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Abstract

The shortest paths for a mobile robot are a fundamental property of the mechanism, and may also be
used as a family of primitives for motion planning in the presence of obstacles. This paper characterizes
shortest paths for differential-drive mobile robots, with the goal of classifying solutions in the spirit of
Dubins curves and Reeds-Shepp curves for car-like robots. To obtain a well-defined notion of shortest, the
total amount of wheel rotation is optimized. Using the Pontryagin Maximum Principle and other tools,
we derive the set of optimal paths, and we give a representation of the extremals in the form of finite
automata. It turns out that minimum time for the Reeds-Shepp car is equal to minimum wheel-rotation
for the differential drive, and minimum time curves for the convexified Reeds-Shepp car are exactly the
same as minimum wheel-rotation paths for the differential-drive. It is currently unknown whether there
is a simpler proof for this fact. An earlier version of this work appeared in [8, 7].

1 Introduction

This paper derives the family of 52 minimum wheel-rotation trajectories for differential-drive mobile robots
in the plane without obstacles. The robot model is shown in Figure 2. The two wheels are independently
driven by possibly discontinuous bounded velocities. By wheel-rotation we mean the total distance travelled
by the robot wheels, which is independent of the robot maximum speed. Although there are some numerical
optimal control algorithms, a complete mathematical characterization of shortest paths, in the sense of
Dubins and Reeds-Shepp curves, is helpful in comparing different mechanisms, computing a nonholonomic
metric for motion planning algorithms, and building a local motion planner.

Our goal is to give a complete mathematical characterization of minimum wheel-rotation trajectories for
the differential drive in an environment without obstacles. We show they exist for all pairs of initial and
goal configurations. They are composed of rotation in place, straight line, and swing segments (one wheel
stationary and the other rolling). Twenty eight different minimum wheel-rotation trajectories are identified
in our work, which are maximal with respect to subpath partial order. The total number of minimum wheel-
rotation trajectories, i.e. distinct subpaths of maximal ones, is 52. We prove that minimum time for the
convexified Reeds-Shepp car [20] is equal to minimum wheel-rotation for the differential drive, and the two
families of optimal curves are identical. It is currently unknown whether there is a proof for this fact that
does not require optimal control tools.

The first work on shortest paths for car-like vehicles is done by Dubins [11]. He gives a characterization
of shortest curves for a car with a bounded turn radius. In that problem, the car always moves forward
with constant speed. He uses a purely geometrical method to characterize such shortest paths. Later, Reeds
and Shepp [14] solve a similar problem in which the car is able to move backward as well. They identify 48
candidate shortest paths. Shortly after Reeds and Shepp, their solution was refined by Sussmann and Tang
[20] with the help of optimal control techniques. Sussmann and Tang show that there are only 46 different
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Figure 1: Minimum wheel-rotation trajectories up to symmetry: (A) and (B) are composed of two swings,
straight, and one or two swings respectively. (C) and (D) are composed of four alternating swings. (E) is
composed of swing, rotation in place, and swing. (F) is composed of rotation in place, swing, and rotation
in place.
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Figure 2: Differential-drive model

shortest paths for the Reeds-Shepp car. Souères and Laumond give the optimal control synthesis, i.e. the
mapping from initial-goal pairs to optimal trajectories, and classify the shortest paths into symmetric classes
[18].

Balkcom and Mason study the time-optimal trajectories for the differential drive and give a complete
characterization of time-optimal trajectories [3]. Time-optimal trajectories for the differential drive consist
of rotation in place and straight line segments. Balkcom et al give the time-optimal trajectories for an
omni-directional mobile robot [2].

Souères and Boissonnat [17] study the time optimality of the Dubins car with angular acceleration
control. They present an incomplete characterization of time-optimal trajectories for their system. However,
full characterization of such time-optimal trajectories seems to be difficult because Sussmann [19] proves that
there are time-optimal trajectories for that system that require infinitely many input switchings (chattering or
Fuller phenomenon). Sussmann uses Zelikin and Borisov theory of chattering control [23] to prove his result.
Chyba and Sekhavat [9] study time optimality for a mobile robot with one trailer. For a numerical approach
to time optimality for differential-drive robots see Reister and Pin [15]. For a study on acceleration-driven
mobile robots see Renaud and Fourquet [16].

Agarwal et al give an algorithm to find the shortest path for the Dubins car and the Reeds-Shepp
car among moderate obstacles [1]. An obstacle is said to be moderate if it is convex and its boundary
is a differentiable curve whose curvature is everywhere not more than 1. Boissonnat and Lazard give a
polynomial-time algorithm for computing a shortest path for the Dubins car among moderate obstacles [4].
Moutarlier et al study the problem of finding the shortest distance for the Reeds-Shepp car to a manifold
in the configuration space [12]. Desaulniers et al give an algorithm to compute the shortest path for the
Reeds-Shepp car among polygonal obstacles by decomposing the space into polygonal regions and discretizing
boundaries of the regions [10]. Vendittelli et al present a method to find the shortest path for a car-like
robot to the obstacle region [21, 22]. Chitsaz and LaValle give a method to compute minimum wheel-rotation
paths for a differential-drive robot among obstacles [6].

The approach that we use to derive optimal trajectories is similar to the one used by Sussmann and Tang
[20], Souères, Boissonnat and Laumond [17], Chyba and Sekhavat [9], and Balkcom and Mason [3]. However,
the difference between our method and the aforementioned methods is that we give specific geometric argu-
ments to rule out non-optimal trajectories. We first prove that minimum wheel-rotation trajectories exist
for our problem. It is then viable to apply the necessary condition of the Pontryagin Maximum Principle
(PMP) [13]. The geometric interpretation of the PMP leads to geometric arguments that rule out some
non-optimal trajectories. The remaining finite set of candidates are compared with each other to find the
optimal ones.

2 Problem Formulation

A differential-drive robot [3] is a three-dimensional system with its configuration variable denoted by q =
(x, y, θ) ∈ C = R

2 × S
1 in which x and y are the coordinates of the point on the axle, equidistant from the
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wheels, in a fixed frame in the plane, and θ ∈ [0, 2π) is the angle between x-axis of the frame and the robot
local longitudinal axis (see Figure 2).

The robot has independent velocity control of each wheel. Assume that the wheels have equal bounds
on their velocity. More precisely, u1, u2 ∈ [−1, 1], in which the inputs u1 and u2 are respectively the left and
the right wheel velocities, and the input space is U = [−1, 1]× [−1, 1] ⊂ R

2. The system is

q̇ = f(q, u) = u1f1(q) + u2f2(q) (1)

in which f1 and f2 are vector fields in the tangent bundle TC of configuration space. Let the distance between
the robot wheels be 2b. In that case,

f1 =
1

2





cos θ
sin θ
− 1

b



 and f2 =
1

2





cos θ
sin θ

1
b



 . (2)

The Lagrangian L and the cost functional J to be minimized are

L(u) =
1

2
(|u1| + |u2|) (3)

J(u) =

∫ T

0

L(u(t))dt. (4)

The factor 1/2 above helps to simplify further formulas, and does not alter the optimal trajectories.
For every pair of initial and goal configurations, we seek an admissible control, i.e. a measurable function

u : [0, T ] → U , that minimizes J while transferring the initial configuration to the goal configuration. Since
the cost J is invariant to scaling the input within U , we can assume without loss of generality that the controls
are either constantly zero (u ≡ (0, 0)) or saturated at least in one input, i.e. max(|u1(t)|, |u2(t)|) = 1 for all
t ∈ [0, T ]. Throughout this paper, a trajectory for which u ≡ (0, 0) over its time interval is called motionless.

3 Existence of Optimal Trajectories

The system is clearly controllable [3]. Moreover, it can be shown that the system is small-time locally
controllable. Hence, there exists at least one trajectory between any pair of initial and goal configurations,
and it is meaningful to discuss the existence of optimal trajectories. In the following, we will use a version
of Filippov Existence Theorem to prove the existence of optimal trajectories.

Theorem 1 (Filippov Existence Theorem [5]). Let A ⊂ C be compact, G ⊂ C × C closed, L(u) continuous
on U , and f continuous on A × U . Define Q(q) ⊂ R × TqC ∼= R

4 as

Q(q) = {(z0, z)|∃u ∈ U : z0 ≥ L(u) and z = f(q, u)}. (5)

Let ΩA be the set of all admissible trajectory-control pairs (q(t), u(t)) defined on [0, T ] that for some (q0, q1) ∈
G transfer q0 to q1 while staying in A, i.e. (q(0), q(T )) ∈ G, and q([0, T ]) ⊂ A. Assume that Q(q) are convex
for all q ∈ A, and ΩA is nonempty. The functional J has an absolute minimum in the nonempty class ΩA.

From this we derive the following corollary which establishes the existence of minimum wheel-rotation
trajectories for the system described in (1).

Corollary 1. Minimum wheel-rotation trajectories for the differential-drive exist.

Proof. Fix the initial configuration q0 = (x0, y0, θ0) and the goal configuration q1 = (x1, y1, θ1). Let A in
Theorem 1 be A = BT (x0, y0) × S

1, in which BT (x0, y0) is the closed ball of radius T around (x0, y0) in the
plane. Note that T here is both maximum time and the radius of BT (x0, y0). Assume T is large enough so
that (x1, y1) ∈ BT (x0, y0). The projection of robot configuration onto the x-y plane cannot leave BT (x0, y0)

4



in time T because
√

ẋ2 + ẏ2 ≤ 1. Thus, any trajectory starting at q0 stays in A over the time interval
[0, T ]. Choose T such that ΩA 6= ∅ in Theorem 1. Let G = {(q0, q1)} ⊂ C × C be the pair of initial and goal
configurations.

It is obvious that A is compact, G closed, L(u) continuous on U , and f continuous on A×U in this case.
Since U is convex and f(q, ·) is a linear transformation, f(q, U) is also convex. The fact that L(·) is a convex
function helps to show Q(q) is convex for all q. Thus, Theorem 1 guarantees the existence of a minimum
wheel-rotation trajectory-control pair (qT (t), uT (t)) in ΩA. Let JT = J(uT ), and let τ be the time of qT . In
that case, τ ≤ T because (qT (t), uT (t)) is in ΩA. Since L ≤ 1 along any trajectory, JT ≤ τ ≤ T .

Now let the time duration be 2T and A′ = B2T (x0, y0) × S
1. Using Theorem 1 again, ΩA′ contains a

minimum wheel-rotation trajectory-control pair (q2T (t), u2T (t)). Let J2T = J(u2T ). Note that J2T ≤ JT

because all elements of ΩA are contained in ΩA′ . Any trajectory-control pair that is not in ΩA′ takes at
least 2T time. Observe that 1/2 ≤ L along any trajectory because at least one input is saturated. Hence,
the cost of any trajectory-control pair that is not in ΩA′ is at least 2T/2 = T . Note that J2T ≤ JT ≤ T .
Thus, q2T (t) is an absolute minimum wheel-rotation trajectory over all trajectories.

4 Necessary Conditions

Since we proved the existence of optimal trajectories in the previous section, it is viable now to apply the
Pontryagin Maximum Principle (PMP) which is a necessary condition for optimality.

4.1 Pontryagin Maximum Principle

Let the Hamiltonian H : R
3 × C × U → R be

H(λ, q, u) = 〈λ, q̇〉 + λ0L(u) (6)

in which λ0 is a constant. According to the PMP [13], for every optimal trajectory q(t) defined on [0, T ]
and associated with control u(t), there exists a constant λ0 ≤ 0 and an absolutely continuous vector-valued
adjoint function λ(t), that is nonzero if λ0 = 0, with the following properties along the optimal trajectory:

λ̇ = −
∂

∂q
H, (7)

H(λ(t), q(t), u(t)) = max
z∈U

H(λ(t), q(t), z), (8)

H(λ(t), q(t), u(t)) ≡ 0. (9)

Def 1. An extremal is a trajectory q(t) that satisfies the conditions of the PMP. Also, an extremal for which
λ0 = 0 is called abnormal.

Let the switching functions be
ϕ1 = 〈λ, f1〉 and ϕ2 = 〈λ, f2〉 , (10)

in which f1 and f2 are given by (2). We rewrite (6) as H = u1ϕ1 + u2ϕ2 + λ0L. The PMP implies that an
optimal trajectory is also an extremal ; however, the converse is not necessarily true. Throughout the current
section, we characterize all extremals because the optimal trajectories are among them. In the following
sections, we will provide more restrictive conditions for optimality and we will rule out all non-optimal ones.

4.2 Switching Structure Equations

Lemma 1 (Sussmann and Tang [20]). Let fk be a smooth vector field in the tangent bundle of the configu-
ration space TC, and let q(t) be an extremal associated with control u(t) and adjoint vector λ(t). Let ϕk be
defined as ϕk(t) = 〈λ(t), fk(q(t))〉. It follows that

ϕ̇k = u1 〈λ, [f1, fk]〉 + u2 〈λ, [f2, fk]〉 . (11)
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Lemma 1 reveals valuable information by relating the structure of the Lie algebra to the structure of ϕi

functions. To complete the Lie closure of {f1, f2}, we introduce f3 as the Lie bracket of f1 and f2:

f3 = [f1, f2] =
1

2b





sin θ
− cos θ

0



 . (12)

Let ϕ3(t) = 〈λ(t), f3(q(t))〉 be the switching function associated with f3. Lemma 1 implies the structure of
switching functions as follows [3]:

ϕ̇1 = −u2ϕ3, ϕ̇2 = u1ϕ3, ϕ̇3 =
1

4b2
(−u1 + u2)(ϕ1 + ϕ2). (13)

The vectors fi are linearly independent. Consequently, {f1(q), f2(q), f3(q)} forms a basis for TqC. As an
immediate consequence of the PMP and Lemma 1, the following proposition holds.

Proposition 1. An abnormal extremal is motionless.

Proof. If λ0 = 0, then (9) implies u1ϕ1 + u2ϕ2 ≡ 0. This means |ϕ1| ≡ |ϕ2| ≡ 0 because by maximization of
the Hamiltonian, we must have uiϕi = |ϕi| for i = 1, 2. For a detailed argument, see [3]. Consequently, ϕ1

and ϕ2 are constantly zero, and ϕ̇1 ≡ ϕ̇2 ≡ 0. In this case, |ϕ1| + |ϕ2| + |ϕ3| 6= 0 because {f1, f2, f3} forms
a basis for tangent space of the configuration space, and ϕi’s are the coordinates of a nonzero vector λ(t) in
this basis. Thus, ϕ3 6= 0 and (13) imply u1 ≡ u2 ≡ 0.

4.3 Extremals

Having dealt with abnormal extremals in Proposition 1, we may now, without loss of generality, scale the

Hamiltonian (6) so that λ0 = −2. More precisely, the PMP conditions are valid if we replace λ(t) by − 2λ(t)
λ0

and λ0 by −2 in (6). We will assume that λ0 = −2 for the rest of the paper. In that case, the Hamiltonian
has the simple form

H = u1ϕ1 + u2ϕ2 − (|u1| + |u2|). (14)

Equation 7 can be solved for λ to obtain

λ(t) =





c1

c2

c1y − c2x + c3



 , (15)

in which c1, c2, and c3 are constants. Let i, j ∈ {1, 2} throughout the rest of the paper.

Def 2. For some i = 1, 2 an extremal for which |ϕi(t)| = 1 over some interval of time of positive length is
called singular.

In Lemma 2, we will show that a non-singular extremal is motionless. We will also show that there are
two categories of singular extremals depending on whether or not c2

1 +c2
2 = 0. The first category corresponds

to c2
1 + c2

2 6= 0, and consists of all singular extremals that are composed of a number of swing (ui = 0)
and straight (u1 = u2) intervals. Such extremals will be called tight. The second category corresponds to
c2
1 + c2

2 = 0. Such extremals will be called loose.

Lemma 2. Let q(t) be an extremal associated with the control u(t) = (u1(t), u2(t)), adjoint vector function
λ(t), and switching functions ϕi(t). Moreover, assume q(t) is not motionless. In that case, the following
hold:

(i) |ϕi(t)| ≤ 1.
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(ii)

ui(t) ∈







[0, 1] if ϕi(t) = 1
{0} if |ϕi(t)| < 1

[−1, 0] if ϕi(t) = −1
. (16)

(iii) If c2
1 + c2

2 6= 0 and |ϕ1| = |ϕ2| = 1 over some interval [t1, t2], then u1 = u2, and ϕ1 = ϕ2.

(iv) If c2
1 + c2

2 6= 0 and |ϕj | < |ϕi| = 1 over a time interval [t1, t2], then uj = 0 and |ui| = 1, in which j 6= i.

(v) If c1 = c2 = 0, then ϕ1 ≡ −ϕ2, and u1u2 ≤ 0. In other words, the wheels move in opposite directions.

Proof. (i) By inspection of (14), if |ϕi| > 1, there exist feasible controls yielding H > 0. This contradicts
the maximum principle (8) and (9), which states that the maximum of H is zero.

(ii) If |ϕi| < 1, then (8) and (14) implies ui = 0. In a similar way, if ϕi = 1, then ui ∈ [0, 1], and if ϕi = −1,
then ui ∈ [−1, 0].

(iii) Assume ϕ1 = −ϕ2. From (2), (10), and (15) it follows that c1 cos θ + c2 sin θ ≡ 0. Differentiate this
equation to obtain θ̇ ≡ 0 because −c1 sin θ + c2 cos θ 6= 0. Thus, 2bθ̇ = u1 − u2 = 0, and (16) implies
u1 = u2 = 0, which is not possible because q(t) is not motionless.

(iv) This follows from (16).

(v) In that case, ϕ1 ≡ −ϕ2 by (2), (10), and (15). It follows from (16) that u1u2 ≤ 0.

Geometric interpretation of tight extremals in Section 4.4 will help to show that the number of switchings
along a tight extremal is finite. Along a tight extremal we can assume u1 = 0, u2 ∈ {1,−1} or u1 ∈
{1,−1}, u2 = 0 on swing segments, and u1 = u2 ∈ {1,−1} on straight segments because at least one of
the inputs is saturated. Thus, inputs are always either zero or bang ui ∈ {1, 0,−1} along tight extremals.
In Section 5.3, we will show that there may exist many wheel-rotation equivalent loose extremals, and for
an appropriate choice of representative loose extremals, the inputs are always either zero or bang. In this
section, we finished an elementary characterization of extremals. We have identified three main types of
extremals:

1. non-singular: u1 ≡ u2 ≡ 0 (i.e. motionless)

2. tight singular: composed of a finite number of swing and straight segments

3. loose singular: u1u2 ≤ 0, ϕ1 ≡ −ϕ2, and |ϕ1| ≡ |ϕ2| ≡ 1.

4.4 Geometric Interpretation of Tight Extremals

Let (x1, y1) and (x2, y2) be the coordinates of the left and the right wheel respectively. In that case,
(

x1

y1

)

=

(

x − b sin θ
y + b cos θ

) (

x2

y2

)

=

(

x + b sin θ
y − b cos θ

)

. (17)

Define functions γ1(x, y) and γ2(x, y) as

γ1(x, y) = c1y − c2x + c3 − 2b, (18)

γ2(x, y) = c1y − c2x + c3 + 2b. (19)

Taking (2), (10), (15), (17), (18), and (19) into account, we obtain

ϕ1 = −
1

2b
γ2(x2, y2) + 1 = −

1

2b
γ1(x2, y2) − 1, (20)

ϕ2 =
1

2b
γ1(x1, y1) + 1 =

1

2b
γ2(x1, y1) − 1. (21)
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S−

ℓ2

S±

ℓ1
S+

Figure 3: The robot stays between two lines ℓ1 and ℓ2 along a tight extremal.

Note that c2
1 + c2

2 > 0, and consider the parallel lines ℓ1 : γ1(x, y) = 0 and ℓ2 : γ2(x, y) = 0 in the robot x-y
plane. The value of γi at each point P ∈ R

2 determines d(P, ℓi) scaled by
√

c2
1 + c2

2 for i = 1, 2, in which
d(P, ℓ) is the signed distance of point P from a line ℓ ⊂ R

2. Since the base distance b of the robot is positive,
γ2 > γ1 everywhere in the plane. Thus, ℓ1 and ℓ2 cut the plane into five disjoint subsets (see Figure 3): S+,
ℓ1, S±, ℓ2, and S− in which

S+ = {(x, y) ∈ R
2| γ2(x, y) > γ1(x, y) > 0} (22)

S± = {(x, y) ∈ R
2| γ2(x, y) > 0 > γ1(x, y)} (23)

S− = {(x, y) ∈ R
2| 0 > γ2(x, y) > γ1(x, y)}. (24)

Using Lemma 2 and (20) and (21), along a tight extremal γ1(xi, yi) ≤ 0 ≤ γ2(xi, yi) for i = 1, 2. Thus, the
robot always stays in the band ℓ1 ∪ S± ∪ ℓ2 (see Figure 3). By appropriately substituting in (16), we obtain

u1 ∈







[−1, 0] if wheel 2 ∈ ℓ1

{0} if wheel 2 ∈ S±

[0, 1] if wheel 2 ∈ ℓ2

(25)

u2 ∈







[0, 1] if wheel 1 ∈ ℓ1

{0} if wheel 1 ∈ S±

[−1, 0] if wheel 1 ∈ ℓ2

. (26)

5 Characterization of Extremals

5.1 Symmetries

Assume (q(t), u(t)) is a minimum wheel-rotation trajectory-control pair that is defined on [0, T ]. Let q̃(t) be
the trajectory associated with control u(T − t), q̄(t) the trajectory associated with control −u(t), and q̂(t)
the trajectory associated with control û(t) = (u2(t), u1(t)). Define the operators O1, O2, and O3 acting on
trajectory-control pairs by

O1 : (q(t), u(t)) 7→ (q̃(t), u(T − t)) (27)

O2 : (q(t), u(t)) 7→ (q̄(t),−u(t)) (28)

O3 : (q(t), u(t)) 7→ (q̂(t), û(t)). (29)

Due to symmetries, O1(q(t), u(t)), O2(q(t), u(t)), and O3(q(t), u(t)) are also minimum wheel-rotation trajec-
tories. O1 corresponds to reversing the extremal in time, O2 corresponds to reversing the inputs, and O3

corresponds to exchanging the left and the right wheels.
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0

π

2
, ℓ2

3π

2
, ℓ2

3π

2
, ℓ1

S−

S+

R+
π

2

L+
π

2

L−
π

2

L+
π

2

R−
π

2

R+
π

2

L−
π

2

R−
π

2

π

2
, ℓ1

π

Figure 4: F1 is a finite state machine whose language is the tight extremals for which the distance between
ℓ1 and ℓ2 is 2b (Case 1).

5.2 Characterization of Tight Extremals

In the following we give only the representatives of symmetric families of tight extremals. We will use L,
R, and S to denote swing around the left wheel, the right wheel, and straight line motions, respectively. In
cases where the directions must be specified, we use a superscript: − is clockwise, + is counter-clockwise, +
is forward, and − is backward. Otherwise, the direction of swing is constant throughout the extremal. The
symbol ∗ means zero or more copies of the base expression. Subscripts are non-negative angles.

Depending on the distance between ℓ1 and ℓ2 we identify three different types of tight extremals. For
each type, we define a finite state machine to present extremals more precisely.

Case 1: Let d(ℓ1, ℓ2) = 2b. Besides swing, the robot can move straight forward and backward by keeping the
wheels on ℓi’s. In this case, the extremals are composed of a sequence of swing and straight segments. In
general, there can be an arbitrary number of swing and straight segments. Since the straight segments can
be translated and merged together, a representative subclass with only one straight segment is described by
the following forms:

• (R−
π L−

π )∗R−
π

2

S+R−
π

2

(L−
π R−

π )∗

• (R−
π L−

π )∗R−
π

2

S+L+
π

2

(R+
π L+

π )∗.

We define a finite state machine F1 to present such extremals more precisely. Let Q1 = {0, (π
2 , ℓ1), (

π
2 , ℓ2), π,

(3π
2 , ℓ1), (

3π
2 , ℓ2)} be the set of states. States are the robot orientations together with its position, i.e. whether

it lies on the line ℓ1 or ℓ2. Let the input alphabet be Σ1 = {S+,S−,L+
π

2

,L−
π

2

,R+
π

2

,R−
π

2

}. Define F1 by the

transition function that is depicted in Figure 4. If robot starts in one of the states in Q1, it has to move
according to F1. If the initial configuration of robot is none of the states, the robot performs a compliant Lα

or Rα motion, in which 0 ≤ α < π
2 , to reach one of the states and continues according to F1. In general, there

can be an arbitrary number of swing and straight segments. Since the straight segments can be translated
and merged together, a representative subclass with only one straight segment suffices for giving all such
minimum wheel-rotation trajectories. For optimal representatives of this class see (A) and (B) in Figure 1.
We call such tight extremals type I.

Case 2: Let d(ℓ1, ℓ2) > 2b. The robot cannot move straight because it cannot keep the wheels on the lines
ℓi over some interval of time. Thus, such extremals are of the form (RπLπ)∗. Note that these extremals
are subpaths of type I extremals. Again, we define a finite state machine F2 to present such extremals
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3π

2
, ℓ1

R+
π

L+
π

π

2
, ℓ2

3π

2
, ℓ2

L−
π

R−
π

π

2
, ℓ1

Figure 5: F2 is a finite state machine whose language is the tight extremals for which the distance between
ℓ1 and ℓ2 is greater than 2b (Case 2).

π

2
, ℓ2

R+
γ L−

γ

R−
γ

3π

2
, ℓ1

3π
2 + γ

3π
2 − γ

3π

2
, ℓ2

L+
γ

L+
γ R−

γ

π

2
− γ

L−
γR+

γ

π

2
, ℓ1

π

2
+ γ

Figure 6: F3 is a finite state machine whose language is the tight extremals for which the distance between
ℓ1 and ℓ2 is less than 2b (Case 3).

more precisely. Let Q2 = {(π
2 , ℓ1), (

π
2 , ℓ2), (

3π
2 , ℓ1), (

3π
2 , ℓ2)} be the set of states. States are the robot ori-

entations together with its position, i.e. whether it lies on the line ℓ1 or ℓ2. Let the input alphabet be
Σ2 = {L+

π ,L−
π ,R+

π ,R−
π }. Define F2 by the transition function that is depicted in Figure 5.

Case 3: Let d(ℓ1, ℓ2) < 2b. In this case, the extremals are of the form (L−
γ R−

γ L+
γ R+

γ )∗ in which γ ≤ π
2 .

Like the two previous cases, we define a finite state machine F3 to present such extremals more precisely.
Let Q3 = {π

2 − γ, (π
2 , ℓ1), (

π
2 , ℓ2),

π
2 + γ, 3π

2 − γ, (3π
2 , ℓ1), (

3π
2 , ℓ2),

3π
2 + γ} be the set of states. States are the

robot orientations together with its position, i.e. whether it lies on the line ℓ1 or ℓ2. Let the input alphabet
be Σ3 = {L+

γ ,L−
γ ,R+

γ ,R−
γ }. Define F3 by the transition function that is depicted in Figure 6. For optimal

representatives of this class see (C) and (D) in Figure 1. We call such tight extremals type II.

Lemma 3. Let q(t) be a tight extremal associated with the control u(t) that transfers (x0, y0, θ0) to (x1, y1, θ1).
In this case

J(u) = l =

∫ T

0

(
√

ẋ2 + ẏ2)dt, (30)

10



i.e. the cost J(u) is the length of the projection of q(t) onto the x-y plane.

Proof. Since 2
√

ẋ2 + ẏ2 =
√

(u1 + u2)2 = |u1 + u2|, it is enough to show |u1 + u2| = |u1| + |u2| along a
tight extremal. Tight extremals are composed of swing and straight segments. Over a swing segment one of
the inputs is zero; for instance u1 = 0 in which case |u1 + u2| = |u2| = |u1| + |u2|. Over a straight segment
u1 = u2 and |u1 + u2| = 2|u1| = |u1| + |u2|.

5.3 Characterization of Loose Extremals

The PMP does not give a restrictive enough extremal control law for loose extremals. In fact, the only
constraint on loose extremals is that u1,−u2 ∈ [−1, 0] or u1,−u2 ∈ [0, 1]. Thus, a variety of non-bang-bang
controls generate various loose extremals. For instance, it can be verified that rotation round any point on the
axle is a minimum wheel-rotation trajectory. In this section, we will first show that loose optimal trajectories
can only cover a bounded region of the configuration space around the initial configuration. There may be
different loose extremals that transfer the initial configuration to the goal configuration. In particular, there
may exist different such loose extremals which have equal wheel rotation. Equivalence of wheel rotation
defines equivalence classes of loose extremals. We will show in Lemma 6 that there exists a representative
composed of rotation in place and swing segments with a known structure, in every equivalence class.

Lemma 4. Let q(t) be a loose extremal associated with the control u(t), and let ϑ be the length of the
projection of q(t) onto S

1; in other words,

ϑ =

∫ T

0

|θ̇|dt. (31)

In this case we have J(u) = bϑ.

Proof. Since 2b|θ̇| = |u1−u2|, it is enough to show that |u1−u2| = |u1|+|u2| along a loose extremal. According
to Lemma 2, u1u2 ≤ 0 along a loose extremal. Thus, |u1u2| = −u1u2 which means (|u1|+ |u2|)2 = (u1−u2)

2.
It is obvious then that |u1| + |u2| = |u1 − u2|.

Lemma 5. Let (q(t), u(t)) be a loose trajectory-control pair that tranfers the initial configuration (x0, y0, θ0)
to the goal configuration (x1, y1, θ1). It follows that J(u) = b|θ1−θ0 +2kπ| for some integer k. Furthermore,
if q(t) is optimal, then J(u) ≤ 5bπ.

Proof. According to Lemma 4, the cost of a loose extremal is bϑ, in which ϑ is (31). In this case, ϑ = |θ1−θ0+
2kπ| for some integer k and the cost is J(u) = b|θ1 − θ0 + 2kπ|. For the second part, suppose q(t) is optimal
while |θ1 − θ0 +2kπ| > 5π. It can geometrically be shown that

√

(x1 − x0)2 + (y1 − y0)2 ≤ 2bm, in which m
is an integer that satisfies the inequality (m−1)π < |θ1−θ0+2kπ| ≤ mπ. Since |θ1−θ0+2kπ| > 5π, we have
m ≥ 6. The cost of the trivial trajectory which is composed of rotation in place, going straight, and again
rotation in place is not more than 2bm+ bπ. Thus, we have J(u) = b|θ1 − θ0 +2kπ| > b(m− 1)π > 2bm+ bπ
because m ≥ 6. This is contradictory to the optimality of q(t).

Corollary 2. Starting from an initial configuration, loose optimal trajectories are of bounded cost and
bounded reach in the x-y plane. We call such optimal extremals type III.

Lemma 6. Let (q(t), u(t)) be a loose optimal trajectory-control pair that tranfers the initial configuration
q0 to the goal configuration q1. There exists a trajectory-control pair (q̌(t), ǔ(t)) transferring q0 to q1, in
which ǔ is composed of a sequence of alternating rotation in place and swing segments in the same direction.
Furthermore, q(t) and q̌(t) have the same wheel rotation, i.e. J(u) = J(ǔ).

Sketch of proof. Look at the time-optimal trajectories for the system described in (1) with u1 ∈ [−1, 0], u2 ∈
[0, 1] (our claim for the case in which u1 ∈ [0, 1], u2 ∈ [−1, 0] follows from a similar argument). We know the
time-optimal trajectories for this modified system exist because its input space is convex. Upon applying
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π + γ

2

2π −

γ

2

γ

2

P+
π−γ

L+
γ

π − γ

2
P+

π−γ

R+
γ

Figure 7: E1 provides a representative subclass of loose extremals in + direction.

γ

2

R−
γ P−

π−γ

L−
γP−

π−γ

2π −

γ

2

π + γ

2

π − γ

2

Figure 8: E2 provides a representative subclass of loose extremals in − direction.

the PMP with the time as the cost functional, the extremals are composed of a sequence of rotation in place
and swing segments. Let (q̌(t), ǔ(t)) be the time optimal trajectory-control pair, i.e. ǔ is composed of a
sequence of rotation in place and swing segments. Lemma 4 implies that J(u) = bϑ and J(ǔ) = bϑ̌, in which
ϑ and ϑ̌ are as in (31). Since ϑ ≡ ±ϑ̌ up to a multiple of 2π, and Lemma 5 holds for (q(t), u(t)), we have
J(u) = J(ǔ) because otherwise, it can be verified that ǔ is not time optimal.

We use P to denote rotation in place. In order to present the representative subclass of loose extremals
whose existence is established in Lemma 6, we define finite state machines E1 and E2. Let 0 ≤ γ ≤ π
and Q = { γ

2 , π − γ
2 , π + γ

2 , 2π − γ
2 } be the set of states which represent the robot orientation. Let the

input alphabet be Σ = {L+
γ ,L−

γ ,R+
γ ,R−

γ ,P+
π−γ ,P−

π−γ}. Define E1 and E2 by the transition functions that
are depicted in Figures 7 and 8 respectively. E1 provides a representative subclass of loose extremals in +
direction and E2 in − direction.

6 Minimum Wheel-Rotation Trajectories

Eventually, in this section we give type I, II, and III minimum wheel-rotation trajectories up to symmetries.
In Section 5.1 we described the symmetries of this problem. In the following we denote straight segment by
S, swinging around right and left wheels by R and L respectively, and rotation in place by P. Directions are
denoted by superscript + and − whenever it is required, otherwise it is constant throughout the trajectory.
Forward and counter-clockwise are denoted by +, and backward and clockwise by −. Subscripts denote
angles.

Proposition 2. Any subpath of an optimal path is necessarily optimal.

Proof. For otherwise, one gets a better path by substituting the optimal alternative for the subpath, which
is a contradiction.

We need to explicitly list only those minimum wheel-rotation trajectories that are maximal with respect
to the subpath partial order. Other minimum wheel-rotation trajectories are subpaths of the listed ones and

12



Table 1: Maximal minimum wheel-rotation trajectories sorted by symmetry class

(A) (B) (C) (D) (E) (F)

Base L−
α R−

π

2

S+R−

β L−
α R−

π

2

S+L+
π

2

R+
β L−

α R−
γ L+

γ R+
β L+

αR−
γ L−

γ R+
β R+

αP+
γ L+

β P+
α R+

γ P+
β

O1 R−

β S+R−
π

2

L−
α R+

β L+
π

2

S+R−
π

2

L−
α R+

β L+
γ R−

γ L−
α R+

β L−
γ R−

γ L+
α L+

β P+
γ R+

α P+
β R+

γ P+
α

O2 L+
αR+

π

2

S−R+
β L+

αR+
π

2

S−L−
π

2

R−

β L+
αR+

γ L−
γ R−

β L−
α R+

γ L+
γ R−

β R−
αP−

γ L−

β P−
α R−

γ P−

β

O3 R+
αL+

π

2

S+L+
β R+

αL+
π

2

S+R−
π

2

L−

β R+
αL+

γ R−
γ L−

β R−
α L+

γ R+
γ L−

β L−
α P−

γ R−

β P−
α L−

γ P−

β

O1 ◦ O2 R+
β S−R+

π

2

L+
α R−

β L−
π

2

S−R+
π

2

L+
α R−

β L−
γ R+

γ L+
α R−

β L+
γ R+

γ L−
α L−

β P−
γ R−

α P−

β R−
γ P−

α

O1 ◦ O3 L+
β S+L+

π

2

R+
α L−

β R−
π

2

S+L+
π

2

R+
α L−

β R−
γ L+

γ R+
α L−

β R+
γ L+

γ R−
α R−

β P−
γ L−

α P−

β L−
γ P−

α

O2 ◦ O3 R−
α L−

π

2

S−L−

β R−
αL−

π

2

S−R+
π

2

L+
β R−

α L−
γ R+

γ L+
β R+

αL−
γ R−

γ L+
β L+

α P+
γ R+

β P+
α L+

γ P+
β

O1 ◦ O2 ◦ O3 L−

β S−L−
π

2

R−
α L+

β R+
π

2

S−L−
π

2

R−
α L+

β R+
γ L−

γ R−
α L+

β R−
γ L−

γ R+
α R+

β P+
γ L+

α P+
β L+

γ P+
α

α + β ≤ π
2 α + β ≤ 2 α, β ≤ γ ≤ π

2 α, β ≤ γ ≤ π
2 α + γ + β ≤ π α + γ + β ≤ π

derivable from them. In other words, we will explicitly characterize only maximally optimal trajectories.
Lemma 3 implies that wheel-rotation is equal to the length of the curve that is traversed by the center

of robot in the x-y plane along tight extremals. Since equations of motion of the differential-drive is the
same as that of Reeds-Shepp car along a tight extremal, the center of robot in the x-y plane traverses a
Reeds-Shepp curve along a tight minimum wheel-rotation trajectory. Here we use previous results about
Reeds-Shepp curves in [18] to characterize tight minimum wheel-rotation trajectories.

Lemma 7. If α > 0 then RπLα is not minimum wheel-rotation.

Proof. For any β > 0, we first show that LβRπLβ is not optimal. Observe that L−

β R−
π L−

β has (π + 2β)b

wheel rotation. Let e = 4(1 − cosβ)b. The trajectory R+
π

2
−βS−

e R+
π

2
−β has (π − 2β)b + e wheel rotation.

Since 1 − cosβ ≤ β we must have (π − 2β)b + e ≤ (π + 2β)b. Second, we show that RπLα is not optimal.
Let 0 < ǫ < α be a small positive number such that 2(1 − cos ǫ) < ǫ. We know that such ǫ exists. Let
g = 4(1− cos ǫ)b. Consider the trajectory L+

ǫ R+
π

2
−ǫS

−
g R+

π

2
−ǫ which has the same end configuration as RπLǫ.

However, it has less wheel rotation than RπLǫ because g < 2bǫ. Since any subpath of an optimal path should
be optimal, RπLα is not optimal.

Theorem 2. A type I minimum wheel-rotation trajectory has one of the following forms:

• L−
α R−

π

2

S+R−

β

• L−

ζ R−
π

2

S+L+
π

2

R+
γ ,

in which α + β ≤ π
2 and ζ + γ ≤ 2.

Proof. In Section 5.2 case 1, we showed that type I extremals are of the following forms:

• (R−
π L−

π )∗R−
π

2

S+R−
π

2

(L−
π R−

π )∗

• (R−
π L−

π )∗R−
π

2

S+L+
π

2

(R+
π L+

π )∗.

Lemma 7 shows that if η > 0 then LπRη cannot be minimum wheel-rotation. It is enough to note that any
subpath of an optimal path is necessarily optimal. Hence, the only possibilities are of the following form:
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• L−
α R−

π

2

S+R−
π

2

L−
η

• L−

ζ R−
π

2

S+L+
π

2

R+
γ ,

in which α, η, ζ, γ < π. Assume α > 0. We claim that η = 0, because a path of type R+S−R+ is shorter
than L−

α R−
π

2

S+R−
π

2

L−
η . Hence, L−

α R−
π

2

S+R−

β is possibly optimal in which β ≤ π
2 . If α > π

2 , then a path

of type R+L+
π

2

S+R− is shorter than L−
α R−

π

2

S+. Thus, α, β, ζ, γ ≤ π
2 . Also, charaterization of Reeds-Shepp

curves of type C|CSC in [18] implies that α + β ≤ π
2 . Finally, if ζ + γ > 2, then L+

π

2
−ζS

−R−
π

2
−γ is shorter

than L−

ζ R−
π

2

S+L+
π

2

R+
γ . Hence, ζ + γ ≤ 2. For such an optimal trajectory see (A) and (B) in Figure 1.

Theorem 3. A type II minimum wheel-rotation trajectory has one of the following forms:

• L−
α R−

γ L+
γ R+

β

• L+
αR−

γ L−
γ R+

β ,

in which 0 ≤ α, β ≤ γ ≤ π
2 .

Proof. In Section 5.2 case 3, we showed that type II extremals are of the form (L−
γ R−

γ L+
γ R+

γ )∗. We prove
that a trajectory containing two complete sets of four swings is not optimal, i.e. R+

γ L−
γ R−

γ L+
γ R+

γ L−
γ R−

γ L+
γ

is not optimal. In each set, the amount of robot displacement in x-y plane is 8b sin2 γ
2 , in which γ is the

angle of swings. If 0 < γ < π
4 , then let ζ be such that sin2 ζ

2 = 2 sin2 γ
2 . It follows that ζ < 2γ < π

2 . A
type II extremal that is composed of four swings of angle ζ has less wheel rotation. If π

4 ≤ γ ≤ π
2 , then

bπ + 16b sin2 γ
2 < 8bγ, and the trivial trajectory which is composed of rotation in place, going straight, and

again rotation in place gives less wheel rotation. A similar argument, based on what we just showed, proves
that L−

γ R−
γ L+

γ R+
γ L−

γ R−
γ L+

γ R+
γ is not minimum wheel-rotation either. Moreover, Lemma 3 implies that

wheel-rotation is equal to the length of the curve that is traversed by the center of robot in the x-y plane
along tight extremals. Since the center of robot in the x-y plane traverses a Reeds-Shepp curve along a tight
minimum wheel-rotation trajectory, the only possibilities [18] are

• L−
α R−

γ L+
γ R+

β

• L+
αR−

γ L−
γ R+

β ,

in which α, β ≤ γ ≤ π
2 . For such an optimal trajectory see (C) and (D) in Figure 1.

Lemma 8. If α > 0 then Pπ−γRγPα is not minimum wheel-rotation, in which 0 ≤ γ ≤ π.

Proof. It is enough to note that P−
π−γR

−
γ P−

α has π + α wheel rotation whereas L+
γ P+

π−γ−α has π − α
wheel rotation. Since they connect the same initial and goal configurations, the former cannot be minimum
wheel-rotation.

Lemma 9. If 0 ≤ ζ, η ≤ γ ≤ π and ζ + η > γ then RζPπ−γLη is not minimum wheel-rotation.

Proof. Suppose RζPπ−γLη is minimum wheel-rotation. Let δ = γ − ζ. By assumption we have 0 ≤ δ <
η. We replace the subpath R−

ζ P−
π−γL

−

δ of R−

ζ P−
π−γL

−
η by an equivalent trajectory L+

δ P+
π−γR

+
ζ to get

L+
δ P+

π−γR
+
ζ L−

η−δ. Boundary points and wheel rotation of this trajectory is equal to boundary points and

wheel rotation of the original trajectory R−

ζ P−
π−γL

−
η . Hence, L+

δ P+
π−γR

+
ζ L−

η−δ is a minimum wheel-rotation

trajectory. In particular, it must satisfy the PMP. This is a contradiction because L+
δ P+

π−γR
+
ζ L−

η−δ is not
an extremal.

Theorem 4. A type III minimum wheel-rotation trajectory is one of the following forms:
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Table 2: Complete list of minimum wheel-rotation trajectories

Trajectory Range

CαPγCβ α + γ + β ≤ π

PαCγPβ α + γ + β ≤ π

Cα|CγCβ α, β ≤ γ ≤ π
2

CαCγ |Cβ α, β ≤ γ ≤ π
2

CαCγ |CγCβ α, β ≤ γ ≤ π
2

Cα|CγCγ |Cβ α, β ≤ γ ≤ π
2

CαSdCβ α, β ≤ π
2 and 0 ≤ d

CαCπ

2
SdCβ α + β ≤ π

2 and 0 ≤ d

CαSdCπ

2
Cβ α + β ≤ π

2 and 0 ≤ d

LαR π

2
SdLπ

2
Rβ α + β ≤ 2 and 0 ≤ d

RαLπ

2
SdR π

2
Lβ α + β ≤ 2 and 0 ≤ d

• RαPγLβ

• PαRγPβ,

in which α + γ + β ≤ π.

Proof. In Section 5.3, we showed for any loose extremal there is an equivalent trajectory which is composed of
swing and rotation in place, i.e. (RγPπ−γLγPπ−γ)∗. Lemma 8 implies that a 4-piece trajectory of this type
cannot be minimum wheel-rotation. Thus, the only possible type III minimum wheel-rotation trajectories
are of the following forms: RζPπ−γLη and PαRγPβ , in which α, β ≤ π − γ and ζ, η ≤ γ. If α + γ + β > π
then P−

α R−
γ P−

β is not minimum wheel-rotation, because P+
π−γ−αR+

γ P+
π−γ−β is shorter. If ζ + η > γ then

Lemma 9 proves that RζPπ−γLη is not minimum wheel-rotation. Hence, ζ + (π − γ) + η ≤ π, and by
renaming parameters we obtain the result. For such an optimal trajectory see (E) and (F) in Figure 1.

Taking the symmetries in Section 5.1 into account, all the maximally optimal trajectories with their
symmetric clones are given in Table 1. Since the symmetry operators O1,O2, and O3 commute, we do not
need to worry about their order. Let C represent a swing, L or R, and | represent a change of direction.
Let α, β, and γ be non-negative angles. A complete list of the words that describe all of 52 minimum wheel
rotation trajectories is given in Table 2.

We include the following lemma to compare minimum wheel-rotation with optimal time:

Lemma 10. Let T ⋆ be the optimal time given in [3] and J⋄ the minimum wheel-rotation. It follows that
1
2T ⋆ ≤ J⋄ ≤ T ⋆.

7 Relation with Reeds-Shepp car

Here we show that minimum time for the Reeds-Shepp car is equal to minimum wheel-rotation for the
differential drive. It is enough to show the result for the convexified Reeds-Shepp car, because minimum
time for the convexified Reeds-Shepp car is equal to minimum time for the Reeds-Shepp car [20]. Moreover,
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we show that minimum wheel-rotation paths for the differential drive are exactly minimum time paths for
the convexified Reeds-Shepp car.

The convexified Reeds-Shepp car is the following system with the same configuration space as that of the
differential drive C = R

2 × S
1:

q̇ =





ẋ
ẏ

θ̇



 =





v1 cos θ
v1 sin θ

v2

b



 , (32)

in which v1, v2 ∈ [−1, 1] are the inputs and b is the minimum turning radius. We denote the vector of inputs
(v1, v2) by v.

Any differential drive trajectory is also a feasible trajectory for the convexified Reeds-Shepp car by the
following input transformation

v1 =
u1 + u2

2
(33)

v2 =
u2 − u1

2
. (34)

However, the inverse is

u1 = v1 − v2 (35)

u2 = v1 + v2. (36)

It is clear that the inverse is not a useful transformation because if for example v1 = v2 = 1 then u2 = 2 6∈
[−1, 1]. Hence, we need a more sophisticated analysis than a simple input transformation. We will show
then that the optimal paths for the two problems are equivalent up to an input transformation and time
reparametrization in the following two lemmas.

Lemma 11. Let q(s) be a trajectory of the differential drive defined on [0, T ] and associated with control
u(s) = (u1(s), u2(s)), where u is piecewise constant and non-zero. There exists a time reparametrization
τ : [0, T1] → [0, T ], where τ(0) = 0 and τ(T1) = T , such that q(τ(t)) is an admissible path of the convexified
Reeds-Shepp car defined on [0, T1]. Moreover, T1 is equal to the wheel-rotation of the differential drive on its
trajectory q(s).

Proof. We need to show that a time reparametrization τ : [0, T1] → [0, T ] and controls v = (v1, v2) : [0, T1] →
[−1, 1]2 exist such that

d

dt
q(τ(t)) =





v1(t) cos θ(τ(t))
v1(t) sin θ(τ(t))

v2(t)
b



 . (37)

Moreover, we want T1 = J(u). In other words, we want

∫ T1

0

dt =
1

2

∫ T1

0

(|u1(τ(t))| + |u2(τ(t))|)τ̇ dt. (38)

Expanding the left handside of (37) we get

d

dt
q(τ(t)) = q̇(τ(t))τ̇ (t). (39)

Thus, (1), (2), and (39) imply that it is enough to have the following for (37) to hold:

v1(t) =
u1(τ(t)) + u2(τ(t))

2
τ̇ (t), (40)

v2(t) =
u2(τ(t)) − u1(τ(t))

2
τ̇ (t). (41)
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For (38) to hold it is enough to have

1 =
|u1(τ(t))| + |u2(τ(t))|

2
τ̇ (t). (42)

Remember that u1(s) and u2(s) are given, and we need to find τ(t) with the above properties. Let τ be the
solution of the following ordinary differential equation:

τ̇ =
2

|u1(τ)| + |u2(τ)|
. (43)

Equation (43) may not have a solution in general, because its right handside need not be Lipschitz in τ .
Since u is assumed to be piecewise constant and non-zero, a solution τ exists for (43). Now let v1 and v2

be defined by (40) and (41). Equations (40), (41), and (43) imply that v1, v2 ∈ [−1, 1]. Thus, we showed
existence of τ and v1 and v2 that satisfy (37).

Lemma 12. Let q(t) be a minimum time curve for the convexified Reeds-Shepp car, defined on [0, T ] and
associated with control v(t) = (v1(t), v2(t)). There exists a time reparametrization σ : [0, T0] → [0, T ], where
σ(0) = 0 and σ(T0) = T , such that q(σ(s)) is an admissible trajectory of the differential-drive defined on
[0, T0]. Moreover, wheel-rotation of the differential drive on its trajectory q(σ(s)) is equal to T .

Proof. We need to show that a time reparametrization σ : [0, T0] → [0, T ] and controls u : [0, T0] → U exist
such that

d

ds
q(σ(s)) = u1(s)f1(q(σ(s))) + u2(s)f2(q(σ(s))), (44)

where fi’s are defined in (2). Moreover, we seek a σ such that J(u) = T . In other words, we want

1

2

∫ T0

0

(|u1(s)| + |u2(s)|)ds =

∫ T0

0

σ̇ds. (45)

Expanding the left handside of (44) we get

d

ds
q(σ(s)) = q̇(σ(s))σ̇(s). (46)

In that case, (1), (2), and (46) imply that it is enough to have the following for (44) to hold:

u1(s) = (v1(σ(s)) − v2(σ(s)))σ̇(s), (47)

u2(s) = (v1(σ(s)) + v2(σ(s)))σ̇(s). (48)

In order to make J(u) = T , it is enough to have

σ̇(s) =
|u1(s)| + |u2(s)|

2
. (49)

Remember that v1(t) and v2(t) are given, and we need to find σ(s) with the above properties. We will prove
that the solution of the following differential equation is the desired σ:

σ̇ =
1

|v1(σ)| + |v2(σ)|
. (50)

Since q is assumed to be a minimum time trajectory for the convexified Reeds-Shepp car, for all t ∈ [0, T ]
we have one of the following cases:

1. v1(t) = ±1, v2(t) = 0, i.e. straight segment,
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2. v1(t) = ±1, v2(t) = ±1, i.e. curve segment,

3. v1(t) ∈ [−1, 1], v2(t) = ±1, i.e. three point turn.

It is clear then that (50) has a solution. Now let u1 and u2 be defined by (47) and (48). Equations (47),
(48), and (50) imply that u1, u2 ∈ [−1, 1]. Finally, (49) follows from the fact that

|v1(t) − v2(t)| + |v1(t) + v2(t)| = 2 (51)

in all the three cases above, and (47), (48), and σ̇ > 0.

Theorem 5. Minimum time for the Reeds-Shepp car is equal to minimum wheel-rotation for the differential
drive. Moreover, minimum wheel-rotation paths for the differential drive are exactly minimum time paths
for the convexified Reeds-Shepp car.

Proof. Let q(s) be the minimum wheel-rotation path for the differential-drive associated with control u.
Our analysis in previous sections proves that u is piecewise constant. Lemma 11 guarantees the existence
of q(τ), an admissible path for the convexified Reeds-Shepp car, such that the duration of q(τ) is equal to
wheel-rotation of q(s). Lemma 12 implies that q(τ) has to be minimum time, because otherwise there exists
a trajectory for the differential-drive with less wheel rotation than that of q(s). In the same way if q(t)
is a minimum time path for the convexified Reeds-Shepp car, then q(σ) in Lemma 12 has to be minimum
wheel-rotation. It is a known fact that minimum time for the convexified Reeds-Shepp car is the same as
minimum time for the Reeds-Shepp car [20].

8 Cost-to-go Function

Level sets of the cost-to-go function for some goal orientations are presented in Figure 9. In computing the
cost-to-go function, initial configuration is assumed to be (0, 0, 0), and goal orientation θ is assumed to be
0, π

8 , π
4 , 3π

8 , π
2 , and π.

Numerical computations verify that minimum wheel-rotation cost-to-go function is equal to the Reeds-
Shepp cost-to-go function.

9 Conclusions

We used the Filippov theorem to first prove that the minimum wheel-rotation trajectories exist for the
differential drive. By applying the Pontryagin Maximum Principle [13] and developing geometric arguments,
we derived optimality necessary conditions which helped to rule out non-optimal trajectories. The remaining
trajectories form 28 different maximally optimal trajectories, which are listed in Table 1. A complete list
of words that describe all of 52 minimum wheel-rotation trajectories is given in Table 2. We also proved
that minimum wheel-rotation for the differential drive is equal to minimum time for the Reeds-Shepp car.
Moreover, minimum wheel-rotation paths for the differential drive are exactly minimum time paths for the
convexified Reeds-Shepp car. However, it is currently unknown whether there is a simpler way to show this
equivalence. Based on the characterization of minimum wheel-rotation trajectories, a method to further
determine the applicable trajectory for every pair of initial and goal configurations is presented in [7].
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Figure 9: Level sets of the cost-to-go function for θ = 0,
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