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Abstract

This paper ntroduces a wvisibility-based motion plan-
ning problem in which the task is to coordinate the mo-
tions of one or more robots that have ommnidirectional
vision sensors, to eventually “see” a target that is un-
predictable, has unknown initial position, and s capable
of mouving arbitrarily fast. A wisibility region is associ-
ated with each robot, and the goal is to guarantee that the
target will ultimately lie in at least one wvisibility region.
Both a formal characterization of the general problem
and several interesting problem instances are presented.
A complete algorithm for computing the motion strategy
of the robots s also presented, and is based on searching
a finite cell complex that is constructed on the basis of
critical information changes. A few computed solution
strategies are shown. Several bounds on the minimum
number of needed robots are also discussed.

1 Introduction

Have you ever searched for someone in a building,
possibly exploring the same places multiple times, while
finally fearing that the person might have moved to a lo-
cation already explored? Have you wondered how many
searchers it would take to be able to guarantee that the
person will eventually be located? This paper presents a
formal study of problems of this type, for which the task
is to plan a motion strategy that will ensure that a target
will eventually be “seen” in a workspace that is cluttered
with obstacles that prohibit configurations and also ob-
struct visibility. The only assumption made about the
target is that its motions are continuous. Obviously, the
motion strategy must ensure that each portion of the
workspace 1s in view at some point in time; however, the
more difficult task is to prevent the target from “sneak-
ing” into a region that has already been explored.

Several applications can be envisioned for problems
and motion strategies of this type. For example, suppose
a building security system involves a few mobile robots
with cameras or range sensors that can detect an in-
truder. Stationary or limited degree-of-freedom camera
bases could also be installed. A patrolling route can be
automatically computed that guarantees that any mobile
intruder will eventually be found. To optimize expenses,
it would also be important to know the minimum num-

ber of robots that would be needed. Applications are not
necessarily limited to adversarial targets. For example,
the task might be to automatically locate another mo-
bile robot, items in a warehouse or factory that might
get moved during the search process, or possibly even
people in a search/rescue effort. Such strategies could
be used by automated systems or by human searchers.

Since the task is to guarantee that the target is found
for all possible target motions, worst-case analysis will
naturally be considered for modeling the target. In the
analysis, the target will thus be termed an evader, al-
though in an application the actual target might not be
adversarial. Likewise, the robots that are equipped with
vision or range sensing are termed pursuers. The pur-
suers and evader are modeled as points in the plane (al-
ternatively general configuration-space representations
could be used [10], but only 2-D configuration spaces are
addressed in this paper), and only continuous motions
are permitted. Two interesting research issues follow
from this general problem: 1) What bounds can be es-
tablished on the number of pursuers needed to solve the
problem, expressed in terms of the geometric and topo-
logical complexity of the free space? 2) Can a success-
ful solution strategy be efficiently computed for a given
problem? Our current progress on these two topics is
discussed in this paper.

The general problem is an extension or combination
of problems that have been considered in several con-
texts. Pursuit-evasion scenarios have arisen in a vari-
ety of applications such as air traffic control, military
strategy, and trajectory tracking. This has resulted in
the formal study of general decision problems in which
two decision makers have diametrically opposing inter-
ests. Classical pursuit-evasion games express differential
motion models for two opponents, and conditions of cap-
ture or optimal strategies are sought [8]. For example,
in the classical Homicidal Chauffeur game, conditions
of inevitable collision can be expressed in terms of the
nonholonomic turning-radius constraints of the pursuer
and evader. Although interesting decision problems arise
through the differential motion models, geometric free-
space constraints are usually not considered in classical
pursuit-evasion games. Once these constraints are intro-
duced, the problem inherits the additional complications
that arise in geometric motion planning.



A region of capture is often associated with a pursuit-
evasion problem, and the “capture” for our problem is
defined as having the evader lie within a line-of-sight
view from a pursuer. Several interesting results have
been obtained for pursuit-evasion in a graph [12, 14].
However, the visibility polygon along with motions in a
free space add geometric information that must be uti-
lized, and also leads to connections with the static art
gallery problems [13]. In the limiting case, art gallery
results serve as a loose upper bound on the number of
pursuers by allowing a covering of the free space by static
guards, guaranteeing that any evader will be immedi-
ately visible. Far fewer guards are needed when they are
allowed to move and search for an evader; however, the
required motion strategies can become complicated.

2 Problem Definition

The pursuers and evader are modeled as points that
translate in a 2-D bounded, Euclidean workspace that
contains polygonal obstacles. See Figure 1 for illustrative
examples. Let F represent the closure of the collision-
free space (referred to as Cygqiiq in [10]). All pursuer and
evader positions must lie in F. Let e(t) € F denote the
position of the evader at time ¢t > 0. It is assumed that
e : [0,00) = F is a continuous function, and that the
evader is capable of executing arbitrarily fast motions.
The initial position e(0) and the path e are assumed
unknown to pursuers.

Let ~(t) denote the position of the i** pursuer at
time ¢t > 0. Let 4 represent a continuous path of the

h pursuer of the form 4* : [0,00) — F. Let v denote
a (motion) strategy, which refers to a specification of a
continuous path for every pursuer: v = {4, ..., 4V} for
N pursuers.

For any point, ¢ € F, let V(q) denote the set of all
points in F' that are visible from ¢ (i.e., the linear seg-
ment joining q and any point in V(q) liesin F'). A strat-
egy, v, 1s a solution strategy if for every continuous func-
tion e : [0,00) = F there exists a time ¢ € [0, 00) and an
i € {1,...,N} such that e(t) € V(4*(t)). This implies
that the evader will eventually be seen by one or more
pursuers, regardless of its path. Let H(F') represent the
minimum number of pursuers for which there exists a
solution strategy for F'.

Two basic problems are considered:

1. Determine H(F)

2. For a given F, find a solution strategy, v, using
H(F) pursuers

3 How Many Pursuers are Needed?

The minimum number of pursuers, H(F), required to
find an evader in a given free space F' generally depends
on both the geometry and topology of the free space.
For example, H(F) > 2 when F is multiply-connected
(the evader can always hide behind a hole to avoid being
seen by a single pursuer). Figure 1 shows examples that
have subtle differences; however, H(F) varies. In [15] a

Figure 1. The rightmost example requires two pursuers,
whereas the others require only one.

class of simple polygons called “hedgehogs” is identified
for which a single pursuer suffices.

We have derived several bounds on H(F) over cer-
tain classes of free spaces. It can be shown that for any
simply-connected free space F' with n edges, at worst
H(F) = O(lgn), and for general free spaces with A holes,
at worst H(F) = O(h + lgn) [6]. To obtain the first
result, /' can be recursively decomposed by placing pur-
suers on partitioning edges to prevent the evader from
moving from one portion of F to another. A logarithmic
number of pursuers can be systematically swept across
partition edges to obtain the solution strategy. To obtain
the second result, a linear number of line segments can
be used to connect between holes and the exterior edges
of F' so that any continuous path that is not homotopic
to a stationary path must cross one of the line segments.
One pursuer can be placed on each segment to effec-
tively reduce the problem to that of a simply-connected
free space.

Lower bounds can also established which indicate
problems that require at least some number of pursuers.
To construct difficult problem instances, a well-studied
problem from graph theory can be used. Let Parsons’
problem refer to the graph-searching problem presented
n [12, 14]. The task is to specify the number of pur-
suers required to find an evader that can execute con-
tinuous motions along the edges of a graph. Instead of
using visibility, capture is achieved when one of the pur-
suers “touches” the evader. We have shown that for any
instance of Parsons’ problem on a planar graph, there
exists an equivalent geometric instance [6]. The basic
idea is to replace each edge in the graph by a thin corri-
dor that has four bends. The key difference between the
graph problem and the geometric problem is the power
of visibility, which is essentially removed once four-bend
corridors are used. By transforming difficult graph in-
stances into geometric instances, it can be shown that
exploring a tree of corridors of the type shown in Figure 2
requires k+ 1 pursuers in which k is the height of the tree
(thus establishing H(F) = Q(lgn)) [6]. Examples can

also be constructed that establish H(F) = Q(v/h+1gn).

4 Computing a Solution Strategy

4.1 General issues

In general, one would prefer a complete algorithm,
which must compute a solution strategy for a given num-
ber of pursuers, if such a strategy exists. It is natural
to compare the notion of completeness for this problem
to completeness for the basic motion planning problem
(i.e., the algorithm will find a collision-free path if such
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Figure 2. A ternary tree of bent corridors requires one pur-
suer per level (for this example H(F') = 4).

a path exists [3]). One important difference, however,
is that the minimum number of pursuers is crucial, but
does not have a correspondence for the basic path plan-
ning problem. A variety of simple, heuristic algorithms
can be developed that require more pursuers than neces-
sary (for example, triangulate the workspace, and place a
static pursuer in each triangle). By building on some re-
sults from graph theory, it can be shown that the general
problem of determining H(F) for a polygonal environ-
ment is NP-hard [6]. The solutions can also be quite
complicated (we have found examples that require clear-
ing the same region (n) times for n edges).

Because the position of the evader is unknown, one
does not have direct access to the state at a given time.
This motivates the consideration of an information space
that identifies all unique situations that can occur during
the execution of a motion strategy. Let a state ]{fnace X
be spanned by the coordinates z = (z!,... ), in
which #* for 1 < i < N represents the p031t10n of the
it? pursuer, and z° represents the position of the evader.
Since the positions of the pursuers are always known,
let XP denote the subspace of X that is spanned by the
pursuer positions, zf = (z!,... zV).

It will be useful to analyze a strategy in terms of ma-
nipulating the set of possible positions of the evader.
Any region in F' that might contain the evader will be
referred to as contaminated, otherwise it will be referred
to as cleared. Let S C F represent the set of all contam-
inated points in F. Let n = (2P, S) for which z? € X?
and S C F represent an information state. The informa-
tion space 1s a standard representational tool for prob-
lems that have imperfect state information, and has been
useful in optimal control and dynamic game theory (e.g.,
[1]), and in motion planning [2, 4, 11].

For a fixed strategy, v, a path in the information space
will be obtained by n(t) = (v!,...,4",S(¢)) in which
S(t) can be determined from an initial 5’( ) and the tra-
jectories {~4'(#)|t' € [0,#]} for each i € {1,..., N}.

We next describe a general mechanism for defining
critical information changes. This is inspired in part by
a standard approach used in motion planning, which is
to preserve completeness by using a decomposition of the
configuration space that is constructed by analyzing crit-
ical events. The next definition describes an information
invariance property, which allows the information space
to be partitioned into equivalence classes. A connected
set D C XP is conservative if Vi such that zP € D,
and Yy : [to,t1] — D such that 5 is continuous and
Y¥(to) = v(t1) = zP, then the same information state is
obtained. This definition implies path invariance within
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Figure 3. Edge labels can be used to encode the information
state.

a conservative cell [6]. Just as in the case of motion plan-
ning algorithms based on critical curves and noncritical
regions [10], one can only consider sequences of cells in
the search for a strategy while maintaining completeness.
In our case, however, these cells exist in the information
space.

4.2 The complete algorithm for one pursuer

A conservative cell decomposition will be described
that is based on critical changes in edge visibility. Sup-
pose the pursuer is at a point ¢ € F'. Consider the circu-
lar sequence of edges in the resulting visibility polygon.
The edges generally alternate between bordering an ob-
stacle and bordering free space. See Figure 3. Let each
edge that borders free space be referred to as a gap edge.
Consider associating a binary label with each gap edge.
If the portion of the free space that borders the gap edge
is contaminated, then it is assigned a “1” label; other-
wise, it is assigned a “0” label indicating that it is clear.
Let B(q) denote a binary sequence that corresponds to
labelings that were assigned from ¢ € F. Note that the
set of all contaminated points is bounded by a polygon
that must contain either edges of F' or gap edges from
the visibility polygon of the pursuer. Thus, the specifica-
tion of ¢ and B(g¢) uniquely characterizes the information
state.

Consider representing the information state using ¢
and B(q), and let pursuer move in a continuous, closed-
loop path that does not cause gap edges to appear or
disappear at any time. Each gap edge will continuously
change during the motion of the pursuer; however, the
corresponding gap edge label will not change. The infor-
mation state cannot change unless gap edges appear or
disappear. For example, consider the problem shown in
Figure 4 which shows a single pursuer that is approach-
ing the end of a corridor. If the closed-loop motion on
the left 1s executed, the end of the corridor remains con-
taminated. This implies that although the information
state changes during the motion, the original information
state is obtained upon returning. During the closed-loop
motion on the right, the gap edge disappears and reap-
pears. In this case, the resulting information state is
different. The gap label is changed from “1” to “0”.

Hence, a cell decomposition that maintains the same
corresponding gap edges will only contain conservative
cells. The idea is to partition the free space into convex
cells by identifying critical places at which edge visibility
changes. A decomposition of this type has been used for
robot localization in [7, 16], and generates O(n?) cells in
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Figure 4. A critical event in the information space can only
occur when edge visibility changes.
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Figure 5. Ray shooting is performed for three general cases
to form the edge-visibility cells.

N

the worst case for a simple polygon (which is always true
if H(F) = 1). The free space can be sufficiently parti-
tioned 1n our case by extending rays in the three general
cases shown in Figure 5. Obstacle edges are extended in
either direction, or both directions if possible. Pairs of
vertices are extended outward only if both directions are
free along the line drawn through the pair of points. This
precludes the case in which one direction is cannot be ex-
tended; although edge visibility actually changes for this
case, 1t does not represent a critical change in informa-
tion. Our implementation uses the quad-edge structure
from [5] to efficiently maintain the topological ordering
of the conservative cells. Figure 7.a shows a computed
example of the cell decomposition.

The next issue is searching the information space for
a solution, which corresponds to specifying a sequence of
adjacent cells. The solution strategy must take the form
of a path that maps into F'. This can be constructed
by concatenating linear path segments, in which each
segment connects the centroids of a consecutive pair of
cells in the sequence.

The cells and their natural adjacency relationships de-
fine a finite, planar graph, G., referred to as the cell
graph. Vertices in GG, are generally visited multiple times
in a solution sequence because of the changing informa-
tion states. For each vertex in G, a point, ¢ € F', in the
corresponding cell can be identified, and the labels B(q)
can be distinct at each visit. Initially, the pursuer will
be in some position at which all gap labels are “1”. The
goal is to find any sequence of cells in G, that leave the
pursuer at some position at which all gap labels are “0”.

A directed information state graph, Gy, can be de-
rived from G, for which each vertex is visited at most
once during the execution of a solution strategy. For
each vertex in G., a set of vertices are included in Gy
for each possible B(g). For example, suppose a vertex
in G, represents some cell D, and there are 2 gap edges

for B(q) and any ¢ € D. Four vertices will be included
in G that all correspond to the pursuer at cell D; how-
ever, each vertex represents a unique possibility for B(q):
“007, “017, “10”, or “11”. Let a vertex in GGy be identi-
fied by specifying the pair (¢, B(q)).

To complete the construction of G, the set of edges
must be defined. This requires determining the appro-
priate gap labels as the pursuer changes cells. Suppose
the pursuer moves from ¢; € D; to q; € D;. For the
simple case shown in the lower right of Figure 4, assume
that the gap edge on the left initially has a label of “0”
and the gap edge on the right has a label of “1”. Let
the first bit denote the leftmost gap edge label. The first
transition i1s from “01” to “0”, and the second transi-
tion is from “0” to “00”. The directed edges in G are
(¢i,“01”) leads to (¢;,“0”), (¢5,“0”) leads to (g;,“007).

In the case of multiple gap edges, correspondences
must be determined to correctly compute the gap la-
bels. Consider the example shown in Figure 6 which
illustrates the general cases that can occur. A gap edge
from V' (g;) corresponds to a gap edge from V(g;) if they
share a vertex, and neither touch the extension of their
common cell boundary. This case is shown in the up-
per left of Figure 6. In this case the binary label with
be preserved when traveling directly from ¢; to g2. The
case 1s more interesting when gap edges touch the ex-
tension of the cell boundary, as in the lower portion of
Figure 6. In general, all edges that touch the extension
below the cell correspond to each other, and all edges
that touch the extension above the cell separately corre-
spond to each other. Transitions of this type essentially
cause gap edges to be split or merged. There are two gap
edges in the lower portion of Figure 6 while the pursuer
is at q1; however, there is only one gap edge when the
pursuer is at ¢s. In the transition from ¢; to ¢s, if the
gap edges at ¢q; are labeled “0” and “0”, then the corre-
sponding gap from ¢, will be labeled “0”. If either gap
edge at q; is labeled “1”, then the gap edge label from g5
will be “1” (contamination spreads easily). In general,
if any n gap edges are merged, the corresponding gap
edges will receive a “1” label if any of the original gap
edges contain a “1” label.

Once the gap edge correspondences have been deter-
mined, the information state graph can be searched using
Dijkstra’s algorithm with an edge cost that corresponds
to the distance traveled in the free space by the pursuer.
Unfortunately, the precise complexity of the complete
algorithm cannot be determined because it is still open
whether the problem even lies in N P. In the worst-case,
examples can be constructed that yield an exponential
number of information states, but it is not clear whether
these information states necessarily have to be repre-
sented and searched to determine a solution (or to verify
a solution).

4.3 Coordinating multiple pursuers

In general, the conservative cell concept can be ap-
plied to yield a cell decomposition of X7, which is the
2N-dimensional space that encodes the positions of the
pursuers; however, some of the cell boundaries are alge-
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Figure 6. The correspondences between gap edges from dif-
ferent neighboring cells can be directly determined. The in-
formation states are updated when moving between cells by
using this correspondence.

braic manifolds. The algebraic constraints significantly
increase the implementation difficulty and add numerous
cells which decreases practical efficiency.

In Section 5 we show some examples that were com-
puted by coordinating multiple pursuers. We have de-
veloped a decoupled planning approach (losing complete-
ness), which is inspired by typical approaches to multi-
ple robot planning problems [10]. Suppose a problem
cannot be solved by a single pursuer. The first step is to
have the pursuer clear as much area as possible and stop.
The fixed pursuer’s visibility polygon partitions the free
space into components that can each by explored as a
separate subproblem using the complete algorithm for a
single pursuer. If each component can be solved by a sin-
gle pursuer, then only two pursuers are needed in total
(the same pursuer can be used for each component). In
general, this type of search can be repeated recursively
to coordinate more pursuers, until the problem is solved.
In many cases, pursuers that are fixed during the clear-
ing of one portion of the free space can eventually be
moved to assist in another portion, further reducing the
number of pursuers.

5 Computed examples

The algorithm is implemented in C++ and was ex-
ecuted on an SGI Indigo2 workstation with a 200 Mhz
MIPS R4400 processor. Four computed examples are
shown in Figures 7-10. The total computation times for
these examples were 1.02, 0.21, 1.54, and 4.12 seconds,
respectively. The first example could be solved with a
single pursuer, while the other examples required coor-
dinating multiple pursuers. Figure 7 shows both the cell
decomposition and the snapshots along the computed
solution trajectory. Figure 8 corresponds to one of the
corridor trees described in Section 3. The first pursuer
waits at the junction while the second pursuer clears the
remaining two components. Figure 9 requires two pur-

Figure 7. a) The conservative cell decomposition; b-f) Snap-
shots along the computed solution trajectory. In the final
snapshot, there is no place remaining where the evader could
be hiding. Black represents the contaminated region, white
represents the cleared region, and gray represents the current
visibility region.

suers, and was solved by halting the first pursuer near
the center hole (as shown in Figure 9.b) while the other
pursuer cleared the remaining components. Figure 10
represents a very challenging example, which was solved
using only two pursuers.

6 Discussion

A visibility-based motion planning problem has been
identified in this paper that involves searching for an
unpredictable target in a workspace that contains obsta-
cles. Several bounds on the minimum number of needed
pursuers were discussed. A general decomposition con-
cept based on information conservative cells was intro-
duced, which led to a efficient, complete algorithm for
H(F) = 1 that has been implemented and tested. The
algorithm was then augmented to coordinate multiple
pursuers; this extension solves many problems, but does
not generally yield the optimal number of pursuers.

Several variations and extensions of the problem are
worth exploring. In addition to a visibility region, each
pursuer can have a region of capture, and the task can
be to capture the evader using one or more pursuers.
Using the current evader model, only connectivity is-
sues become critical for determining a solution strategy;
however, the problem can be made more challenging by
strengthening the model to include a bounded velocity,
or possibly stochastic prediction. The topological issues



Figure 8. This simply-connected free space requires two
pursuers. The first pursuer stops at the junction.
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Figure 10. This complicated example was solved with only
two pursuers.

could become significantly more complex for 3-D free
spaces. Many vision systems have a limited field of view,
and our problem can be adapted to planning strategies
that sweep viewing angles in addition to moving the pur-
suers. Finally, a cost functional could be additionally
defined, leading to problems such as finding the evader
in minimum time.
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