
Localization with Few Distance Measurements

Dan Halperin Steven M. LaValle Barak Ugav

September 13, 2022

Abstract

Given a polygon W , a depth sensor placed at point p = (x, y) inside W and
oriented in direction θ measures the distance d = h(x, y, θ) between p and the
closest point on the boundary of W along a ray emanating from p in direction θ.
We study the following problem: Give a polygon W , possibly with holes, with n
vertices, preprocess it such that given a query real value d ≥ 0, one can efficiently
compute the preimage h−1(d), namely determine all the possible poses (positions
and orientations) of a depth sensor placed in W that would yield the reading d.
We employ a decomposition of W × S1, which is an extension of the celebrated
trapezoidal decomposition, and which we call rotational trapezoidal decomposition
and present an efficient data structure, which computes the preimage in an output-
sensitive fashion relative to this decomposition: if k cells of the decomposition
contribute to the final result, we will report them in O(k+1) time, after O(n2 log n)
preprocessing time and using O(n2) storage space. We also analyze the shape of the
projection of the preimage onto the polygonW ; this projection describes the portion
of W where the sensor could have been placed. Furthermore, we obtain analogous
results for the more useful case (narrowing down the set of possible poses), where the
sensor performs two depth measurement from the same point p, one in direction
θ and the other in direction θ + π. These problems are inspired by localization
questions in robotics, where we are given a map of the environment, a robot is
placed in an unknown pose, and we wish to determine where the robot is. While
localization is often carried out by exploring the full visibility polygon of a sensor
placed at a fixed point of the environment, the approach that we propose here opens
the door to sufficing with only few depth measurements, which is advantageous as
it allows for usage of inexpensive sensors and could also lead to savings in storage
and communication costs.

1 Introduction

A depth sensor that provides a single distance measurement is placed inside a known
polygonal workspace W with n vertices. Consider the depth mapping d = h(x, y, θ) in
which (x, y) ∈ W is the position of the sensor and θ ∈ S1 (namely [0, 2π)) is the direction
of the ray emanating from the sensor and along which the distance to the workspace
boundary is measured. Thus the configuration space (C-space for short), namely the
parametric space of sensor placements, is three-dimensional.

We wish to devise a data structure such that, after preprocessing the workspace, will
efficiently answer the following queries: Given a distance measurement d as query, report

1

ar
X

iv
:2

20
9.

04
83

8v
1

 [
cs

.C
G

]
 1

1
Se

p
20

22

all the possible sensor configurations that could yield such a measurement. In other
words, we aim to compute h’s preimage h−1(d) = {(x, y, θ) ∈ W × S1 | d = h(x, y, θ)}.

Determining a sensor’s location is one of the main tasks of sensor fusion systems.
Examples are ubiquitous, including Global Positioning Systems (GPS), celestial naviga-
tion, trilateration, camera pose estimation, and localization of autonomous vehicles. Our
problem is motivated mostly by the last one, in which a mobile robot has a complete
map of its environment and must use sensing to determine its configuration (typically,
position and orientation) with respect to the map. This so-called robot localization prob-
lem is crucial to robotics and has been researched for several decades. There are both
incremental versions, in which the configuration estimate was known a moment ago and
must be updated based on recent motions and sensor readings, and the kidnapped robot
problem [6], in which the robot must determine its configuration “from scratch”. The sec-
ond case resembles our problem and could correspond to a freshly deployed or rebooted
robot, or one that experiences failures of more complex sensor systems. There are both
an active variant [5, 10, 11], in which the robot must determine where to move next to
quickly reduce uncertainty, and passive variant, in which the sensor fusion system works
with whatever sensing and motion data are available. Passive approaches mainly address
stochastic uncertainties [7] and are typically integrated with mapping to obtain SLAM
(simultaneous localization and mapping) [4, 12]. Our work considers the passive localiza-
tion case and stands out from previous work in that it uses much less sensor data. Most
robot localization methods are based on imaging sensors, such as cameras and Lidars,
that provide a dense collection of measurements [13]. From a computational geometry
viewpoint, these may be considered as providing visibility polygons (see [8]), whereas our
sensor analogously provides only a single visibility ray with each measurement.

Localization with only few depth measurements is advantageous over exploring the full
visibility polygon in that it allows for using inexpensive sensors and requires less storage
space and communication. Our current work. which focuses on one or two measurements,
is a step forward in this direction. However, it still falls short of giving a full localization
answer, which in general requires at least three measurements.

Contributions. Let W be a polygon in the plane, possibly with holes, and having n
vertices. (i) We introduce an extension of the well-known planar trapezoidal decomposi-
tion (see, e.g., [2, Chapter 6]) to the three-dimensional space W×S1. The decomposition,
which we refer to as rotational trapezoidal decomposition (RTD, for short), has O(n2) cells
of constant complexity each, and it can be computed in O(n2 log n) time. RTD is eas-
ier to construct than the standard three-dimensional vertical decomposition [3, 9] and it
suits the problem at hand better, as the imaginary walls of the RTD are parallel to the
measurement direction. We use this decomposition to build a data structure to answer
the preimage queries—given a real value d ≥ 0, determine h−1(d)—in O(k+1) time where
k is the number of cells of the RTD that contain part of the answer. The preprocessing
time remains O(n2 log n) and the reuiqred storage is O(n2). (ii) We analyze the precise
shape of the projection of the preimages h−1(d) onto the workspace W . These projections
could also serve as an answer to a measurement query as they delineate the regions in
the plane (positions only) where the sensor could be. (iii) We then proceed to devise
a data structure for more elaborate queries: Given two antipodal depth measurements
of a sensor from the same (unknown) point in W in the (unknown) directions θ and
θ + π, determine all the poses of the sensor that would yield these measurements. After
O(n2 log n) preprocessing time and using O(n2), this data structure answers the antipodal

2

queries in O(k + 1) time where k is the number of cells of the RTD that contain part of
the answer.

2 Data Structure for Single Distance Measurement

We describe a data structure that for a given sensor reading d, efficiently determines all
the sensor placements that would result in this reading. We present the construction
of the data structure in two stages. In Section 2.1 we describe a decomposition of the
three-dimensional C-space of the sensor into cells of constant descriptive complexity each,
such that within each cell C, the sub-region Cd = {(x, y, θ) ∈ C | d = h(x, y, θ)} also
has constant descriptive complexity. We then show, in Section 2.2, how to maintain the
cells of the decomposition in a search structure, such that given a query d we can easily
retrieve all the cells C for which Cd 6= ∅, in time proportional to their number.

2.1 Rotational Trapezoidal Decomposition

Suppose for the purpose of exposition that we know that the sensor measures its distance
in the upward vertical direction, namely θ = π/2. We apply trapezoidal (vertical) decom-
position [2, Chapter 6] to the workspace. Given a measurement d, we can easily compute
for each trapezoid1 in the decomposition if there are any points in it that are at vertical
distance d from the top edge of the trapezoid. These points lie along a segment parallel
to the top edge, and the desired answer is the union all such segments over all trapezoids.
A trapezoid is identified by its ceiling and floor (namely top and bottom edges, respec-
tively), and the left and right vertices, which define the left and right artificial vertical
edges. See Figure 1 for an illustration.

(a)

d

(b)

Figure 1: Example of a vertical decomposition of a polygon workspace with a single hole
(a) and the line segments (bold, dotted) along which the sensor may be when it reads the
distance d in the upward vertical direction (b).

To support different orientations of measurement, we need to apply a similar procedure
to the scene for every orientation. For each orientation we decompose the workspace such
that the imaginary walls are drawn in the respective orientation, and return the union
of all the results. As we let the orientation θ of the measuring ray vary a little, and
accordingly decompose the scene in the direction of the measurement, we notice that the

1Some of the two-dimensional cells in the decomposition may be triangles; for brevity we will also
refer to them in this context as trapezoids.

3

trapezoids remain similar (in a sense to be made precise shortly) unless they undergo some
combinatorial change. As the direction of measurement changes, the trapezoid changes
continuously, and we refer to the union of these trapezoids as a three-dimensional cell, or
cell for short. Since throughout the change of orientation the ceiling and floor edges, as
well as the vertices determining the left and right boundaries of the trapezoid remain the
same we use the following notation: A cell C is identified by its ceiling and floor (namely
top and bottom edges, respectively), eCt , e

C
b , and the left and right vertices, vCl , v

C
r , which

define the left and right artificial edges (parallel to the direction of measurement). The
two limiting vertices, vCl , v

C
r , may be endpoints of eCt , eCb , or some other vertices. See

Figure 2 for an illustration.
Now, in addition to describing a cell by its floor and ceiling, and the two vertices that

define the two artificial side edges, we also add the first and last orientations where the
trapezoid exists (in the combinatorial sense, namely having the same edges and vertices
defining it). These cells constitute a decomposition of the C-space of the sensor. With
this description, there are only O(n2) unique cells, and we can compute each cell’s exact
boundary as a function of the orientation θ of the sensor.

vCl

vCl

eCt

eCb

C

vCl
vCleCt

eCb

C

vCl

vCl

eCt

eCb

C

(a) (b) (c)

Figure 2: Examples of limiting left and right vertices of a trapezoidal cell C.

We construct these cells by simultaneously performing a radial sweep around all the
vertices of the workspace, where each vertex is the origin of a sweeping ray, all rays point
at the same direction and are rotated together. For each of these sweeps, we maintain
a balanced binary search tree, which contains all the edges of the workspace that the
sweeping ray intersects (similar to standard radial plane sweep). An event occurs when
one of the rays hits a vertex. We compute all the O(n2) events in advance and radially
sort all of them together (by the angle θ). In addition, each ray stores at all times (angles)
the cells on both its sides, allowing us to keep track of all the existing trapezoids of the
decomposition at the current orientation. During the handling of an event, where two
vertices align along the sweeping ray (its origin and another vertex), if they are visible
from one another, namely the open line segment connecting them lies in the interior of
the workspace, cells should be created or terminated.

There are two types of events along the radial sweep:

• Two vertices of the same edge are incident to a rotating ray. See Figure 3 for an
illustration. The triangular cell that contained both vertices on its boundary is
“squeezed” and terminated, and a new triangular cell is created. The cell sharing
an artificial edge with the triangular cell also terminates and a new one is created

4

due to change of one of its limiting vertices. In total, two cells are terminated and
two are created.

• Two vertices of two different edges are incident to a rotating ray. See Figure 4 for
an illustration. The middle cell is “squeezed” and terminated, and a new middle
cell is created. The cells from both sides of the connecting ray terminate and new
ones are created due to change in the limiting vertices. In total, three cells are
terminated and three are newly created.

In both event types, the top and bottom edges and left and right vertices are known
locally from the information maintained by the rays or the terminated cells. During
handling of an event we terminate or create a constant number of cells. As there are
O(n2) events, there are also O(n2) cells in total.

To start the process, trapezoidal decomposition in the horizontal direction (namely,
with θ = 0), is performed, requiring O(n log n) time and starting Θ(n) cells. We let θ
vary in the range [0, 2π). Notice that the trapezoidal decomposition at θ = 0 artificially
cuts cells into two; this however does not affect the analysis that follows or the asymp-
totic resources required by the algorithm. In total, we construct these O(n2) cells and
their angle intervals in O(n2 log n) time, while using O(n2) space. We will refer to such
decomposition as rotational trapezoidal decomposition, or RTD for short. It is easy to see
that Ω(n2) can be created on so the bound on the maximum number of cells is tight.

Proposition 1. Given a polygonal workspace W with a total of n vertices, the three-
dimensional configuration space W × S1 is partitioned by the Rotational Trapezoidal De-
composition (RTD) described above into O(n2) cells, each of constant descriptive com-
plexity. The construction of the partitioning takes O(n2 log n) time and requires O(n2)
storage space. The size of the decomposition is worst-case optimal.

C1

C3

C2

C4

(a)

C1

C4

C2

C3

(b)

Figure 3: Type I events: two vertices of the same edge align along the rotating ray. Rays are
rotating counterclockwise. The event vertices are drawn as small black discs. Each column
depicts one example, before (top) and after (bottom) the event.

5

C1
C2

C3

C4
C5

C6

(a)

C4

C2

C3

C4

C5

C7

C1

C6

(b)

C1

C4

C3

C2

C1

C7

C5

C6

(c)

C1
C2

C3

C5

C4

C6
C2

C7

C8

C4

(d)

Figure 4: Type II events: two vertices of two distinct edges align along the rotating ray.
Rays are rotating counterclockwise. The event vertices are drawn as small black discs. Each
column depicts one example, before (top), during (middle), and after (bottom) the event.

2.2 Storing the Cells for Efficient Placement Retrieval

We wish to store the cells of the decomposition of the C-space of the sensor in a data
structure such that given a distance measurement d, we can efficiently retrieve all the
cells that have non-empty set of candidate placements for this measurement. To this end
we define the maximal opening OC

max of a cell C, which is the maximal-length θ-oriented
segment that can be placed in a θ-cross-section of a cell C, over all possible valid values
of θ of C.

Each cell C prevails through an interval of θ values, calculated during the sweep—we
denote this interval by ΘC = [θCbegin, θ

C
end). Given a cell C and an angle θ ∈ ΘC , we can

easily construct the trapezoid that is the cross-section of C at θ. The top left and top
right vertices (which are not necessarily vertices of the workspace) of the trapezoid both
lie on eCt . We can compute their x values as a function of θ, denoted xCtl (θ), x

C
tr(θ). We

define the maximal opening of a cell formally as follows; see Figure 5 for an illustration.

Definition 1. The opening of a cell C at angle θ and at a point eCt (x) on the top edge of
the cell (whose x-coordinate is x), is the length of the intersection of the line with slope
θ through the point eCt (x) on the top edge of the cell, with the trapezoidal cross-section of
C at angle θ, denoted OC(θ, x). Let the maximum opening of the cell be the maximum
value of the opening function for any valid value of θ, x:

OC
max = max

θ∈ΘC
max

x∈[xCtl(θ),x
C
tr(θ)]

OC(θ, x)

6

eCt

C

vCl

eCb

vCr

x

xC
tl (θ) xC

tr(θ) x

C

eCt

vCr

vCl

eCb

θ

O

(a) (b)

Figure 5: (a) The x values of the left and the right vertices of a cell’s ceiling. (b) The
opening size O as a function of x and θ.

In a preprocessing phase, we calculate OC
max for each cell, and keep the cells in an array,

where they are sorted in decreasing order by this value. Given a query measurement d,
the cells that contain potential placements for this reading are exactly the cells for which
d ≤ OC

max. We can find these cells by traversing the sorted cells in descending maximum
opening order, resulting in O(k + 1) query time,2 where k is the number of cells that
contain workspace points of the desired answer. The calculation of the maximum opening
takes constant time per cell. Since there are O(n2) cells overall, the entire preprocessing
requires O(n2 log n) time and O(n2) space, which is asymptotically subsumed by the
construction of the decomposition (Section 2.1).

Theorem 1. Given a polygonal workspace with a total of n vertices, the RTD cells of
the configuration space W × S1 can be computed and sorted in decreasing order of their
maximum opening in time O(n2 log n) and O(n2) space. Then, given a query real pa-
rameter d, we can report all the cells that contain a possible configuration yielding depth
measurement d in time O(k + 1), where k is the number of the relevant cells.

This structure has a couple of advantages: (i) it is trivial to construct and implement,
and (ii) it is worst-case optimal in storage space and query time assuming the Rotational
Trapezoidal Decomposition. However, it should be asked what is the relationship between
k to the output complexity of an optimal algorithm, as k is an outcome of the algorithm.
A workspace can be constructed in which the number of RTD cells with non-empty result
is greater by a factor of O(n) than the complexity of an optimal algorithm, even if the
workspace is simple (without holes). This question is for further research.

3 Sensor Positions for a Fixed Reading

Given a sensor reading d, we concern ourselves in the section with the shape and com-
plexity of the locus of sensor positions that result in such a reading, namely ignoring the

2For k = 0 we still need to check the cell at the top of the list to find out that no relevant cells exist.

7

orientation of the sensor’s ray. We believe that reporting the possible positions only is,
although incomplete, a useful feedback that is more intuitive and easy to grasp by the
user of a robot system. This in itself can serve as an answer to a query, in particular, when
we wish to further process the regions using additional information about the potential
placement of the sensor.

We first show in Section 3.1 how to compute for each three-dimensional cell C of the
decomposition, the region Ψd(C) of positions where the sensor could be, namely Ψd(C) is
the projection onto the xy-plane of Cd. Then, in Section 3.2 we discuss the presentation
of the union of the regions Ψd(C) over all cells C in the decomposition.

3.1 Sensor Positions for a Single Cell

Fix a cell C with top and bottom edges eCt , e
C
b , limiting vertices vCl , v

C
r which exist in

an angle interval ΘC . Recall that xCtl (θ), x
C
tr(θ) denote the x value of the left and right

top vertices of trapezoidal cross-section of C (which are not necessarily vertices of the
workspace), respectively, at angle θ.

Let pCl (θ) denote the position of the sensor, where a distance measure d at angle θ
will hit eCt at x value xCtl (θ), while ignoring other obstacles in the workspace. Specifically,
the point which its x-coordinate is xCtl (θ)−d cos θ and y-coordinate is eCt (xCtl (θ))−d sin θ,
where eCt (·) is the line equation of the top edge. Similarly denote by pCr (θ) the placement
of the sensor that will result in hitting eCt at xCtr(θ). Recall that Ψd(C) denotes the
region {(x, y)|(x, y, θ) ∈ C and h(x, y, θ) = d}, namely the positions of the sensor in the
workspace, where the sensor configuration is in C and there is a sensor reading d. We
wish to trace the curves drawn by pCl (θ) and pCr (θ) as θ varies in the range ΘC . These
curves are portions of the boundary of the region Ψd(C). The type of the curve that the
function pCl (θ) (respectively, pCr (θ)) draws, depends on vCl (respectively, vCr), the vertex
defining the left (respectively, right) wall of the cell. We describe it here for vCl . The
description for vCr is analogous.

• The vertex vCl defining the left wall of the trapezoid/cell lies on eCt . See Figure 6(a)
for an illustration. The top left vertex, and therefore xCtl (θ), are fixed (i.e., indepen-
dent of θ), and the curve is a circular arc of radius d around vCl : vCl −(d cos θ, d sin θ).

• The vertex vCl defining the left wall of the trapezoid/cell does not lie on eCt . See
Figure 6(b,c) for illustrations. The curve traced by pCl (θ) is a conchoid of Nicomedes;
see Appendix D for details.

For any angle θ ∈ ΘC , all points on the line segment (pCl (θ), pCr (θ)) are points the
robot can be at and measure d at eCt (ignoring other obstacles). Together with the types
of the curves traced by pCl (θ), pCr (θ), we have an exact description of the region of the
workspace containing all the points the robot might be at, while its configuration is in
the cell C.

If the interval ΘC contains the angle perpendicular to the top edge, denoted θCp , we
divide it into two sub-intervals, one with angles that are greater than the perpendicular
angle and the other with smaller angles, [θCbegin, θ

C
p), [θCp , θ

C
end). A single shape per sub-

interval will be created. If θCp is not included in ΘC , a single interval [θCbegin, θ
C
end) and a

single corresponding shape is used.
We handle each of the two sub-intervals separately. For each sub-interval (or for

the entire interval ΘC when no splitting is required) [θ1, θ2), we describe all the points

8

C

vCl

vCreCb

eCt

vCl

vCreCb

eCt

C

vCl

vCreCb

eCt

vCl

vCreCb

eCt

CvCl

vCr

eCb

eCt

eCb

eCt

(a) (b) (c)

Figure 6: (a) Type I curve: when the limiting vertex lies on the cell’s ceiling, the curve is a
circular arc. (b)(c) Type II curve: when the limiting vertex does not lie on the cell’s ceiling,
curve is a conchoid of Nicomedes.

on the line segments (pCl (θ), pCr (θ)) for any θ ∈ [θ1, θ2) by a shape defined by the
vertices (v1, v2, v3, v4) = (pCl (θ1), pCl (θ2), pCr (θ2), pCr (θ1)) and the edges pCl , p

C
r between

(v1, v2), (v3, v4) respectively and straight line edges between (v2, v3), (v4, v1). The union of
the two shapes is the desired two-dimensional region in the workspace the sensor might
be in. The only obstacle we need to consider is the bottom edge eCb of the trapezoid, and
we can simply intersect the result with the upper half-plane defined by the line through
eCb to get the final result of the cell. See Figure 7 for illustrations.

3.2 The Overall Region of Potential Sensor Positions for a Fixed
Reading

Given a sensor reading d, we retrieve all the cells with non-empty potential placements
using the sorted list of Section 2.2. For each such cell C we compute the region Ψd(C).

Alternatively, we may wish to return the (two-dimensional) union of the regions
Ψd(C), for all the cells that we retrieved. See Figure 8 for an illustration. Each re-
gion Ψd(C) has constant descriptive complexity, and if we retrieved k such regions, then
their union, can be easily computed in time O((k+m) log(k+m)), where m is the com-
plexity of the union. In the worst case m = O(k2). It might be the case that special
properties of the regions Ψd(C) and their juxtaposition could be used to show that the
complexity of the union is o(k2). We leave this as an open problem for further research.

9

(a) (b) (c)

Figure 7: Examples of the planar projection of possible configurations of a single cell with
a fixed reading d: (a) both limiting vertices lie on the top edge, the resulting curves are arcs
and do not intersect the bottom edge (b) the limiting vertices and arc curves are similar to
(a), but the result intersects the bottom edge (c) one limiting vertex lies on the top edge and
one is not, resulting in an arc and a conchoid.

d

Figure 8: Given the workspace of the left and a distance measurement d, the union of the
results of all cells is shown on the right.

4 Two Antipodal Distance Measurements

Another variant of the problem that might be considered, is one which the sensor takes
two different distance measurement from the same location in opposing directions. We
obtain one measurement d1 in (unknown) direction θ1 and a second measurement d2 in
direction θ1 + π. A nice, mitigating, property of this setting is that the two distance
measurements are taken to two distinct edges of the workspace.

We apply the same decomposition of the sensor C-space as described in Section 2,
where the orientation θ is the orientation of the first measurement. For a fixed orientation
θ, the cross-section of a cell C contains one potential sensor placement (assuming the
top and bottom edges of the cell are not parallel), and we can calculate it by solving
OC(θ, x) = d1 + d2, and extracting the point along the segment obtaining this opening

10

that is at distance d1 from the top edge (and hence at distance d2 from the bottom edge).
For each such cell C we compute the locus Γ(C) of potential sensor placements, which

is a curve parameterized by the orientation of the first measurement.
In order to store the cells of the decomposition so as to be able to efficiently retrieve the

cells C with non-empty loci Γ(C), we now need to also compute the minimum opening of a
cell OC

min, which is defined analogously to OC
max. Given a pair of antipodal measurements

(d1, d2), a cell C has a non-empty set of loci if and only if OC
min ≤ d1 + d2 ≤ OC

max.
Each cell is associated with an interval [OC

min, O
C
max], and we construct an interval tree [2,

Chapter 10] over these O(n2) intervals. Given the measurements (d1, d2), we extract
all the intervals that contain the value d1 + d2, and their corresponding cells contribute
potential placements to the final answer.

The loci Γ(C) constitute an arc of an ellipse with its center at the (possibly imaginary)
intersection of the lines supporting the top and bottom edges of the cell; see Appendix E
for details. After prepossessing in O(n2 log n) time and using O(n2) space, a query can
be answered in O(log n+k) time, where k is the number of cells C with non-empty Γ(C).

Theorem 2. A query of two antipodal distance measurements can be answered in time
O(log n + k) where k is the number of RTD cells C with non-empty result, using a data
structured constructed in time O(n2 log n) and O(n2) space.

The natural question to ask is how does this approach performs compared to the
output of an optimal algorithm, rather than k which is an outcome of the algorithm. A
workspace can be constructed in which the number of RTD cells with non-empty result
is greater by a factor of O(n) than the complexity of an optimal algorithm, even if the
workspace is simple (without holes). This question is for further research.

11

A Calculating OC(θ, x)

For each RTD cell C, the opening function O(θ, x) defined at Definition 1, can be an-
alytically described. Given a cell C(eCt , e

C
b , v

C
l , v

C
r , θ

C), assume w.l.o.g that the top and
bottom edges are not vertical, and denote by eCt (x) = xmet + bet the equation for the top
edge and equivalently for the bottom edge eCb (x) = xmeb + beb .

We can look at the triangle constructed from O, z, eCb . The angle opposite of eCb is
π
2
− θ, the angle opposite of z is θ − γ and the angle opposite of O is π

2
+ γ. Using the

law of sines:

O(θ, x) =
z sin(π

2
+ γ)

sin(θ − γ)
=

z cos γ

sin(θ − γ)
=

z cos γ

sin θ cos γ − cos θ sin γ

=
z 1√

1+m2
eb

sin θ 1√
1+m2

eb

− meb√
1+m2

eb

cos θ
=

z

sin θ −meb cos θ
=

eCt (x)− eCb (x)

sin θ −meb cos θ

=
x(met −meb) + bet − beb

sin θ −meb cos θ

B The Endpoints of a Trapezoid: xCtl (θ), xCtr(θ)

For each RTD cell C, which exists in an angle interval ΘC , an exact trapezoid description
can be calculated analytically for any fixed and θ. The top and bottom edge are fixed,
and the two artificial edges are at angle θ. It remains to express the vertices created by
the intersections of the artificial edges and the top edge, denoted vtl, vtr with x values
xCtl (θ), x

C
tr(θ), as defined at Section 2.2. Given a cell C(eCt , e

C
b , v

C
l , v

C
r , θ

C), assume w.l.o.g
that the top and bottom edges are not vertical, and denote by eCt (x) = xmet + bet the
equation for the top edge and equivalently for the bottom edge eCb (x) = xmeb + beb . Any
point (x, y) on the left artificial edge can be expressed as:

y = tan θ(x− xvtl) + yvtl

To calculate the intersection with the top edge, we substitute the top edge equation:

metx+ bet = x tan θ − xvtl tan θ + yvtl

x(met − tan θ) = yvtl − xvtl tan θ − bet

12

x =
yvtl − xvtl tan θ − bet

met − tan θ

Similar calculation can be done to the right top vertex. In conclusion:

xCtl (θ) =
yvl − xvl tan θ − bet

met − tan θ
xCtr(θ) =

yvr − xvr tan θ − bet
met − tan θ

C Solving OC(θ, x) = z

For each RTD cell C, solving O(θ, x) = z for a specific value z is required by the Section 4
with z = d1 + d2. Given a cell C(eCt , e

C
b , v

C
l , v

C
r , θ

C), assume w.l.o.g that the top and
bottom edges are not vertical, and denote by eCt (x) = xmet + bet the equation for the
top edge and equivalently for the bottom edge eCb (x) = xmeb + beb . Using the opening
equation:

OC(θ, x) = z

eCt (x)− eCb (x)

sin θ −meb cos θ
= z

eCt (x)− eCb (x)) = z(sin θ −meb cos θ)

metx+ bet −mebx− beb = z(sin θ −meb cos θ)

x =
z(sin θ −meb cos θ) + beb − bet

met −meb

This result is the x value of the possible measurement on the top edge, to get the
possible robot location one should subtract (d1 cos θ, d1 sin θ).

D Conchoid of Nicomedes representing pCl , pCr

For each RTD cell C, when computing the result of possible configuration within the
cell, the possible curves of pCl , pCr defined in Section 3.1 are arcs or conchoids. Analytical
description of the arcs is trivial. Analytical description of the conchoids is described in
this section. Given a cell C(eCt , e

C
b , v

C
l , v

C
r , θ

C), assume w.l.o.g that the top and bottom
edges are not vertical, and denote by eCt (x) = xmet + bet the equation for the top edge
and equivalently for the bottom edge eCb (x) = xmeb + beb .

The conchoid of Nicomedes is driven from a fixed point q, a straight line l and a length
d, where for every line through q that intersects l, the two points on the line which are
d from the intersection are on the conchoid. In our case, q is the limiting vertex, the
straight line is the top edge of the cell and d is the query measurements.

Equation for classic conchoid, q = (0, 0) l : x = a

(x− a)2(x2 + y2) = d2x2

Equation for general conchoid, q = (x0, y0) l : at angle t, distance a from q:

s = sin t, c = cos t

((x−x0)c− (y−y0)s−a)2(((x−x0)c− (y−y0)s)2 +((x−x0)s+(y−y0)c)2) = d2((x−x0)c− (y−y0)s)2

13

In our case, l is the top edge, and its angle is defined by its slope:

t = tan−1(met), sin tan−1(met) =
met√

1 +m2
et

, cos tan−1(met) =
1√

1 +m2
et

By using the above identities, we get:

(
(x− x0)

met√
1 +m2

et

− (y − y0)
1√

1 +m2
et

− a

)2
((x− x0)

met√
1 +m2

et

− (y − y0)
1√

1 +m2
et

)2

+

(
(x− x0)

1√
1 +m2

et

+ (y − y0)
met√

1 +m2
et

)2
 = d2

(
(x− x0)

met√
1 +m2

et

− (y − y0)
1√

1 +m2
et

)2

1

1 +m2
et

(
(x− x0)

met√
1 +m2

et

− (y − y0)
1√

1 +m2
et

− a

)2 (
(met (x− x0)− (y − y0))

2

+ ((x− x0) +met (y − y0))
2
)

=
1

1 +m2
et

d2 (met (x− x0)− (y − y0))
2

(
met (x− x0)− (y − y0)√

1 +m2
et

− a

)2 (
m2

et (x− x0)
2 − 2met (x− x0) (y − y0) + (y − y0)

2

+ (x− x0)
2

+ 2met (x− x0) (y − y0) +m2
et (y − y0)

2
)

= d2 (met (x− x0)− (y − y0))
2

(
met (x− x0)− (y − y0)√

1 +m2
et

− a

)2 (
(x− x0)

2
+ (y − y0)

2
) (

1 +m2
et

)
= d2 (met (x− x0)− (y − y0))

2

(
met (x− x0)− (y − y0)± a

√
1 +m2

et

)2 (
(x− x0)

2
+ (y − y0)

2
)

= d2 (met (x− x0)− (y − y0))
2

The term with ± sign is determined by relation between q and l. If l is above q, we use

the plus sign, if l is below q, we use the minus sign. In total the equation that represent

the curve pCl within a cell is (can be defined similarly for pCr):

(
met (x− xvl)− (y − yvl)± a

√
1 +m2

et

)2 (
(x− xvl)

2
+ (y − yvl)

2
)

= d2 (met (x− xvl)− (y − yvl))
2

E Ellipse representing the loci Γ(C)

In Section 4 a variant of the problem with two antipodal measurements was discussed.

Given two measurements d1, d2, and a fixed RTD cell, all positions of a sensor that

measured d1 at some angle θ1 and d2 at angle θ2 = θ1 + π can be calculated analytically.

The possible sensor position points are the points in which a line segment of length

d1, d2 intersect at its endpoints the top and bottom edges. These points form a curve, a

Glissette, which is an ellipse.

Glissettes are the curves trances out by a point carried by a curve, which is made to

slide between given points or curves. In our case specifically, there is a fixed line which

14

slides between two fixed lines (which are not necessary at right angles), and a carried

point in the line (no necessary at the center). A solution for the case where the two fixed

lines are at right angles was given at [1, p. 51]. We solve it for the general case.

For simplicity, assume one of the fixed lines is the x-axis, and it intersect the other

fixed line at the origin, and the angle between them is α. If the moving line has a length

d1 + d2, and the carried point as at distance d1, d2 from the line endpoints, the Glissette

points satisfy the following for any angle φ in the oblique co-ordinates:

x sinα = f(φ), y sinα = f(φ+ α)

Where f(·) is the tangential polar equation. In our case:

f(φ) =

d1 cosφ, if φ ∈ [0, π/2],

d2 cosφ, else

Again, these expressions represent the oblique co-ordinates, when transforming into

our right co-ordinates, we get:

y = d2 cos(φ+ α), x =
d1 cosφ

sinα
+

y

tanα

The above expressions are correct for any angle φ, and we would like to express all

the result points in a single equation. Next, we perform angle elimination:

θ = arccos(
y

d2

)− α

x =
d1 cos(arccos(y

d2
)− α)

sinα
+

y

tanα

x =
d1(cos arccos y

d2
cosα + sin arccos y

d2
sinα)

sinα
+

y

tanα

x =
d1(y

d2
cosα±

√
1− y2

d22
sinα)

sinα
+

y

tanα

x = d1(
y

d2

cosα

sinα
±

√
1− y2

d2
2

) +
y

tanα

x =
d1

d2

y

tanα
± d1

√
1− y2

d2
2

+
y

tanα

x− (1 +
d1

d2

)
y

tanα
= ±d1

√
1− y2

d2
2

x2 − 2x(1 +
d1

d2

)
y

tanα
+ (1 +

d1

d2

)2 y2

tan2 α
= d2

1(1− y2

d2
2

)

15

x2 − 2
1 + d1

d2

tanα
xy + (

(1 + d1
d2

)2

tan2 α
+
d2

1

d2
2

)y2 = d2
1

x2

d2
1

− 2
1 + d1

d2

d2
1 tanα

xy + (
(1 + d1

d2
)2

d2
1 tan2 α

+
1

d2
2

)y2 = 1 (1)

The above equation already express all the points in the ellipse, but we would like to

work with standard representation of rotated ellipse. Rotated ellipse equation centered

at (x0, y0) at angle θ:

((x− x0) cos θ + (y − y0) sin θ)2

a2
+

((x− x0) sin θ − (y − y0) cos θ)2

b2
= 1

We assumed the intersection is at the origin, therefore x0 = y0 = 0. Denote sin θ =

s, cos θ = c, tan θ = t
(xc+ ys)2

a2
+

(xs− yc)2

b2
= 1

(
c2

a2
+
s2

b2
)x2 + 2cs(

1

a2
− 1

b2
)xy + (

s2

a2
+
c2

b2
)y2 = 1

From Equation (1) and the above we can derive three equations with three unknowns:

1

d2
1

=
c2

a2
+
s2

b2
(2)

− 2
1 + d1

d2

d2
1 tanα

= 2cs(
1

a2
− 1

b2
) (3)

(1 + d1
d2

)2

d2
1 tan2 α

+
1

d2
2

=
s2

a2
+
c2

b2
(4)

We can solve these equations to calculate a, b, θ.

from Equation (2):
1

d2
1

=
c2

a2
+
s2

b2
=
c2b2 + s2a2

a2b2

a2b2 = d2
1(c2b2 + s2a2)

a2 =
d2

1c
2b2

b2 − d2
1s

2
(5)

from Equation (3)

−2
1 + d1

d2

d2
1 tanα

= 2cs(
1

a2
− 1

b2
)

1 + d1
d2

csd2
1 tanα

=
1

b2
− 1

a2

assigning a2 using Equation (5)

1 + d1
d2

csd2
1 tanα

=
1

b2
− b2 − d2

1s
2

d2
1c

2b2

16

1 + d1
d2

csd2
1 tanα

=
d2

1c
2 − b2 + d2

1s
2

d2
1c

2b2

1 + d1
d2

s tanα
=
d2

1 − b2

cb2

c(1 + d1
d2

)

s tanα
+ 1 =

d2
1

b2

b2 =
d2

1

c(1+
d1
d2

)

s tanα
+ 1

=
d2

1

1 + c
s tanα

(1 + d1
d2

)
(6)

assigning b2 using Equation (6) into Equation (5)

a2 =
d2

1c
2b2

b2 − d2
1s

2
=

d2
1c

2

1− d21s
2

b2

=
d2

1c
2

1− d21s
2

d21

1+ c
s tanα (1+

d1
d2

)

=
d2

1c
2

1− s2 − cs
tanα

(1 + d1
d2

)
=

d2
1c

2

c2 − cs
tanα

(1 + d1
d2

)
=

d2
1

1− s
c tanα

(1 + d1
d2

)

a2 =
d2

1

1− s
c tanα

(1 + d1
d2

)
(7)

assigning a2, b2 using Equation (7) Equation (6) into Equation (3)

(1 + d1
d2

)2

d2
1 tan2 α

+
1

d2
2

=
s2

a2
+
c2

b2

(1 + d1
d2

)2

d2
1 tan2 α

+
1

d2
2

=
s2

d21
1− s

c tanα
(1+

d1
d2

)

+
c2

d21
1+ c

s tanα
(1+

d1
d2

)

(1 + d1
d2

)2

tan2 α
+
d2

1

d2
2

= s2(1− s

c tanα
(1 +

d1

d2

)) + c2(1 +
c

s tanα
(1 +

d1

d2

))

(1 + d1
d2

)2

tan2 α
+
d2

1

d2
2

= s2 − ts2

tanα
(1 +

d1

d2

) + c2 +
c2

t tanα
(1 +

d1

d2

)

(1 + d1
d2

)2

tan2 α
+
d2

1

d2
2

= 1 +
c2 − t2s2

t tanα
(1 +

d1

d2

)

(1 + d1
d2

)2

tan2 α
+
d2

1

d2
2

− 1 =
1− 2s2

tc2 tanα
(1 +

d1

d2

)

(1 + d1
d2

)2

tan2 α
+ (

d1

d2

− 1)(
d1

d2

+ 1) =
1− 2s2

tc2 tanα
(1 +

d1

d2

)

(1 + d1
d2

)

tan2 α
+
d1

d2

− 1 =
1− 2s2

tc2 tanα

(1 + d1
d2

)

tanα
+
d1 tanα

d2

− tanα =
1− 2s2

tc2

17

d1 + d2 + d1 tan2 α− d2 tan2 α

d2 tanα
=

1− 2s2

tc2

d1(1 + tan2 α) + d2(1− tan2 α)

d2 tanα
=

1− 2s2

tc2

1− 2s2

c2t
=
cos(2θ)

c2t
= 2 cot(2θ)

1 + tan2 α =
1

cos2 α
, 1− tan2 α =

1− 2 sin2 α

cos2 α
=

cos(2α)

cos2 α
d1

cos2 α
+ d2 cos(2α)

cos2 α

d2 tanα
= 2 cot(2θ)

d1 + d2 cos(2α)

d2 sinα cosα
= 2 cot(2θ)

d1
d2

+ cos(2α)

sin(2α)
= cot(2θ)

θ =
1

2
cot−1

(
d1
d2

+ cos(2α)

sin(2α)

)
(8)

With θ calculated, we can go back to Equation (7) and Equation (6) and calculate

their exact value easily. We have calculate the fixed values a, b, θ with the assumption

the bottom edge is the x-axis and it intersect the top edge at the origin. The ellipse is

expressed by the equation:

(x cos θ + y sin θ)2

a2
+

(x sin θ − y cos θ)2

b2
= 1

To fully generalize, to any cell, we use θ′ = θ+tan−1(mC
b), and offset the ellipse center

to the top and bottom edge intersection (x0, y0):

((x− x0) cos θ′ + (y − y0) sin θ′)2

a2
+

((x− x0) sin θ′ − (y − y0) cos θ′)2

b2
= 1

References

[1] W. H. Besant. Notes on Roulettes and Glissettes. Deighton, Bell, Cambridge, 1870.

[2] M. de Berg, O. Cheong, M. J. van Kreveld, and M. H. Overmars. Computational

Geometry: Algorithms and Applications, 3rd Edition. Springer, 2008.

[3] M. de Berg, L. J. Guibas, and D. Halperin. Vertical decompositions for triangles in

3-space. Discret. Comput. Geom., 15(1):35–61, 1996.

18

[4] G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba. A solu-

tion to the simultaneous localisation and map building (SLAM) problem. 17(3):229–

241, 2001.

[5] G. Dudek, K. Romanik, and S. Whitesides. Global localization: Localizing a robot

with minimal travel. 27(2):583–604, Apr. 1998.

[6] S. P. Engelson and D. V. McDermott. Error correction in mobile robot map learning.

pages 2555–2560, 1992.

[7] D. Fox, S. Thrun, W. Burgard, and F. Dallaert. Particle filters for mobile robot

localization. In A. Doucet, N. de Freitas, and N. Gordon, editors, Sequential Monte

Carlo Methods in Practice, pages 401–428. Springer-Verlag, Berlin, 2001.

[8] L. J. Guibas, R. Motwani, and P. Raghavan. The robot localization problem. In

K. Goldberg, D. Halperin, J.-C. Latombe, and R. Wilson, editors, Algorithmic Foun-

dations of Robotics, pages 269–282. A.K. Peters, Wellesley, MA, 1995.

[9] D. Halperin and M. Sharir. Arrangements. In J. E. Goodman, J. O’Rourke, and

C. D. Tóth, editors, Handbook of Discrete and Computational Geometry, chapter 28,

pages 723–762. Chapman & Hall/CRC, Boca Raton, FL, 3rd edition, 2018.

[10] P. Jensfelt and S. Kristensen. Active global localisation for a mobile robot using

multiple hypothesis tracking. 17(5):748–760, Oct. 2001.

[11] J. M. O’Kane and S. M. LaValle. Localization with limited sensing. IEEE Transac-

tions on Robotics, 23(4):704–716, Aug. 2007.

[12] S. Thrun, W. Burgard, and D. Fox. A probabilistic approach to concurrent mapping

and localization for mobile robots. Machine Learning, 31(5):1–25, Apr. 1998.

[13] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, Cambridge,

MA, 2005.

19

	1 Introduction
	2 Data Structure for Single Distance Measurement
	2.1 Rotational Trapezoidal Decomposition
	2.2 Storing the Cells for Efficient Placement Retrieval

	3 Sensor Positions for a Fixed Reading
	3.1 Sensor Positions for a Single Cell
	3.2 The Overall Region of Potential Sensor Positions for a Fixed Reading

	4 Two Antipodal Distance Measurements
	A Calculating OC(, x)
	B The Endpoints of a Trapezoid: xCtl(),xCtr()
	C Solving OC(,x)=z
	D Conchoid of Nicomedes representing pCl, pCr
	E Ellipse representing the loci (C)

