
Pursuit-Evasion in an Unknown Environment
Using Gap Navigation Graphs

Luis Guilamo, Benjamin Tovar and Steven M. LaValle
Dept. of Computer Science

University of Illinois
Urbana, IL 61801, USA

{lguilamo, btovar, lavalle}@uiuc.edu

Abstract—
In this paper we present an online algorithm for pursuit-

evasion in a unknown simply connected environment, for one
pursuer that has minimal sensing and carries a set of stationary
sentries that it can drop off and pick up during the pursuit. In our
sensing model, the pursuer is only able to detect discontinuities
in depth information (gaps), and it is able to find all of the
evaders without any explicit localization or geometric informa-
tion, by using a Gap Navigation Graph. The strategy is based
on growing an evader-free region, by reading “exploration”
schedules from the Gap Navigation Graph, that is constructed
online. We prove that a pursuer with k + 1 sentries can clear
any environment that could be cleared by k pursuers using the
algorithm in [7], which required a complete map and perfect
sensing.

I. INTRODUCTION

Imagine the following setting: a robotic law enforcer
needs to find all suspects inside a building floor from
which it does not have a map. The sensors capabilities
of this robot are limited; it does not have a compass, and
the only tool it has for navigation, a range sensor, gives
unreliable information. To make things complicated, of
course the suspects are trying to hide from our robotic
police. In this paper we propose a strategy for solving this
kind of online pursuit-evasion scenarios, using minimal
sensing.

The pursuit-evasion problem was treated originally in
a game theoretic framework [3], [9]. Pursuit-evasion in
graphs has been studied extensively [1], [6], [10], [13],
[17], [21]. There have been important developments in the
study of pursuit-evasion for mobile robots in the plane in
recent years. This problem was introduced in [24], as a
dynamic version of the art-gallery problem. A complete
algorithm for polygons searchable by one pursuer was
presented in [7], in which it was also shown that deter-
mining the optimal number of pursuers is NP-hard. Some
solutions for particular characteristics of the pursuers have
been found. For example, pursuers with a single flashlight
[16], or a group of pursuers that are always mutually

visible [5], [27]. In [20], it was proved that any polygon
searchable by a pursuer having omnidirectional view, is
also searchable by a pursuer with two flashlights, which
leads to a quadratic-time algorithm.

Until very recently, the availability of a map of the
environment was assumed. In [22] an online version of
the problem is presented, in which the required sensing
capabilities of the pursuer are minimal, and a representa-
tion of the environment is not available. In [11], a six-
state automaton is designed with the same capabilities
as a pursuer with a single flashlight, following the en-
vironment’s boundary. Our paper uses the same sensing
model as [22]. In that work, a strategy was given that
enables a single pursuer to clear any polygon that could
be cleared by the pursuer with perfect sensing. However,
the motions are extremely inefficient and require careful
feedback control to prevent accidental loss of previous
work. Although the theoretical results are interesting, the
approach is impractical for real mobile robot systems.

Our approach is based on the data structure presented
for navigation in [26]. Because this approach produces
optimal motions, the resulting strategies are very efficient.
Detecting discontinuities in depth information and their
topological changes, a data structure is built that encodes
the same paths as the bitangent graph1[19]. These discon-
tinuities are called gaps, and the structure is referred to
here as a Gap Navigation Graph (GNG). These critical
events consist of appearances, disappearances, splits and
merges of gaps. The critical events are used to described
the changes of cleared regions, where evaders are known
not to be, and contaminated regions, where an evader may
be hidden. The minimalistic sensing and robot capabilities
approach is inspired after the bug algorithm framework
[4], [12], [23].

By adding information state labels to the GNG, this

1In the case of polygons, the bitangent graph has the edges of the
visibility graph that are bitangent at two points of the polygon’s boundary,
and that are totally contained inside the polygon. Enough information is
encoded in the bitangent graph to compute shortest paths. The bitangent
graph is also known as the reduced visibility graph[14].



paper presents an online strategy that finds all of the
evaders, if the environment is searchable with one pursuer
following paths in the bitangent graph. If the pursuer
cannot solve the problem, then it uses portable sensors
called sentries to help it guard places while it searches.
By using this approach, we show that a pursuer with
k + 1 sentries can clear any environment that could be
cleared by k pursuers using the algorithm in [7], which
required a complete map and perfect sensing. Furthermore,
the resulting solutions are very efficient, which makes the
method practical for applications.

II. PROBLEM DEFINITION

One robot, called the pursuer, is required to visually
locate one or more evaders. If the pursuer cannot complete
the task alone, it can place guards, or sentries, as needed.
To reduce the number of sentries that must be carried by
the pursuer, the sentries may be reused. The sentry is an
immobile observer, which the pursuer can place at any
location, or retrieve by “touching”. The pursuer and the
evaders move in a simply-connected, open subset, R, of
R

2. The boundary of R is a simple, closed, piecewise-
smooth curve (with a finite number of non-smooth points).

Let ei(t) ∈ R denote the position of the ith evader
at time t ≥ 0. It is assumed that ei : [0,∞) → R is a
continuous function, and the evaders can move arbitrarily
fast. Let p(t) ∈ R denote the position of the pursuer
at time t ≥ 0. The pursuer also moves continuously.
Similarly, let sj(t) ∈ R denote the position of the jth

sentry.
For any x ∈ R, let V (x) ⊂ R denote the set of all

y ∈ R such that the line segment that joins x and y does
not intersect the boundary of R. Let V (x) be the visibility
region of x. If at any time t, either ei(t) ∈ V (p(t))
or ei(t) ∈ V (sj(t)) for some j, then the ith evader is
detected. Any subset of R that might contain an evader
is referred to as a contaminated region. Any region that
is guaranteed not to contain an evader is called a cleared
region. If a cleared region becomes contaminated again, it
is referred to as recontaminated. For convenience, when
an evader is detected, it is assumed to be eliminated.

In addition to the sensor that detects evaders, the
pursuer has a sensor that tracks the discontinuities in depth
information. Each of these discontinuities is referred to as
a gap, and the sensor is called a gap sensor (Figure 1).
Each gap corresponds to a connected subset of the envi-
ronment that is not visible by the pursuer. The length of
each gap, its distance, and its exact angular position are
assumed unknown, but it is assumed that the gap sensor
is able to track and record the disappearance, appearance,
merging, and splitting of gaps. These changes in the gaps
are called the gap critical events. Information such as
exact geometric measurements (i.e., distances and angles)

Fig. 1. How the environment appears to the pursuer, which is the black
dot in the environment on the left. On the right, the gap sensor shows
the location of the discontinuities in the depth information. No metric
information (i.e., distances and angles) is reported by the gap sensor.

is not recorded; only the gap ordering as they appear in
the gap sensor is maintained. Thus, no compass is needed.

Using this model, the pursuer is placed into some
unknown region R. The task is to design a motion strategy
that detects (or eliminates) all of the evaders, while trying
to minimize the total number of needed sentries. This will
be accomplished by building on a Gap Navigation Graph,
which is discussed next.

III. GAP NAVIGATION GRAPHS (GNGS)

In this section we give a brief description of GNGs,
which were introduced in [26], [25] as a means to navigate
in unknown planar environments. The motions produced
are optimal in simply-connected environments; otherwise,
they are locally-optimal. The approach was successfully
demonstrated on a mobile robot platform.

In the simply-connected case, the GNG is a tree,
hereafter referred to as Tg . Usually the environment is
unknown and the GNG is constructed online. The root of
Tg moves along with the pursuer. Each child of the root
represents a gap that is currently visible, and the gaps are
maintained in circular order. In Tg , we use the terms gaps
and nodes interchangeably because each node encodes a
gap.

As the pursuer moves, critical events are triggered.
There are appearances or disappearances of gaps, which
occur when the pursuer crosses inflections, and splitting
or merging of gaps, which occur when the pursuer crosses
bitangents [15]. As events occurs, Tg is updated as follows:
if a gap disappears, the corresponding node is removed
from Tg . If a gap appears, it is added as a child of the
root of Tg in a location that preserves the circular ordering
of gaps. Any node that is added in this way is designated



Fig. 2. Encoding of critical events into a Gap Navigation Graph. The
black disk denotes the root of Tg and the current position of the pursuer.
As the pursuer chases the gap on the left, a gap appearance, and a gap
merge is triggered. The structure of Tg is updated accordingly.

as a primitive node, which indicates that a portion of the
environment that was once visible is now occluded. If a
gap splits, then the corresponding child of the root will
be replaced with two children. If two gaps merge, the two
corresponding children of the root become the children of
a new node, d, and d becomes a child of the root (see
Figure 2). Merging can only occur between a pair of gaps
that are adjacent in the circular ordering produced by the
gap sensor. We also make a general position assumption,
which is that no two critical events can occur at the same
time. For example, in one time instant, three gaps cannot
merge into one.

As shown in [26], a sequence of nodes from the root
of Tg to a leaf define a sequence of gaps, that if chased,
follows a path in the bitangent graph. Chasing a gap
means the pursuer moves toward the gap, until the gap
either splits or disappears. In a real robotic setting a
robust navigation system following discontinuities may be
implemented, as the one presented in [18],

We next consider augmenting GNGs to handle pursuit-
evasion. Since a gap “hides” some region of the environ-
ment from the pursuer, it is possible to label each gap as
cleared, contaminated or recontaminated. A gap is said to
be cleared if it is not possible that an evader could be in the
region hidden by the gap; otherwise, the gap is said to be
contaminated. A recontaminated gap is a gap once labeled
as cleared, but that became contaminated once again.

Initially, all of the gaps in Tg are labeled as contam-
inated. If a gap appears, it is labeled as cleared, since if
an evader is behind the gap, the pursuer would already
have detected it. A cleared gap is recontaminated if it
merges with a contaminated or a recontaminated gap. If
Tg has at least one node that is not cleared, it is labeled
as contaminated; otherwise, it is said that Tg is cleared.
Solving the pursuit-evasion problem is equivalent to clear
each node of Tg .

IV. PRELIMINARIES

As presented in Section II, the pursuer is required to
clear an unknown environment using the gap sensor. The

main idea is to grow and preserve a connected sequence
of cleared gaps. Consider a sequence of cleared adjacent
gaps C = (α1, ..., αn), in which αi appears before αj for
any i < j in the gap sensor.

Lemma 1: After one critical gap event, recontamina-
tion can only occur on an end of the sequence (thereby
reducing the length of C).

Proof: Merges happen only between adjacent gaps.
Since (α1, ..., αn) are cleared, if a merge happens within
this sequence no recontamination will occur. However, α1

and αn may merge with a gap outside of this sequence,
which allows recontaminations.

This means that recontamination cannot occur in the
interior of C unless all of the gaps that were in C become
recontaminated. Using Lemma 1, one can devise a strategy
such that gaps are added to a single sequence of cleared
adjacent gaps until all of the detected gaps are cleared.
Intuitively, if more than one sequence of cleared gaps
needs to be maintained for solving the task, then more than
two flashlights would be needed in general, which would
contradict [20]. We make a parallel between maintaining
a single sequence of cleared adjacent gaps and the left
invariant property presented in [11]. If at some point the
cleared sequence becomes empty, a new one can be started
from a different sequence of gaps. Maintaining the cleared
sequence is equivalent to maintaining the left invariant
property explicitly.

The structure of merges gives a constraint on the
possible labeling of the Tg leaves. Let a branch of Tg

be defined as the subtree formed by a root’s child and
its descendants. The labeling of every branch has the
following structure:

Lemma 2: If a branch has a cleared node, then all of
the nodes of that branch are cleared. Otherwise, the branch
may only consist of contaminated and recontaminated
nodes.

Proof: Recontamination propagates through the
merges. If a cleared node merges with a recontaminated
node then it and all of its descendants become recontami-
nated. It follows that a cleared node may exist in a branch
only if all of the merges in that branch are between cleared
nodes.

The strategy described in Section V is based on Lem-
mas 1 and 2.

V. PURSUIT STRATEGY

As the pursuer moves in R, gap critical events are
triggered and updated in Tg . The pursuer tries to find
a sequence of movements that produce the gap critical
events sufficient to clear Tg . Under the pursuer model,
the movements are restricted to the chasing of gaps.
No previous knowledge of Tg or of the environment is
assumed, and Tg itself should be constructed online.



Section IV introduced the idea of the maintenance of
a sequence, C, of cleared gaps. We require that C only
contains children of the root of Tg . At the beginning of the
exploration C is empty, since Tg is unknown, and all of
their nodes are contaminated. When the first child of the
root appears as cleared, it is included in C. Subsequent
cleared children are added to C only if they are adjacent
(in the gap sensor ordering) to some element in C. A
node that becomes recontaminated is removed from C. If
an element of C merges, splits or disappears, C is updated
accordingly (two elements are replaced with one, one
element is replaced with two, or an element is removed,
respectively).

A schedule is defined as a sequence of gaps that must
be chased from beginning to end, in the order they appear
in the sequence. A schedule can be associated with a
recontaminated or contaminated node in Tg to guarantee
that the region it encodes is cleared. The strategy reduces
to the generation of the necessary schedules to clear Tg .
By Lemma 1, not all possible schedules are useful for
the pursuit strategy, since cleared gaps can only be added
to C if they are adjacent to some element already in
C. To describe an admissible schedule, we introduce the
contributor set of a node. For a primitive recontaminated
gap α ∈ Tg , the contributor set κ(α) is defined as the set
of all leaves v ∈ Tg that are in the same branch as α. A
schedule for α is called local if the pursuer chases first α,
and then each element of the contributor set, such that each
gap chased is adjacent to the previous one, recursively.
Note that a local schedule can easily be obtained from Tg

(see Figure 3). The local schedule structure follows the
order in which essential cuts are explored with s-triples,
in [20]. In s-triples, the middle element is explored first
and then the neighbors. The difference is that a gap may
not encode an essential cut, in which case the order is
defined recursively.

As the pursuer moves, several recontaminations may
occur, and for each of them a local schedule is computed.
These schedules are kept in the schedule list, SL. When a
new schedule is computed, it is inserted at the front of SL.
An interesting consequence of Lemma 1 is that the last
recontamination will be always adjacent to C. This means
that schedules should be read from the front of the list
since this will guarantee that gaps cleared will be adjacent
to C. Intuitively, by following these schedules, the pursuer
is ’exploring’ if it is possible to keep two adjacent gaps
clear at the same time. If a recontamination occurs, this
forces the pursuer to clear the recontaminations and their
respective contributor sets.

Before adding a local schedule to SL, it may be
modified as follows. Suppose that a schedule for α is
already in SL, and a schedule for β is computed. Let sc(α)

Fig. 3. Reading local schedules from Tg . The black disk represents
the root of Tg , and the square denotes the recontamination for which
the local schedule will be obtained. By following adjacencies, leaves are
added to the schedule first following the dotted line, and then the dashed
line, as shown.

and sc(β) denote the schedules for α and β respectively.
If sc(α)∩ sc(β) 6= ∅, then scv(β)← sc(β)− sc(α). This
modified schedule is called a valid schedule for β. There
are two reasons why the valid schedules are needed. The
first one is that a valid schedule prevents the pursuer from
chasing cleared gaps unnecessarily, since it will have to
follow twice the gaps repeated in the local schedules.
The second reason, and the most important, is that if this
reduced valid schedule already causes a recontamination,
this new recontamination should be cleared before clearing
contributors of recontaminations deeper in SL; otherwise,
it is not guaranteed that cleared gaps will be adjacent to
C.

The complete strategy for a single pursuer is shown
in pseudocode in Figure 4. When the search begins, Tg

is initialized with the first reading of the gap sensor,
and each node added is labeled as contaminated. Since
SL is empty, but there are contaminated nodes in Tg ,
the pursuer will try to clear them by chasing adjacent
gaps. When recontaminations occur, the schedules are
computed as described, and inserted in SL. At this point,
the pursuer begins to follow schedules in SL, until all
of the nodes in Tg are cleared. This strategy is listed as
the PURSUIT SINGLE procedure, in Figure 4. At every
moment, the function listed as GAP TRACKING (also in
Figure 4), detects gap critical events, and updates SL and
C, as new recontaminations occur.

If a single pursuer is not able to find all of the evaders
in an environment by itself, it may use one or more
sentries. Merges between nodes guarded by a sentry do
not cause recontaminations. The pursuer may place and
pick up sentries as needed. To detect that one sentry
is needed, the first time a local schedule is computed
for a given gap, this local schedule is kept in a hash



1 PURSUIT SINGLE
2 Tg ← INITIALIZE TREE
3 SL← ∅, C ← ∅
4 while Tg .label is contaminated
5 if SL 6= ∅
6 current sc← pop SL
7 CHASE(current sc)
8 else
9 EXPLORE(Tg)

1 GAP TRACKING
2 if gap critical event
3 UPDATE(Tg), UPDATE(C)
4 if α ∈ Tg is recontaminated
5 schedule(α) ← COMPUTE SCH(α, SL)
6 INSERT(schedule(α), SL)

1 COMPUTE SCH(α, SL)
2 κ(α)← CONTRIBUTORS(Tg , α)
3 local sc(α) ← {α, κ(α)}
4 schedule(α) ← VALID SCH(local sc(α), SL)
5 return schedule(α)

Fig. 4. Pursuit strategy for a single robot. The pursuer follows
schedules to clear contaminated and recontaminated nodes in Tg . A
schedule is generated every time a recontamination occurs. The pursuer
navigation is determined by the PURSUIT SINGLE procedure. The
GAP TRACKING function runs all of the time, detecting the gap critical
events.

table that is indexed by the branches configuration (not
the contamination labeling) of Tg . Elements in the hash
table are never updated once stored. When a new local
schedule is computed, it is compared with the one kept in
the hash table for the current configuration of Tg . If the
schedules are the same, we claim that no progress has been
made, and another sentry is needed. Since the strategy is
deterministic, the pursuer will try the same gap sequences
to grow the cleared sequence that did not work before.
This is equivalent to finding a cycle in the cleaning order
as in [20], but without a map. We show in Section VI that
in reaching this conclusion, all possible chasing sequences
of adjacent gaps were tried.

To place sentries, two straightforward heuristics are
used. One subdivides the environment such that the num-
ber of bitangents (and thus of merges) in each contami-
nated region is minimal. The other tries to maximize the
number of contaminated regions separated by the sentry.
The pursuer presented here can use both by going to the
minimum depth or maximum width Tg , respectively. The
pursuer can do that if it keeps the previous states of Tg ,
together with the record of critical events to reach those
configurations. When a region is cleared, the pursuer picks

up all but the first sentry placed, to clear the next branch.
As it is shown in Section VI, if a sentry is placed where
the depth of contaminated branches in Tg is minimal, the
number of sentries used is asymptotically optimal (it is
O(log m), where m is the number of bitangents in the
environment).

If the environment is searchable with one pursuer, but
not by chasing gaps, an additional strategy allows the
use of only two sentries. A sentry can be placed at the
moment where the condition for a new sentry is met. The
pursuer then tries to clear each of the regions separated
by the sentry. As we will prove in Section VI, if more
than two of these regions are not searchable by the single
pursuer chasing gaps, the environment is not searchable by
one pursuer following arbitrary paths. If only one region
is not searchable, a second sentry is placed inside this
region where the condition for a new sentry is met. The
pursuer then clears the branch of Tg , centered at the first
sentry, that encodes the path between the two sentries.
At this point, the first sentry can be reused to clear the
regions separated by the second sentry, and this strategy
is repeated, alternating the picking and placing of sentries.
If the branch joining the two sentries cannot be cleared,
or if there are two regions not searchable by the single
pursuer, the first sentry is still picked up and placed where
the condition for a new sentry is reached inside of one of
the regions separated by the second sentry.

This is repeated until any branch of Tg centered at a
sentry is cleared, in which case alternating the picking up
of sentries will clear the environment, or more than two
regions will be found to be not searchable. When more
than two regions cannot be cleared by one pursuer, the
two sentries placed are picked up, and a new sentry is
placed according to one of the heuristics described before.
The pursuer then tries to clear each region separated by
this new sentry, assuming it can be cleared with only two
additional sentries. This is repeated recursively.

VI. ANALYSIS

We can compare the performance of the online strategy
presented here with a strategy that has access to a map of
the environment. As proposed in the next theorem, the
strategy presented here has the same searching power as
one that has a complete knowledge of the environment,
for pursuers only capable of following gaps. For space
constraints, we only give an overview of the proof.

Theorem 3: If the environment can be cleared by one
pursuer that has a map and chooses to move only along
bitangents and the boundary of R, then the environment
can be cleared by one pursuer that builds and uses the Gap
Navigation Graph, instead of an exact map.

Proof Overview: First consider a strategy that has
access to a map of environment, for a pursuer with only



a gap sensor. The visibility cell decomposition [8] can be
computed for the environment representation. For each of
the visibility cells, the visibility tree can be computed. A
visibility tree is a shortest path tree with the root placed
in a given visibility cell. The visibility tree and the Gap
Navigation Graph, encode the same path information[2],
[26].

A graph G = (V,E) can be constructed such that each
vertex in V represents a visibility tree, and (u, v) ∈ E if
and only if by following a gap (a edge of the bitangent
graph), the tree represented by u ∈ V can be transformed
into the tree represented by v ∈ V . For each node, a
contamination state is kept, which gives the cleared or
contaminated status for each of the children of the root
of the respective visibility tree. If following the edge
(u, v) ∈ E, one child is added from the tree in u to
the tree in v, this child is labeled as cleared. This is
equivalent to an appearance event in the GNG. Merges,
splits and disappearances of children from one tree to
another are cleared or recontaminated as their counterparts
in the GNG. At the beginning, all of the nodes of all of
the trees are labeled as contaminated.

Based on G(V,E), a search can be performed, sim-
ilar to the one presented in [7], by maintaining the
cleared/contaminated labels, and updating the contami-
nation states as edges in the graph are transversed. The
search ends when a contamination status with all of the
children labeled as cleared is reached. This algorithm re-
turns the gaps chasing sequence to clear the environment,
if such sequence exist. We now show that the pursuit
strategy presented in this paper is an online version of
the search just described.

For simplicity, assume that the valid schedules
in the list SL are composed only by one gap.
If SL = {(α1), (α2), ..., (αn)}, the pursuer first tries to
clear αn (being the last recontamination), and then pro-
ceeds to clear αn−1. At this point, if αn gets recontam-
inated, it will be cleared a second time, since it is again
the last recontamination. The gaps αn−1 and αn would
then have been explored in all possible manners. If αn−1

and αn do not get recontaminated, they now belong to
C, and the next gap to clear will be αn−2. Now we can
repeat the argument, but with C and αn−2 (instead of αj

and αj−1). The former elements of C are cleared again
recursively, because of the contributors structure. This is
done with the updated C and subsequent recontaminations,
generating the sequences with all possible combinations of
adjacent gaps.

It is shown in [26] that there exists a path between
the current position of the robot and any region of the
space encoded by a node in the tree. At worst, the strategy
presented in this paper will try all possible gap sequence

e?

e?v

clean

Fig. 5. Not every environment searchable with one robot is searchable
with one pursuer following sequences of gaps. A robot following the
dashed path can find all of the evaders (left) . The thick paths generated
by chasing gaps cause unavoidable recontaminations (right).

combinations. If a solution exists for one pursuer, it cannot
lie outside of the set of all possible combinations of
adjacent gap sequences. If a solution does not exist, the
condition for a new sentry is then fulfilled.

An environment may not be searchable by one robot
chasing gaps, although it may be searchable by one
robot following arbitrary paths (paths unreachable with the
GNG). An example of such an environment is presented in
Figure 5. It is therefore worth investigating the number of
extra robots/sentries required to search such environments.

Theorem 4: If the environment is searchable by one
robot, but not necessarily by following paths generated by
chasing sequences of gaps, then a pursuer that chases gaps
can solve the problem using at most two sentries.

Proof: We use the idea of separability, defined
in [24]. Let R represent the environment, as defined in
Section II. For points x, y and z ∈ R, point x and y
are said to be separable by x if every path between y
and z contains at least one point in V 2(x), in which
V 2(x) is the 2-visibility of x. The 2-visibility is defined
as V 2(x) = ∪y∈V (x)V (y). Points x, y and z are said to be
mutually non-separable if no two points out of three are
separable by the third. If R is searchable by one pursuer,
then no three points in R are mutually non-separable[24].

Assume a sentry is placed the first time the condition
for a new sentry is detected, as in Section V. If one branch
of Tg , with the root at the sentry, is not searchable by a
single pursuer, it has at least two merges (if it has only one,
it is easily searchable by the pursuer and the sentry already
placed). The 2-visibility of a point encoded in the second
level of merges does not include the region encoded by the
root of Tg (it can “see” behind the second level of merges,
but not the first). Since there are paths from one branch
to another that are not separable, then R is not searchable
by a single pursuer. If R is searchable by one pursuer
not chasing gaps, at most two branches of Tg centered at



a sentry will not be searchable by the pursuer following
gaps. In this case, the two branches can be cleared as
presented in V, by reusing two sentries.

Since determining the optimal number of pursuers is
NP-hard[7], we can only give a bound in the number
of sentries needed in the general case. This bound is
presented in the following theorem.

Theorem 5: The number of sentries needed by a pur-
suer following gaps is O(log m), in which m is the
number of bitangents in the environment. This bound is
asymptotically optimal.

Proof: Each merge in a branch of Tg encodes one
of m bitangents of the environment. If the sentry is placed
where Tg has minimum depth, the number of merges in
each branch is at most m/2, otherwise, there is some
configuration of Tg with less depth. Using this argument
recursively in each of the regions separated by a sentry, it
follows that the number of sentries needed is O(logm).
As shown in [7] for polygonal environments, this bound
is asymptotically optimal, and this can be easily extended
for regular simple, closed, piecewise-smooth curves.

In the special case of polygonal environments, the
number of bitangents is m = Θ(n2), in which n is the
number of vertices. Thus, the number of sentries needed
for a polygonal environment is O(log n).

We now compare the pursuit strategy presented here
with other strategies using the same heuristics in the
placing of sentries. Two such heuristics were mentioned in
Section V. One subdivides the environment such that the
number of bitangents is minimized in each contaminated
region, while the other tries to maximize the number of
regions separated by the sentry. If a strategy with pursuers
moving on arbitrary paths using one of these heuristics
needs k pursuers, then the pursuit strategy presented here
will need at most k + 1 sentries and one pursuer. The
pursuer can place k − 1 sentries following the heuristic,
and clear the regions searchable by chasing sequences of
gaps. This gives a total of k “observers”. The pursuer can
then translate the two remaining sentries from one place
to another, when a particular region is not searchable by
following gaps.

VII. SIMULATIONS

We implemented in C++ the strategy proposed for a
single pursuer, using a standard desktop PC. We are in
progress of extending the computer simulation to include
sentries. A map is needed for the simulation, but it is
explored by using a simulated gap sensor. Figure 6.(a)
shows the sequence of movements the pursuer followed.
The initial position of the pursuer is shown with the black
disk. Note that the figure only shows the order of how
the regions of the environment were visited, but not the
actual paths. In Figure 6, the root of the tree denotes

the position of the robot, and the tree represents the
current state of Tg . Contaminated nodes are denoted with a
black circle, and recontaminated nodes are marked with a
white circle. Brown (dark grey) areas denote contaminated
regions, while green (light grey) regions show cleared
areas. A recontamination is shown from Figure 6.(c) to
Figure 6.(d), and this is reflected in a merge in the tree.
The light grey nodes in the tree on Figure 6.(d) show the
schedule to clear this recontamination. We are currently
extending the simulation to include sentries.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented a strategy for pursuit-evasion for
a robot with minimal sensing capabilities, and without
a map of the environment. By associating the cleared,
contaminated, recontaminated labels to discontinuities in
depth information (gaps), the pursuer can compute a series
of schedules to detect evaders in the environment. If the
environment can be search with one robot following paths
in the bitangent graph, these schedules will assure the
detection of all of the evaders, using a single pursuer;
otherwise, only an extra sentry (guard) is required. While
understanding that determining the optimal number of
pursuers and sentries is a NP-hard problem, we enable
a pursuer with k + 1 sentries to clear any environment
that could be cleared by k pursuers using the algorithm in
[7], which required a complete map and perfect sensing.

An interesting direction for future research is the exten-
sion of the strategy for multiply-connected environments,
by using the GNG for this case [25]. Also, it will be
interesting to determine what necessary capabilities should
be added to the robot to eliminate the extra sentry for
environments that are searchable with one robot.

Acknowledgments

This work is supported in part by ONR Grant N000014-
02-1-0488 and NSF-CONACyT Grant 0296126.

REFERENCES

[1] Micah Adler, Harald Räcke, Naveen Sivadasan, Christian Sohler,
and Berthold Vöcking. Randomized pursuit-evasion in graphs.
In 29th International Colloquium on Automata, Languages, and
Programming, 2002.

[2] B. Aronov, L. Guibas, M. Teichmann, and L. Zhang. Visibility
queries in simple polygons and applications. Algorithms and
Computation, 9th International Symposium, ISAAC ’98, Taejon,
Korea, December 14-16, 1998, Proceedings, 1533, 1998.

[3] T. Başar and G. J. Olsder. Dynamic Noncooperative Game Theory.
Academic Press, London, 1982.

[4] H. Choset and J. Burdick. Sensor based planning, part I: The
generalized Voronoi graph. In IEEE Int. Conf. Robot. & Autom.,
pages 1649–1655, 1995.

[5] Alon Efrat, Leonidas J. Guibas, Sariel Har-Peled, David C. Lin,
Joseph S. B. Mitchell, and T. M. Murali. Sweeping simple polygons
with a chain of guards. In Symposium on Discrete Algorithms,
pages 927–936, 2000.



(a) (b) (c)

(d) (e) (f)

Fig. 6. Simulation results. In (a), the sequence of how the regions are visited in the environment is shown. In (b), (c), (d), (e), and (f), the tree
represents the current state of Tg . The root of the tree also represents the position of the robot. Brown (dark grey) areas denote contaminated regions,
while green (light gray) areas denote cleared regions. The yellow (almost white) area shows the current visible area of the pursuer. From (c) to (d) a
recontamination is shown (details in Section VII).

[6] J. A. Ellis, Ivan Hal Sudborough, and J. S. Turner. The vertex
separation and search number of a graph. Information and Com-
putation, 113(1):50–79, 1994.

[7] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Mot-
wani. Visibility-based pursuit-evasion in a polygonal environment.
International Journal of Computational Geometry and Applica-
tions, 9(5):471–494, 1999.

[8] L. J. Guibas, R. Motwani, and P. Raghavan. The robot localization
problem. In K. Goldberg, D. Halperin, J.-C. Latombe, and R. Wil-
son, editors, Proc. 1st Workshop on Algorithmic Foundations of
Robotics, pages 269–282. A.K. Peters, Wellesley, MA, 1995.

[9] R. Isaacs. Differential Games. Wiley, New York, NY, 1965.
[10] V. Isler, S. Kannan, and S. Khanna. Randomized pursuit-evasion

with limited visibility. In ACM-SIAM Sympos. Discrete Algorithms,
2004.

[11] T. Kameda, M. Yamashita, and I. Suzuki. On-line polygon search
by a six-state boundary 1-searcher. Technical Report CMPT-TR
2003-07, School of Computing Science, SFU, 2003.

[12] I. Kamon, E. Rivlin, and E. Rimon. Range-sensor based navigation
in three dimensions. In IEEE Int. Conf. Robot. & Autom., 1999.

[13] A. S. Lapaugh. Recontamination does not help to search a graph.
Journal of the ACM, 40(2):224–245, April 1993.

[14] J.-C. Latombe. Robot Motion Planning. Kluwer Academic
Publishers, Boston, MA, 1991.

[15] S. M. LaValle and J. Hinrichsen. Visibility-based pursuit-evasion:
The case of curved environments. IEEE Transactions on Robotics
and Automation, 17(2):196–201, April 2001.

[16] S. M. LaValle, B. Simov, and G. Slutzki. An algorithm for
searching a polygonal region with a flashlight. International
Journal of Computational Geometry and Applications, 12(1-2):87–
113, 2002.

[17] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H.

Papadimitriou. The complexity of searching a graph. Journal of
the ACM, 35(1):18–44, January 1988.

[18] J. Minguez and L. Montano. Nearness diagram navigation (ND):
Collision avoidance in troublesome scenarios. IEEE Transactions
on Robotics and Automation, February 2004.

[19] N. J. Nilsson. A mobile automaton: An application of artificial
intelligence techniques. In 1st International Joint Conference on
Artificial Intelligence, 1969.

[20] S.-M. Park, J.-H. Lee, and K.-Y. Chwa. Visibility-based pursuit-
evasion in a polygonal region by a searcher. Technical Report
CS/TR-2001-161, KAIST, Dept. of Computer Science, Korea,
January 2001.

[21] T. D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. R.
Lick, editors, Theory and Application of Graphs, pages 426–441.
Springer-Verlag, Berlin, 1976.

[22] S. Sachs, S. Rajko, and S. M. LaValle. Visibility-based pursuit-
evasion in an unknown planar environment. Submitted to Interna-
tional Journal of Robotics Research, 2003.

[23] A. M. Shkel and V. J. Lumelsky. Incorporating body dynamics into
sensor-based motion planning: The maximum turn strategy. IEEE
Trans. Robot. & Autom., 13(6):873–880, December 1997.

[24] I. Suzuki and M. Yamashita. Searching for a mobile intruder in
a polygonal region. SIAM J. Computing, 21(5):863–888, October
1992.

[25] B. Tovar, S. M. LaValle, and R. Murrieta. Locally-optimal naviga-
tion in multiply-connected environments without geometric maps.
In IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, 2003.

[26] B. Tovar, S. M. LaValle, and R. Murrieta. Optimal navigation and
object finding without geometric maps or localization. In Proc.
IEEE International Conference on Robotics and Automation, 2003.

[27] L. H. Tseng, Paul J. Heffernan, and D. T. Lee. Two-guard walka-
bility of simple polygons. International Journal of Computational
Geometry and Applications, 8(1):85–116, 1998.


