exists for tw and let ã : [0, tw] → [amin, amax] be
a solution control trajectory such that x̃(tw) = xG, in which
x̃ = (q, q̇) = Φ(xI , ã). For all t ∈ [0, tw], it is true that

q̇l(t) ≤ q̇(t) ≤ q̇u(t). (10)

Suppose this is not true and there exists a t′ ∈ [0, tw]
for which q̇(t′) > q̇u(t

′). Then, if t′ ≤ tu it implies that∫ t′

0
ã(t)dt >

∫ t′

0
ãu(t)dt which violates the condition that

ã(t) ≤ amax for all t ∈ [0, tw]. The same reasoning can be
done for t′ > tu and for q̇(t) < q̇l(t). It follows from (10)
that

ql(t) ≤ q(t) ≤ qu(t) (11)

for all t ∈ [0, tw]. In particular, ql(tw) − qI ≤ qG − qI ≤
qu(tw) − qI . Then, there exist a1, a2 ∈ [amin, amax]
and 0 ≤ t1 < tw that satisfy the boundary conditions
given in (8) and (9). This proves that if a solution ã
exists for tw, then, there also exists a two-piece solution
((a1, t1), (a2, tw − t1)). As a consequence, if there does not
exist a two-piece solution, then, there also does not exist a
solution for tw. This happens for example, if qG < ql(tw)
or qG > qu(tw) for given tw, xI , and xG. ■

Putting these results together, a control ũ can be de-
termined for any tw, unless it is in the gap interval. If
tw ≥ tmirror and qinit ≥ 0, then a four-piece solution is
obtained by: 1) maximum deceleration to rest from xI , 2)
waiting for time tw − tmirror, 3) maximum deceleration to
xmirror, and 4) maximum acceleration to xG. A symmetric
equivalent solution applies for qinit ≤ 0. If tw ∈ [t∗, tlimit],
then the two-piece solution from (8) and (9) is used (this
method could even be applied if tw ≥ tmirror, but this was
not attempted).

Now suppose that the optimal times have been calculated
for n double integrators to start at some xI and end at some
xG. In the worst case, every double integrator could have a

BANG BANG RRT BIDIRECTIONAL(xI , xG)
1 Ta.init(xI ); Tb.init(xG)
2 for i = 1 to K do
3 xn ←BANG-BANG-NEAREST(Sa, α(i))
4 xs ←BANG-BANG-STEER(xn,α(i))
5 if xs ̸= xn then
6 Ta.add vertex(xs)
7 Ta.add edge(xn, xs)
8 x′

n ← BANG-BANG-NEAREST(Sb, xs)
9 x′

s ← BANG-BANG-STEER(x′
n,xs)

10 if x′
s ̸= x′

n then
11 Tb.add vertex(x′

s)
12 Tb.add edge(x′

n, x
′
s)

13 if x′
s = xs then return SOLUTION

14 if |Tb| > |Ta| then SWAP(Ta, Tb)
15 return FAILURE

Fig. 3. Bidirectional RRT with bang-bang steering and quasimetric.

gap interval. The problem is to find the smallest time t such
that t ≥ t∗ and t ̸∈ (tlimit, tmirror). If a double integrator
has no gap interval, then that part of the condition is dropped.
A simple algorithm is contained in the proof of the following
proposition:

Proposition 3 The time-optimal steering problem for n dou-
ble integrators can be solved in O(n lg n) time.

Proof: A simple line sweeping algorithm [5] achieves
the bound as follows. Sort the optimal, limit, and mirror
times for all double integrators into a single array of length
O(n). Sweep incrementally across the array, starting from
the shortest time. In each step increment or decrement a
counter of the number of double integrators that have a
solution; tlimit causes decrementing and the other two cases
cause incrementing. Each step takes O(1) time. The method
terminates with the optimal t when all n integrators admit
a solution. The overall algorithm takes time O(n lg n) time
due to the initial sorting. ■

IV. PLANNING METHODS

A. Kinodynamic RRT with bang-bang metric and steering

Suppose a kinodynamic planning problem is given for an
nD-double integrator system. Figure 3 presents an outline
of a balanced bidirectional RRT-based planning algorithm
that uses bang-bang methods for both the metric and the
steering method. A single-tree goal-biased algorithm could
alternatively be made [19], [21]. Let α(i) ∈ X denote the
random state obtained in iteration i (α could alternatively
be a deterministic sequence that is dense in X [20]). Line
3 returns the nearest state xn among all points Sa visited
by tree Ta. Using the tools from Section III, there are two
natural choices for the (quasi)metric, ρ(x, x′), which is an
estimate of the distance from x to x′. Note it is not symmetric
for our problem. The first choice ρ1(x, x

′) is the maximum
time t1 + t2 from (4) and (5), taken over all n double
integrators. A slower and more accurate metric is ρ2(x, x

′)



is the time with waiting, tw, from Section III-B, which is the
time it takes for every double integrator to arrive at x′. Note
that these metrics are expected to produce a better Voronoi-
bias [21] because they are closer to the true optimal cost-to-
go function.

Line 4 is the time-optimal steering method from Section
III-B. Collision checking is performed along the trajectory,
and the steering stops at xs if an obstacle is hit or α(i)
is reached. The new trajectory is added to Ta (and Sa). In
practice, this was accomplished in our experiments by insert-
ing into Ta nodes and edges along the trajectory; an exact
method could alternatively be developed for representing and
computing nearest points in Sa.

Lines 8 and 9 are similar to Lines 3 and 4, except that
an attempt is made to connect the newest visited point xs to
the nearest point Sb in the other tree, Tb. Line 14 swaps the
roles of the tree so that the smaller one explores toward α(i)
and the larger one attempts to connect to the newly reached
point.

If a more general, stabilizable system (recall from Section
II) is given, then it can be converted into an nD-double
integrator by restricting A to an compact, axis-aligned rect-
angular region that contains the origin. Such a subset of A
always exists, and lies in the intersection of the open subsets
of A(x) that contain 0, for all x ∈ X . If the rectangle is
small relative to A(x) at each x, then we expect the solutions
produced by the algorithm in Figure 3 to be further from their
potential optima; a step toward investigating this problem is
taken at the end of Section V.

B. Bang-bang trajectory optimization

Let X , Xfree, xI , xG, and A be fixed for an nD double
integrator system. Suppose that a piecewise-constant control
ã : [0, tF ]→ A is given so that the resulting x̃ = Φ(xI , ã) is
solution to Problem 2 from Section II. The task is to replace
ã with a new control ã′ : [0, t′F ] → A so that t′F < tF
while maintaining the constraints that the trajectory maps
into Xfree and arrives at xG at time t′F . The new control
ã′ is constructed by selecting t1 and t2 such that 0 ≤ t1 <
t2 ≤ tF .

For a given control, ã, let ã[t1, t2] denote its restriction
to the interval [t1, t2]. Thus, ã[t1, t2] : [t1, t2] → A.1 The
original control ã can be expressed as a sequence of three
controls ã[0, t1], ã[t1, t2], and ã[t2, tF ] by applying Φ to each
in succession. We replace the middle portion with a bang-
bang control ã′[t1, t

′
2] using the methods of Section III-B.

Since the method is time-optimal, it is known that t′2 ≤ t2
(they are equal only if ã[t2, tF ] is already time-optimal). The
new control must satisfy

Φ(Φ(xI , ã[0, t1])(t1), ã[t1, t2])(t2)

= Φ(Φ(xI , ã[0, t1])(t1), ã
′[t1, t

′
2])(t

′
2), (12)

which implies that the new control sequence ã[0, t1],
ã[t1, t

′
2], and ã[t2, tF ] arrives at xG at time tf − (t2 − t′2).

1The restrictions will be closed intervals that allow single-point overlaps,
but this will not affect the resulting trajectories.

Fresh collision checking is needed for the trajectory from
Φ(xI , ã[0, t1])(t1) to Φ(Φ(xI , ã[0, t1]), ã

′[t1, t
′
2])(t

′
2).

The general template for iterative bang-bang optimization
is:

1) Choose t1 and t2 according to a random or determin-
istic rule.

2) Attempt to replace ã[t1, t2] with the bang-bang alterna-
tive ã′[t1, t

′
2]. If the result is collision free, then update

ã with the modified control.
3) Go to Step 1, unless a termination criterion is met

based on the number of iterations without any signifi-
cant time reduction.

The rule of choosing t1 and t2 should produce a dense
sequence of intervals in the following sense: the points of
the form (t1, t2) ∈ R2 must be dense in the triangular region
satisfying 0 ≤ t1 ≤ t2 ≤ tF (this ignores the fact that tF
decreases in each iteration, and such out-of-bounds intervals
can be rejected in the analysis). A simple but effective rule
is to first pick t1 and t2 uniformly at random. If t1 < t2,
then replace ã[t1, t2]. Otherwise, toss an unbiased coin to
replace either ã[0, t2] or ã[t1, tF ]. This extra consideration
over purely random pairs (e.g., as in [11]) helps focus on the
ends. Alternatively, t1 and t2 could be picked according to
deterministic sequences to ensure convergence.

The termination criterion could be based on a hard limit
on the number of iterations, or failure statistics (for example,
no significant improvement more than ϵ > 0 has occurred
in the past 50 iterations). Note that the approach is not a
variational optimization as in a gradient descent in trajectory
space [2]; it more resembles path shortening for basic path
planning (called shortcutting in [9], [25]). Thus, local time-
optimality is gradually reached in the sense that the solution
cannot be further improved by replacing trajectory segments
with time-optimal alternatives, but it is not equivalent to a
time optimum in the sense of local perturbations in trajectory
space.

C. Basic path planning with bang-bang state-space lifting

Consider taking the output of a basic path planning, lifting
it into the state space using bang-bang control, and then
applying the bang-bang optimization method of Section IV-
B. Suppose we are given a kinodynamic planning problem
for nD double integrators for which xI and xG are both at
rest (zero velocity). Thus, xI = (qI ,0) and xG = (qG,0).
The first step is to compute a piecewise-linear path τ :
[0, 1] → Cfree, in which Cfree is the projection of Xfree

onto the configuration space. This could, for example, be
computed by RRT-Connect [18], but the particular planner
is unimportant.

We then introduce the bang-bang transform, described
here for Rn and amax = −amin = 1 (it easily generalizes;
see also [11]). For each vertex q along the path τ , extend it
to x = (q,0) ∈ Xfree. For each edge between consecutive
vertices, q, q′, execute a bang-bang control; we require that it
is constrained to the edge and steers from (q,0) to (q′,0). Let
v = q′ − q, normalized as v̂ = v/∥v∥. Let s = maxi(|v̂i|).
Let ai = v̂i/s and t =

√
s∥v∥. The bang-bang control is



((a, t), (−a, t)). This transform is applied to each edge of
the path and the resulting controls are concatenated.

The following propositions support the approach of lifting
any piecewise-linear collision-free path (which are the typical
output of sampling-based planners) into the state space via
the bang-bang transform.

Proposition 4 The bang-bang transform of a path is time-
optimal. Furthermore, Φ(xI , ã) = xG and the resulting
trajectory is collision free.

Proof: Assuming that there are no spurious vertices (lying
in the interior of a linear segment), the system must come to
rest at each vertex. Thus, applying the time-optimal control
from rest to rest over each edge yields a time-optimal
control for the whole path. The bang-bang transform is
merely a consequence of Proposition 1, applied to the
simpler rest-to-rest case. Regarding collision, for each
segment, the accelerations yield velocities parallel to it;
thus, the path traversed is the edge itself, which is already
known to be collision free. Furthermore, this implies that
xG is reached after the full control ã is applied. ■

Proposition 5 Using the bang-bang transform, any
piecewise-linear solution to Problem 1 can be converted via
the bang-bang transform into a corresponding solution to
Problem 2, restricted to double integrators and rest-to-rest.

Proof: This is a direct consequence of Proposition 4 due to
the preservation of the collision-free and goal reachability
properties of the bang-bang transform. ■

V. EXPERIMENTS

The algorithms were implemented in Python 3.9.5 on a
Windows 10 PC with an AMD Ryzen 7 5800X CPU and
32GB 3200MHz CL16 RAM. Naive methods were used for
nearest neighbor searching and collision detection because
they are not critical to the experimental analysis. All results
are shown in a high-resolution video available at http:
//lavalle.pl/videos/IROS23.mp4.

A. Kinodynamic planning for a 2D vehicle (4D state space)

These examples use a four-dimensional state space corre-
sponding to a 2D workspace in which a planar vehicle moves
with double integrator dynamics. Let amax = −amin = 1.

Figure 4 compares the new BB-RRT method (Figure 3) to
the original kinodynamic RRT-Bi [21] and RRT-Connect [18]
on the 2D projection that ignores velocities and dynamics.
The state space X is [−400, 400]2×[−10, 10]2. Statistics are
reported in Figure 5. The initial and goal states were at rest.
The ρ1 metric introduced in Section IV-A was used. The Sa

and Sb sets were approximated by placing new RRT nodes
along long edges for every 12 collision checks (see Section
5.5.2 of [20]). The BB-RRT is about 1564 times faster on
average than the RRT-Bi. RRT-Connect is even faster, but
it only constructs paths on the 2D configuration space, and

a. b.

c. d.

e. f.
Fig. 4. a) Original kinodynamic RRT-Bi [21], b) The proposed BB-RRT,
c) RRT-Connect [18] applied to the 2D projection, d) multiple bang-bang
optimizations of a planned path, e & f) two more BB-RRT examples with
BB-optimized paths (purple).

Method RunTime Nodes ColChecks TrajTime
RRT-Bi 27.013 1589.1 4364.8 311.53
BB-RRT 0.017276 57.772 599.48 126.99
RRT-Con 0.004738 60.663 713.25 n/a
BB-Opt 0.021547 n/a 3291.3 72.452

Fig. 5. For each method, the execution time (second), number of RRT
nodes, number of collision checks, and trajectory execution time (seconds)
are reported (where applicable). All numbers are calculated as averages over
1000 runs.

the number of collision checks is comparable. Figure 4.d
shows 50 results for the bang-bang optimizer of Section IV-
B, applied to the same initial path; computation times are
fairly consistent across runs and problems, depending mainly
on path length and collision detector cost.

The BB-RRT has the advantage, much like RRT-Connect,
in that there are no parameters to tune. RRT-Bi has parame-
ters for the step size, the set of actions, and the connection
distance (the trees do not exactly meet). For the example
in Figure 4.a, we used 24 constant acceleration actions,
∆t = 5, and connection distances of ∆q = 5 and ∆q̇ = 2;

http://lavalle.pl/videos/IROS23.mp4
http://lavalle.pl/videos/IROS23.mp4


a. b.
Fig. 6. BB-optimization applied to a planar manipulator with dynamics.

in the weighted-Euclidean metric, the velocity components
were weighted 17.32 times more than the configuration
components. Figures 4.e and 4.f show two more examples
under the same conditions, for which BB-RRT took on
average 0.0368s and 0.4072s, respectively, over 1000 runs.
The speedup factors over RRT-Bi were 837.6 and 368.5.
Again, RRT-Connect on the 2D projection was faster, by
factors 6.65 and 12.5, respectively. Original and bang-bang
optimized paths are shown green and purple, respectively.

B. Bang-bang optimization for a planar manipulator

Figure 6 depicts additional experiments, performed for an
n-link, fixed-base planar manipulator, modeled as a kine-
matic chain of line segments of equal length. Again, assume
amax = −amin = 1. The initial and goal configurations
form a regular polygon, as shown in Figure 6.a for n = 10
links. Paths were initially computed using RRT-Connect on
C and then lifted into X using the bang-bang transform
of Section IV-C. Each joint has limits ±π and is modeled
as a double integrator. The BB-Optimization method was
applied to computed paths from n = 10 (dimension of X
is 20) up to n = 1000 (dimension of X is 2000). Figure
6.b shows configurations in the RRTs that were grown from
initial and goal configurations, respectively. Average running
times (10 runs) to fully converge are 1.63s for 10 links, 1.72s
for 20 links, 3.75s for 50 links, 20.75s for 100 links, and
1123.35s for 1000 links (rapid increases due to dimension
were caused by a naive quadratic-time implementation of the
waiting method, rather than the O(n lg n) method presented
in Section III-B). Termination was reached if 200 iterations
were attempted with no more than 0.1s reduction in trajectory
time; the most dramatic reductions occur in the first few
iterations. In a typical run for 100 links, the trajectory
execution time was reduced from 57.95s to 8.46s.

C. Beyond pure double integrator dynamics

As a step toward investigating bang-bang boosting of more
general, stabilizable systems, suppose that the planar vehicle
from Section V-A is instead placed on the interior surface of
a level, cylindrical tube of radius r (Figures 7.a-b). The q1
coordinate dynamics resemble that of an actuated pendulum:

q̈1 = rθ̈ = u1 − g sin θ. (13)

The q2 coordinate is the position along the tube in the
direction of its central axis, with dynamics q̈2 = u2. Assume

θ
r

q1

g

a. b.

c. d.
Fig. 7. a) Consider a moving vehicle on a cylindrical surface, b) the q1
coordinate behaves like an actuated pendulum, c & d) computed examples
(horizontal and vertical axes correspond to q1 and q2, respectively).

u1, u2 ∈ [−1, 1]. If |g sin θ| < 1 for θ, then the system
is stabilizable, as defined in Section II. The interval of
allowable accelerations q̈1 becomes A(θ) = [−1−g sin θ, 1−
g sin θ]. To generate a bang-bang trajectory from some θI to
θG, we restrict the system to a double integrator in which
amin and amax are set to the minimum and maximum of
A(θI)∩A(θG). We also test and reject any generated bang-
bang trajectory for which q̈1 ̸∈ A(θ) at any time.

Two computed examples of both BB-RRT planning and
bang-bang optimization are shown in Figures 7.c-d, in which
the vehicle must go from rest-to-rest along the curved
surface; a top-down view is given by unrolling the cylinder.
The state space X is the same as in Section V-A, r = 300,
and g = 1; note that the slope θ = q1/r along the left
and right edges reaches ±4/3 radians (76.394 degrees). The
allowable horizontal accelerations at these boundaries are
approximately [−0.028, 1.972] and [−1.972, 0.028], respec-
tively (substantially shifted from [−1, 1]). The computation
times averaged over 1000 runs were 0.02963s and 1.1184s,
respectively. We also ran 1000 experiments on the geometry
of the problem in Figure 4.e, but instead using the tube
model, and the resulting average computation time was
0.09594s (approximately 2.61 times slower than for the
level-surface case). In general, the planning and optimization
methods easily overcame the challenges due to the non-
double integrator model.

VI. DISCUSSION

We have proposed, analyzed, and implemented methods
that accelerate planning performance and optimize solutions.
The key is a steering method that quickly computes bang-
bang time-optimal controls using exact, parabolic solutions.
Although the study has been limited to RRTs, we expect it
could enhance other sampling-based planning methods that
rely on distance metrics or steering, such as probabilistic



roadmaps [1], [17] or expansive space trees [14]. One of
the key observations of our experiments is that plan-and-
optimize is superior when applicable: It is more reliable to
explore the C-space first, lift the solution into the state space,
and then use bang-bang optimization. However, this option
applies only for rest-to-rest problems; for more general
problems, a bang-bang enhanced RRT could be applied to
bring each of xI and xG to zero velocity by biasing samples
to the (q,0) plane.

The encouraging results of this paper lead naturally to
many new questions and further studies. The implementation
focused mainly on n-double-integrator dynamics; however,
with the vehicle-in-the-tube results from Section V-C, we
have easily extended it for acceleration bounds that vary
with state. This opens exciting directions of research to adapt
the method to many more classes of stabilizable systems.
Another important direction is to develop bang-bang boosted
versions of asymptotically optimal planners, such as RRT*
[16] and SST* [23]; this would enable stronger comparisons
to the plan-and-optimize approach, both in computation time
and solution quality. Also, improvements can be made to
the iterative bang-bang optimization through strategic inter-
val selection. Finally, efficient nearest-neighbor algorithms
should be developed for the bang-bang metric over a tree of
parabolic arcs (analogous to [31]).

ACKNOWLEDGMENTS: This work was supported by a Eu-
ropean Research Council Advanced Grant (ERC AdG, ILLUSIVE:
Foundations of Perception Engineering, 101020977), Academy of
Finland (PERCEPT 322637, CHiMP 342556), and Business Finland
(HUMOR 3656/31/2019). We thank Dmitry Berenson, Oren Salz-
man, Kalle Timperi, and Dmitry Yershov for helpful discussions.

REFERENCES

[1] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo.
OBPRM: An obstacle-based PRM for 3D workspaces. In Proc.
Workshop on Algorithmic Foundations of Robotics, pages 155–168,
1998.

[2] J. T. Betts. Survey of numerical methods for trajectory optimization.
Journal of Guidance, Control, and Dynamics, 21(2):193–207, March-
April 1998.

[3] H.-T. L. Chiang, J. Hsu, Marek M. Fiser, L. Tapia, and A. Faust.
RL-RRT: Kinodynamic motion planning via learning reachability
estimators from RL policies. IEEE Robotics and Automation Letters,
4(4):4298–4305, 2019.

[4] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun. Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, Cambridge, MA, 2005.

[5] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Com-
putational Geometry: Algorithms and Applications, 2nd Ed. Springer-
Verlag, Berlin, 2000.

[6] B. R. Donald, P. G. Xavier, J. Canny, and J. Reif. Kinodynamic
planning. Journal of the ACM, 40:1048–66, November 1993.

[7] E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning
for agile autonomous vehicles. AIAA Journal of Guidance and Control,
25(1):116–129, 2002.

[8] E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based motion
planning for nonlinear systems with symmetries. IEEE Transactions
on Robotics, 21(6):1077–1091, December 2005.

[9] R. Geraerts and M. H. Overmars. Creating high-quality paths for
motion planning. The International Journal of Robotics Research,
26(8):845–863, 2007.

[10] E. Glassman and R. Tedrake. A quadratic regulator-based heuristic
for rapidly exploring state space. In Proceedings IEEE International
Conference on Robotics and Automation, pages 5021–5028, 2010.

[11] K. Hauser and V. Ng-Thow-Hing. Fast smoothing of manipulator tra-
jectories using optimal bounded-acceleration shortcuts. In Proceedings
IEEE International Conference on Robotics and Automation, 2010.

[12] E. Heiden, L. Palmieri, S. Koenig, K. O. Arras, and G. S. Sukhatme.
Gradient-informed path smoothing for wheeled mobile robots. In 2018
IEEE International Conference on Robotics and Automation (ICRA),
pages 1710–1717, 2018.

[13] G. Heinzinger, P. Jacobs, J. Canny, and B. Paden. Time-optimal
trajectories for a robotic manipulator: A provably good approximation
algorithm. In Proc. IEEE International Conference on Robotics &
Automation, pages 150–155, Cincinnati, OH, 1990.

[14] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive
configuration spaces. International Journal Computational Geometry
& Applications, 4:495–512, 1999.

[15] S. Karaman and E. Frazzoli. Optimal kinodynamic motion planning
using incremental sampling-based methods. In IEEE Conference on
Decision and Control, pages 7681–7687, 2010.

[16] S. Karaman and E. Frazzoli. Sampling-based algorithms for opti-
mal motion planning. International Journal of Robotics Research,
30(7):846–894, 2011.

[17] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics & Automation, 12(4):566–580,
June 1996.

[18] J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach
to single-query path planning. In Proceedings IEEE International
Conference on Robotics and Automation, pages 995–1001, 2000.

[19] T. Kunz and M. Stilman. Probabilistically complete kinodynamic
planning for robot manipulators with acceleration limits. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2014.

[20] S. M. LaValle. Planning Algorithms. Cambridge University Press,
Cambridge, U.K., 2006. Also available at http://lavalle.pl/planning/.

[21] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning.
The International Journal of Robotics Research, 20(5):378–400, May
2001.

[22] Y. Li and K. E. Bekris. Learning approximate cost-to-go metrics to
improve sampling-based motion planning. In 2011 IEEE International
Conference on Robotics and Automation, May 2011.

[23] Y. Li, Z. Littlefield, and K. E. Bekris. Asymptotically optimal
sampling-based kinodynamic planning. The International Journal of
Robotics Research, 35(5):528–564, 2016.

[24] D. Liberzon. Calculus of Variations and Optimal Control Theory: A
Concise Introduction. Princeton University Press, Princeton, NJ, 2012.

[25] J. Luo and K. Hauser. An empirical study of optimal motion
planning. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2014.

[26] L. Palmieri and K. O. Arras. Distance metric learning for RRT-
based motion planning with constant-time inference. In Proc. IEEE
International Conference on Robotics and Automation, pages 637–643.
IEEE, 2015.

[27] A. Perez, R. Platt Jr., G. Konidaris, L. P. Kaelbling, and T. Lozano-
Perez. LQR-RRT* : Optimal sampling-based motion planning with
automatically derived extension heuristics. In IEEE International
Conference on Robotics and Automation, 2012.

[28] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F.
Mishchenko. L. S. Pontryagin Selected Works, Volume 4: The Mathe-
matical Theory of Optimal Processes. Gordon and Breach, Montreux,
Switzerland, 1986.

[29] B. Sakcak, L. Bascetta, G. Ferretti, and M. Prandini. Sampling-based
optimal kinodynamic planning with motion primitives. Autonomous
Robots, 43(7):1715–1732, Oct 2019.

[30] E. Schmerling, L. Janson, and M. Pavone. Optimal sampling-based
motion planning under differential constraints: The drift case with
linear affine dynamics. In 2015 54th IEEE Conference on Decision
and Control (CDC), pages 2574–2581, 2015.

[31] V. Varricchio, B. Paden, D. Yershov, and E. Frazzoli. Efficient nearest-
neighbor search for dynamical systems with nonholonomic constraints.
In Proc. Workshop on the Algorithmic Foundations of Robotics, 2016.

[32] D. Webb and J. van den Berg. Kinodynamic RRT*: Asymptotically op-
timal motion planning for robots with linear dynamics. In Proceedings
IEEE International Conference on Robotics and Automation, 2013.

[33] W. J. Wolfslag, M. Bharatheesha, T. M. Moerland, and M. Wisse. RRT-
CoLearn: Towards kinodynamic planning without numerical trajectory
optimization. IEEE Robotics and Automation Letters, 3(3):1655–1662,
2018.


	INTRODUCTION
	PROBLEM DEFINITION
	TIME-OPTIMAL ACCELERATIONS
	Time-optimal control of a double integrator
	Time-optimal control of a vector of double integrators

	PLANNING METHODS
	Kinodynamic RRT with bang-bang metric and steering
	Bang-bang trajectory optimization
	Basic path planning with bang-bang state-space lifting

	EXPERIMENTS
	Kinodynamic planning for a 2D vehicle (4D state space)
	Bang-bang optimization for a planar manipulator
	Beyond pure double integrator dynamics

	DISCUSSION
	References

