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Summary. This paper presents characterization of shortest paths for differential-
drive mobile robots with classifying solutions in the spirit of Dubins curves and
Reeds-Shepp curves for car-like robots. Not only optimal paths for mobile robots
are interesting with respect to the optimized criteria, but also they offer a family of
motion primitives that can be used for motion planning in the presence of obstacles.
A well-defined notion of shortest is obtained by optimizing the total amount of
wheel rotation. This paper extends our previous characterization of the minimum
wheel-rotation trajectories that are maximal with respect to sub-path partial order
in [2]. In order to determine the shortest path for every pair of initial and goal
configurations, we need to characterize all the minimum wheel-rotation trajectories
regardless of whether they are maximal with respect to sub-path partial order or
not. In this paper we give all 52 minimum wheel-rotation trajectories. We also give
the end-point map in terms of the path parameters for every shortest path. Thus,
finding the shortest path for every pair of initial and goal configurations reduces
to solving systems of equations for the path parameters. As in [2], the Pontryagin
Maximum Principle as a necessary condition eliminates some non-optimal paths.
The paths that satisfy the Pontryagin Maximum Principle (called extremals) are
presented in this paper by finite state machines. Level sets of the cost function for
a number of robot orientations are finally presented.

1 Introduction

This paper presents the complete family of all 52 minimum wheel-rotation
trajectories for differential-drive mobile robots in the plane without obstacles.
By wheel-rotation we mean the distance travelled by the robot wheels, which
is independent of the robot maximum speed. Thus, minimizing wheel-rotation
is a natural variation of the shortest path problem by Dubins [4] and Reeds



and Shepp [6], in which the distance travelled by the car is minimized. In this
regard, this work has been basically motivated by Dubins and Reeds-Shepp
shortest paths for car-like vehicles. In fact, we show that some Reeds-Shepp
curves appear in the set of minimum wheel-rotation trajectories, whereas there
are minimum wheel-rotation trajectories that are different from Reeds-Shepp
curves.

The first work on shortest paths for car-like vehicles is done by Dubins
[4]. He gives a characterization of time-optimal trajectories for a car with a
bounded turn radius. In that problem, the car always moves forward with
constant speed. He uses a purely geometrical method to characterize such
shortest paths. Later, Reeds and Shepp [6] solve a similar problem in which
the car is able to move backward as well. They identify 48 different shortest
paths. Shortly after Reeds and Shepp, their problem is solved and also re-
fined by Sussmann and Tang [11] with the help of optimal control techniques.
Sussmann and Tang show that there are only 46 different shortest paths for
Reeds-Shepp car. Souères and Laumond [9] classify the shortest paths for a
Reeds-Shepp car into symmetric classes.

However, optimal trajectories for nonholonomic systems are interesting
not only because of the criterion that they optimize, but also because they
have a property that makes them useful for motion planning in the presence
of obstacles. If we restrict the motions of the system to the set of optimal
trajectories, we still conserve some important properties of the system such
as small-time local controllability. Consequently, local planners that are based
on families of optimal trajectories satisfy the topological property [7]. Hence,
different families of optimal trajectories provide local planners that can be
helpful in different applications.

In [1], the time-optimal trajectories for the differential drive is studied, and
a complete characterization of all time-optimal trajectories is given. Time-
optimal trajectories for the differential drive consist of rotation in place and
straight line segments. Minimum wheel-rotation trajectories are composed of
rotation in place, straight line, and swing segments (one wheel stationary
and the other rolling). In this paper we extend our previous characterization
of the minimum wheel-rotation trajectories, which are maximal with respect
to sub-path partial order, to derive all 52 different minimum wheel-rotation
trajectories.

Souères and Boissonnat [8] study the time optimality of Dubins car with
angular acceleration control. They present an incomplete characterization of
time-optimal trajectories for their system. However, full characterization of
such time-optimal trajectories seems to be difficult because Sussmann [10]
proves that there are time-optimal trajectories for that system that require
infinitely many input switchings (chattering or Fuller phenomenon). Sussmann
uses Zelikin and Borisov theory of chattering control [12] to prove his result.
Chyba and Sekhavat [3] study time optimality for a mobile robot pulling one
trailer.



We first present finite state machines for extremals. We then give an ex-
plicit characterization of all 52 minimum wheel-rotation paths with their end-
point map in terms of the path parameters. Finally, we give level sets of the
cost function computed at a number of robot orientations. The proofs of lem-
mas are omitted due to space limitations.

2 Problem Formulation
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Fig. 1. Differential-drive model

A differential-drive robot [2] is a three-dimensional system with its con-
figuration variable denoted by q = (x, y, θ) ∈ C = R

2 × S
1 in which x and y

are the coordinates of the point on the axle, equidistant from the wheels, in
a fixed frame in the plane, and θ ∈ [0, 2π) is the angle between x-axis of the
frame and the robot local longitudinal axis (see Figure 1).

The robot has independent velocity control of each wheel. Assume that the
wheels have equal bounds on their velocity. More precisely, u1, u2 ∈ [−1, 1],
in which the inputs u1 and u2 are respectively the left and the right wheel
velocities, and the input space is U = [−1, 1]× [−1, 1] ⊂ R

2. The system is

q̇ = f(q, u) = u1f1(q) + u2f2(q) (1)

in which f1 and f2 are vector fields in the tangent bundle TC of configuration
space. Let the distance between the robot wheels be 2b. In that case,

f1 =
1

2





cos θ
sin θ
− 1

b



 and f2 =
1

2





cos θ
sin θ

1

b



 . (2)

The Lagrangian L and the cost functional J to be minimized are

L(u) =
1

2
(|u1| + |u2|) (3)

J(u) =

∫ T

0

L(u(t))dt. (4)



The factor 1

2
above helps to simplify further formulas, and does not alter the

optimal trajectories.
For every pair of initial and goal configurations, we seek an admissible

control, i.e. a measurable function u : [0, T ] → U , that minimizes J while
transferring the initial configuration to the goal configuration. Since the cost
J is invariant by scaling the input within U , we can assume without loss of
generality that the controls are either constantly zero (u ≡ (0, 0)) or saturated
at least in one input, i.e. max(|u1(t)|, |u2(t)|) = 1 for all t ∈ [0, T ].

In [2], it is shown that minimum wheel-rotation trajectories exist. The
Pontryagin Maximum Principle [5] provides a necessary condition for opti-
mality. Using the Pontryagin Maximum Principle, candidate trajectories are
characterized in [2], and eventually, geometrical methods completely deter-
mine minimum wheel-rotation trajectories.

Definition 1. An extremal is a trajectory q(t) that satisfies the conditions of
the Pontryagin Maximum Principle [2, 5].

3 Characterization of Extremals

In [2], two classes of extremals, tight and loose, are distinguished.

3.1 Tight Extremals
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Fig. 2. Robot stays between two lines `1 and `2 along a tight extremal.

For every tight extremal there are two parallel lines `1 and `2 in the plane.
The two lines `1 and `2 cut the plane into five disjoint subsets (see Figure 2):
S+, `1, S±, `2, and S−. Along the extremal, both wheels of the robot must
stay on or between the two lines (see Figure 2). Furthermore, the extremal
control law is



u1 ∈







[−1, 0] if wheel 2 ∈ `1

{0} if wheel 2 ∈ S±

[0, 1] if wheel 2 ∈ `2

(5)

u2 ∈







[0, 1] if wheel 1 ∈ `1

{0} if wheel 1 ∈ S±

[−1, 0] if wheel 1 ∈ `2

. (6)

It can be seen from the above extremal control law that tight extremals are
composed of swing and straight segments. We use L, R, and S to denote swing
around the left wheel, the right wheel, and straight line motions respectively.
We use a superscript for direction: − is clockwise, + is counter-clockwise, +
is forward, and − is backward. Otherwise, the direction of swing is constant
throughout the trajectory. The symbol ∗ means zero or more copies of the
base expression. Depending on the distance between `1 and `2 there are three
different types of tight extremals. For each type, we define a finite state ma-
chine to present extremals more precisely.

0

π

2
, `2

3π

2
, `2

3π

2
, `1

S−

S+

R+
π
2

L+
π
2

L−
π
2

L+
π
2

R−
π
2

R+
π
2

L−
π
2

R−
π
2

π

2
, `1

π

Fig. 3. F1 represents case 1 tight extremals

Case 1: Let d(`1, `2) = 2b in which d is the distance function. Besides swing,
the robot can move straight forward and backward by keeping the wheels
on `i’s. In this case, the extremals are composed of a sequence of swing and
straight segments. We define a finite state machine F1 to present such ex-
tremals more precisely. Let Q1 = {0, (π

2
, `1), (

π
2
, `2), π, ( 3π

2
, `1), (

3π
2

, `2)} be
the set of states. States are the robot orientations together with its posi-
tion, i.e. whether it lies on the line `1 or `2. Let the input alphabet be
Σ1 = {S+,S−,L+

π

2

,L−
π

2

,R+
π

2

,R−
π

2

}. Define F1 by the transition function that



is depicted in Figure 3. If robot starts in one of the states in Q1, it has to
move according to F1. If the initial configuration of robot is none of the states,
the robot performs a compliant Lα or Rα motion, in which 0 ≤ α < π

2
, to

reach one the states and continues according to F1. In general, there can be
an arbitrary number of swing and straight segments. Since the straight seg-
ments can be translated and merged together, a representative subclass with
only one straight segment suffices for giving all such minimum wheel-rotation
trajectories.

Case 2: Let d(`1, `2) > 2b. The robot cannot move straight because it cannot
keep the wheels on `i’s over some interval of time. Thus, such extremals are
of the form (RπLπ)∗. Note that these extremals are sub-paths of case 1 ex-
tremals. Again, we define a finite state machine F2 to present such extremals
more precisely. Let Q2 = {(π

2
, `1), (

π
2
, `2), (

3π
2

, `1), (
3π
2

, `2)} be the set of states.
States are the robot orientations together with its position, i.e. whether it lies
on the line `1 or `2. Let the input alphabet be Σ2 = {L+

π ,L−
π ,R+

π ,R−
π }. De-

fine F2 by the transition function that is depicted in Figure 4.
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Fig. 4. F2 represents case 2 tight extremals

Case 3: Let d(`1, `2) < 2b. In this case, the extremals are of the form
(L−

γ R−
γ L+

γ R+
γ )∗ in which γ = sin−1(d(`1, `2)/2b) < π

2
. Like the two previous

cases, we define a finite state machine F3 to present such extremals more pre-
cisely. Let Q3 = {π

2
−γ, (π

2
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, `2),

π
2

+γ, 3π
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2
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+γ}
be the set of states. States are the robot orientations together with its po-
sition, i.e. whether it lies on the line `1 or `2. Let the input alphabet be
Σ3 = {L+

γ ,L−
γ ,R+

γ ,R−
γ }. Define F3 by the transition function that is de-

picted in Figure 5.

Lemma 1 ([2]). Let q(t) be a tight extremal. Wheel-rotation of q is the length
of the projection of q(t) onto the x-y plane.
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Fig. 5. F3 represents case 3 tight extremals
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Fig. 6. E1 provides a representative subclass of loose extremals in + direction.
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3.2 Loose Extremals

The PMP does not give a restrictive enough extremal control law for loose
extremals [2]. In fact, the only constraint the PMP imposes on loose extremals
is that u1,−u2 ∈ [0, 1] or u1,−u2 ∈ [−1, 0]. The following lemma shows that
for those loose extremals that happen to be minimum wheel-rotation, there
exists an equivalent trajectory (i.e. with equal wheel-rotation) with the same
boundary points which is composed of swing and rotation in place.

Lemma 2 ([2]). Let (q(t), u(t)) ∈ P be a loose minimum wheel-rotation
trajectory-control pair that tranfers the initial configuration qi to the goal con-
figuration qg. There exists a trajectory-control pair (q̌(t), ǔ(t)) ∈ P transfer-
ring qi to qg, in which ǔ is composed of a sequence of alternating rotation in
place and swing segments in the same direction. Furthermore, q(t) and q̌(t)
have the same wheel rotation, i.e. J(u) = J(ǔ).

We use P to denote rotation in place. In order to present the representative
subclass of loose extremals whose existence is established in Lemma 2, we
define finite state machines E1 and E2. Let 0 ≤ γ ≤ π and Q = { γ

2
, π − γ

2
, π +

γ
2
, 2π − γ

2
} be the set of states which represent the robot orientation. Let the

input alphabet be Σ = {L+
γ ,L−

γ ,R+
γ ,R−

γ ,P+
π−γ ,P−

π−γ}. Define E1 and E2 by
the transition functions that are depicted in Figures 6 and 7 respectively. E1

provides a representative subclass of loose extremals in + direction and E2 in
− direction.

Lemma 3 ([2]). Let q(t) be a loose extremal associated with the control u(t),
and let ϑ be the length of the projection of q(t) onto S

1. In this case wheel-
rotation of q is bϑ.

4 Characterization of Maximal Minimum

Wheel-Rotation Trajectories

In previous section, extremals which are candidate minimum wheel-rotation
trajectories were studied. Using geometrical techniques, one can give a charac-
terization of minimum wheel-rotation trajectories for differential-drive mobile
robots. Particularly, since any sub-path of an optimal path is necessarily opti-
mal, we presented minimum wheel-rotation trajectories that are maximal with
respect to sub-path partial order in [2]. In the following, we precisely define
sub-path partial order as well as symmetries of the problem, and we summa-
rize minimum wheel-rotation trajectories that are maximal with repsect to
sub-path partial order.

4.1 Sub-Path Partial Order

Let P be the set of all finite-time trajectory-control pairs of the differential-
drive. More precisely,



P = {(q, u) | q : [0, T ] → C, u : [0, T ] → U admissible, q̇ = f(q, u)}. (7)

In this paper, input functions that are equal almost everywhere (a.e.) are
assumed to be identical. Let (q, u) and (q′, u′) be two elements of P which are
defined respectively on [0, T ] and [0, T ′]. In order to define sub-path relation,
we define a partial order � on P as follows:

(q, u) � (q′, u′) ⇐⇒ T ≤ T ′ and ∃ δt ≥ 0, ∀ t ∈ [0, T ], u(t) = u′(t + δt). (8)

Define the relation ∼ on P as follows:

(q, u) ∼ (q′, u′) ⇐⇒ (q, u) � (q′, u′) and (q′, u′) � (q, u). (9)

Since ∼ is an equivalence relation, P = P/∼ is well-defined and is the set
of all finite-time trajectory-control pairs of the differential-drive up to plane
transformations. Since � is a partial order on P and ∼ is an equivalence
relation, � is also a well-defined partial order on P = P/∼.

4.2 Symmetries

Assume (q, u) ∈ P is a minimum wheel-rotation trajectory-control pair that
is defined on [0, T ]. Let q̃(t) be the trajectory associated with control u(T −
t), q̄(t) the trajectory associated with control −u(t), and q̂(t) the trajectory
associated with control û(t) = (u2(t), u1(t)). Define the operators O1, O2, and
O3 on P by

O1 : (q(t), u(t)) 7→ (q̃(t), u(T − t)) (10)

O2 : (q(t), u(t)) 7→ (q̄(t),−u(t)) (11)

O3 : (q(t), u(t)) 7→ (q̂(t), û(t)). (12)

Due to symmetries, O1(q, u), O2(q, u), and O3(q, u) are also minimum wheel-
rotation trajectories. O1 corresponds to reversing the trajectory in time, O2

corresponds to reversing the inputs, and O3 corresponds to exchanging the
left and the right wheels.

4.3 Optimal Trajectories That Are Maximal in P

Minimum wheel-rotation trajectories are composed of a finite number of
swing, straight, and rotation in place segments [2]. Let L, R, S, P, −, and +
be the same as in Section 3. Subscripts are non-negative angles or distances.
Here we summarize minimum wheel-rotation trajectories that are maximal
with respect to the partial order � which is described in Section 4.1. Taking
the symmetries in Section 4.2 into account, all the maximal minimum wheel-
rotation trajectories, with their symmetric clones, are given in Table 1. Since
the symmetry operators O1,O2, and O3 commute, we do not need to worry
about their order.



Table 1. Maximal minimum wheel-rotation trajectories sorted by symmetry class

(A) (B)

Base L−

α R−

π

2

S+R−

β L−

α R−

π

2

S+L+
π

2

R+

β

O1 R−

β S+R−

π

2

L−

α R+

β L+
π

2

S+R−

π

2

L−

α

O2 L+
αR+

π

2

S−R+

β L+
αR+

π

2

S−L−

π

2

R−

β

O3 R+
αL+

π

2

S+L+

β R+
αL+

π

2

S+R−

π

2

L−

β

O1 ◦ O2 R+

β S−R+
π

2

L+
α R−

β L−

π

2

S−R+
π

2

L+
α

O1 ◦ O3 L+

β S+L+
π

2

R+
α L−

β R−

π

2

S+L+
π

2

R+
α

O2 ◦ O3 R−

α L−

π

2

S−L−

β R−

α L−

π

2

S−R+
π

2

L+

β

O1 ◦ O2 ◦ O3 L−

β S−L−

π

2

R−

α L+

β R+
π

2

S−L−

π

2

R−

α

α + β ≤ π
2

α + β ≤ 2

(C) (D)

Base L−

α R−

γ L+
γ R+

β L+
αR−

γ L−

γ R+

β

O1 R+

β L+
γ R−

γ L−

α R+

β L−

γ R−

γ L+
α

O2 L+
αR+

γ L−

γ R−

β L−

α R+
γ L+

γ R−

β

O3 R+
αL+

γ R−

γ L−

β R−

α L+
γ R+

γ L−

β

O1 ◦ O2 R−

β L−

γ R+
γ L+

α R−

β L+
γ R+

γ L−

α

O1 ◦ O3 L−

β R−

γ L+
γ R+

α L−

β R+
γ L+

γ R−

α

O2 ◦ O3 R−

α L−

γ R+
γ L+

β R+
αL−

γ R−

γ L+

β

O1 ◦ O2 ◦ O3 L+

β R+
γ L−

γ R−

α L+

β R−

γ L−

γ R+
α

α, β < γ ≤ π
2

α, β < γ ≤ π
2

(E) (F)

Base R+
αP+

γ L+

β P+
αR+

γ P+

β

O1 L+

β P+
γ R+

α P+

β R+
γ P+

α

O2 R−

α P−

γ L−

β P−

α R−

γ P−

β

O3 L−

α P−

γ R−

β P−

α L−

γ P−

β

O1 ◦ O2 L−

β P−

γ R−

α P−

β R−

γ P−

α

O1 ◦ O3 R−

β P−

γ L−

α P−

β L−

γ P−

α

O2 ◦ O3 L+
αP+

γ R+

β P+
α L+

γ P+

β

O1 ◦ O2 ◦ O3 R+

β P+
γ L+

α P+

β L+
γ P+

α

α + γ + β ≤ π α + γ + β ≤ π

5 All Minimum Wheel-Rotation Trajectories

In order to determine the shortest path for every pair of initial and goal
configurations, we need to characterize all the minimum wheel-rotation tra-
jectories regardless of whether they are maximal or not. Here we will give all
the minimum wheel-rotation trajectories. We will also compute their cost and
goal configuration in terms of the parameters. Thus, finding the shortest path
for every pair of initial and goal configurations reduces to solving systems of



equations for the path parameters. In the following sections, symbols are the
same as in Section 3. Also C represents a swing, L or R, and | represents
a change of direction. Note that in the following, orientation of the robot θ
must always be considered an element of S

1. In other words, θ is evaluated
mod 2π.

Let the initial configuration of an arbitrary trajectory q(t) be (xi, yi, θi) ∈
C, i.e. q(0) = (xi, yi, θi). Suppose (q, u) ∈ P , and it is defined on [0, T ]. Let q̂(t)
be the trajectory corresponding to the input u(t) such that q̂(0) = (0, 0, 0).
Suppose the goal configuration of q̂ is (x, y, θ), i.e. q̂(T ) = (x, y, θ). In that
case, the goal configuration of q is

xg = xi + x cos θi − y sin θi (13)

yg = yi + x sin θi + y cos θi (14)

θg = θi + θ, (15)

i.e. q(T ) = (xg , yg, θg). Thus, we may assume without loss of generality that
the initial configuration of robot is (0, 0, 0) throughout this section.

5.1 CαPγCβ and PαCγPβ

In Table 2, the list of minimum wheel-rotation trajectories of type CαPγCβ

and PαCγPβ can be found. The goal configuration of CαPγCβ is

x = −c(sin κ1 + sinκ2 − sin κ3) (16)

y = c(cos κ1 − 1 + cosκ2 − cosκ3) (17)

θ = κ3, (18)

and the goal configuration of PαCγPβ is

x = c(sin κ1 − sin κ2) (19)

y = c(cosκ2 − cosκ1) (20)

θ = κ3, (21)

in which κ1, κ2, κ3, and c are the parameters in Table 2. Wheel-rotation of
such trajectories is α + γ + β.

5.2 Cα|CγCβ and CαCγ|Cβ

In Table 3, the list of minimum wheel-rotation trajectories of type Cα|CγCβ

and CαCγ |Cβ can be found. The goal configuration of both Cα|CγCβ and
CαCγ |Cβ is

x = −c(2 sinκ1 − 2 sinκ2 + sin κ3) (22)

y = c(2 cosκ1 − 1 − 2 cosκ2 + cosκ3) (23)

θ = κ3, (24)

in which κ1, κ2, κ3, and c are the parameters in Table 3. Wheel-rotation of
such trajectories is α + γ + β.



Table 2. α + γ + β ≤ π

CαPγCβ PαCγPβ κ1 κ2 κ3 c

R+
αP+

γ L+

β P+
αR+

γ P+

β α α + γ α + γ + β b

L+
αP+

γ R+

β P+
αL+

γ P+

β α α + γ α + γ + β −b

R−

α P−

γ L−

β P−

α R−

γ P−

β −α −α − γ −α − γ − β b

L−

α P−

γ R−

β P−

α L−

γ P−

β −α −α − γ −α − γ − β −b

Table 3. α, β ≤ γ ≤ π
2

Cα|CγCβ κ1 κ2 κ3 c

R+
αL−

γ R−

β α α − γ α − γ − β b

L+
αR−

γ L−

β α α − γ α − γ − β −b

R−

α L+
γ R+

β −α −α + γ −α + γ + β b

L−

α R+
γ L+

β −α −α + γ −α + γ + β −b

CαCγ |Cβ κ1 κ2 κ3 c

R+
αL+

γ R−

β α α + γ α + γ − β b

L+
αR+

γ L−

β α α + γ α + γ − β −b

R−

α L−

γ R+

β −α −α − γ −α − γ + β b

L−

α R−

γ L+

β −α −α − γ −α − γ + β −b

5.3 CαCγ|CγCβ and Cα|CγCγ|Cβ

In Table 4, the list of minimum wheel-rotation trajectories of type CαCγ |CγCβ

and Cα|CγCγ |Cβ can be found. The goal configuration of CαCγ |CγCβ is

x = −c(4 sinκ1 − 2 sinκ2 − sin κ3) (25)

y = c(4 cosκ1 − 1 − 2 cosκ2 − cosκ3) (26)

θ = κ3, (27)

and the goal configuration of Cα|CγCγ |Cβ is

x = −c(2 sinκ1 − 2 sinκ2 + 2 sinκ3 − sin κ4) (28)

y = c(2 cosκ1 − 1 − 2 cosκ2 + 2 cosκ3 − cosκ4) (29)

θ = κ4, (30)

in which κ1, κ2, κ3, κ4, and c are the parameters in Table 4. Wheel-rotation
of such trajectories is α + 2γ + β.

5.4 CαSdCβ

In Table 5, the list of minimum wheel-rotation trajectories of type CαSdCβ

can be found. The goal configuration of CαSdCβ is



Table 4. α, β ≤ γ ≤ π
2

CαCγ |CγCβ κ1 κ2 κ3 c

R+
αL+

γ R−

γ L−

β α α + γ α − β b

L+
αR+

γ L−

γ R−

β α α + γ α − β −b

R−

α L−

γ R+
γ L+

β −α −α − γ −α + β b

L−

α R−

γ L+
γ R+

β −α −α − γ −α + β −b

Cα|CγCγ |Cβ κ1 κ2 κ3 κ4 c

R+
αL−

γ R−

γ L+

β α α − γ α − 2γ α − 2γ + β b

L+
αR−

γ L−

γ R+

β α α − γ α − 2γ α − 2γ + β −b

R−

α L+
γ R+

γ L−

β −α −α + γ −α + 2γ −α + 2γ − β b

L−

α R+
γ L+

γ R−

β −α −α + γ −α + 2γ −α + 2γ − β −b

x = c1 cosκ1 + c2 sin κ1 + c3 sin κ2 (31)

y = c1 sin κ1 − c2 cosκ1 − c3 cosκ2 + c4 (32)

θ = κ2, (33)

in which κ1, κ2, c1, c2, c3, and c4 are the parameters in Table 5. Wheel-rotation
of such trajectories is α + d + β.

Table 5. α, β ≤ π
2

and d ≥ 0

CαSdCβ κ1 κ2 c1 c2 c3 c4

R+
αS−

d R+

β α α + β −d 0 −b −b

L+
αS+

d L+

β α α + β d 0 b b

R+
αS−

d L−

β α α − β −d −2b b −b

L+
αS+

d R−

β α α − β d 2b −b b

R−

α S+

d R−

β −α −α − β d 0 −b −b

L−

α S−

d L−

β −α −α − β −d 0 b b

R−

α S+

d L+

β −α −α + β d −2b b −b

L−

α S−

d R+

β −α −α + β −d 2b −b b

5.5 CαCπ

2
SdCβ and CαSdCπ

2
Cβ

In Table 6, the list of minimum wheel-rotation trajectories of type CαCπ

2
SdCβ

and CαSdCπ

2
Cβ can be found. The goal configuration of such trajectories is

x = c1 sinκ1 + c2 cosκ1 + c3 sinκ2 (34)

y = −c1 cosκ1 + c2 sin κ1 − c3 cosκ2 + c4 (35)

θ = κ2, (36)



in which κ1, κ2, c1, c2, c3, and c4 are the parameters in Table 6. Wheel-rotation
of such trajectories is α + π

2
+ d + β.

Table 6. Range of parameters is given for each trajectory (d ≥ 0)

Range CαCπ

2
SdCβ κ1 κ2 c1 c2 c3 c4

α, β ≤ π
2

R+
αL+

π

2

S+

d R−

β α α + π
2
− β −2b − d 2b −b −b

α, β ≤ π
2

L+
αR+

π

2

S−

d L−

β α α + π
2
− β 2b + d −2b b b

α + β ≤ π
2

R+
αL+

π

2

S+

d L+

β α α + π
2

+ β −2b − d 0 b −b

α + β ≤ π
2

L+
αR+

π

2

S−

d R+

β α α + π
2

+ β 2b + d 0 −b b

α, β ≤ π
2

R−

α L−

π

2

S−

d R+

β −α −α − π
2

+ β −2b − d −2b −b −b

α, β ≤ π
2

L−

α R−

π

2

S+

d L+

β −α −α − π
2

+ β 2b + d 2b b b

α + β ≤ π
2

R−

α L−

π

2

S−

d L−

β −α −α − π
2
− β −2b − d 0 b −b

α + β ≤ π
2

L−

α R−

π

2

S+

d R−

β −α −α − π
2
− β 2b + d 0 −b b

Range CαSdCπ

2
Cβ κ1 κ2 c1 c2 c3 c4

α, β ≤ π
2

R+
αS−

d L−

π

2

R−

β α α − π
2
− β −2b −2b − d −b −b

α, β ≤ π
2

L+
αS+

d R−

π

2

L−

β α α − π
2
− β 2b 2b + d b b

α + β ≤ π
2

R+
αS−

d R+
π

2

L+

β α α + π
2

+ β 0 −2b − d b −b

α + β ≤ π
2

L+
αS+

d L+
π

2

R+

β α α + π
2

+ β 0 2b + d −b b

α, β ≤ π
2

R−

α S+

d L+
π

2

R+

β −α −α + π
2

+ β −2b 2b + d −b −b

α, β ≤ π
2

L−

α S−

d R+
π

2

L+

β −α −α + π
2

+ β 2b −2b − d b b

α + β ≤ π
2

R−

α S+

d R−

π

2

L−

β −α −α − π
2
− β 0 2b + d b −b

α + β ≤ π
2

L−

α S−

d L−

π

2

R−

β −α −α − π
2
− β 0 −2b − d −b b

5.6 LαRπ

2
SdLπ

2
Rβ and RαLπ

2
SdRπ

2
Lβ

In Table 7, the list of minimum wheel-rotation trajectories of type LαRπ

2
SdLπ

2
Rβ

and RαLπ

2
SdRπ

2
Lβ can be found. The goal configuration of such trajectories

is

x = c1 sinκ1 + c2 cosκ1 + c3 sinκ2 (37)

y = −c1 cosκ1 + c2 sin κ1 − c3 cosκ2 − c3 (38)

θ = κ2, (39)

in which κ1, κ2, c1, c2, and c3 are the parameters in Table 7. Wheel-rotation
of such trajectories is α + π + d + β.



Table 7. α + β < 2 and d ≥ 0

CαCπ

2
SdCπ

2
Cβ κ1 κ2 c1 c2 c3

R+
αL+

π

2

S+

d R−

π

2

L−

β α α − β −4b − d 2b b

L+
αR+

π

2

S−

d L−

π

2

R−

β α α − β 4b + d −2b −b

R−

α L−

π

2

S−

d R+
π

2

L+

β −α −α + β −4b − d −2b b

L−

α R−

π

2

S+

d L+
π

2

R+

β −α −α + β 4b + d 2b −b

θ = 0 θ = π
8

θ = π
4

θ = 3π
8

θ = π
2

θ = π

Fig. 8. Level sets of the cost function for θ = 0, π
8
, π

4
, 3π

8
, π

2
, and π



6 Cost Function

In Figure 8, level sets of the cost function for some goal orientations are
presented. In computing the cost function, initial configuration is assumed to
be (0, 0, 0), and goal orientation θ is assumed to be 0, π

8
, π

4
, 3π

8
, π

2
, and π.

Numerical computations show that minimum wheel-rotation cost function
is similar to Reeds-Shepp cost function. Moreover, a collection of Reeds-Shepp
curves are among minimum wheel-rotation trajectories. This may suggest that
minimum wheel-rotation cost function is equal to Reeds-Shepp cost function,
but we do not have a proof for it. However, minimum wheel-rotation tra-
jectories are different from Reeds-Shepp curves because there are minimum
wheel-rotation trajectories that contain rotation in place.

7 Conclusions

We presented finite state machines for different categories of extremals. We
then summarized maximal minimum wheel-rotation trajectories. Using previ-
ous characterization of maximal minimum wheel-rotation trajectories in [2],
we derived 52 different minimum wheel-rotation trajectories, which are listed
in Section 5. We further determined the end-point map in terms of the pa-
rameters. Thus, finding the shortest path for every pair of initial and goal
configurations reduces to solving systems of equations for the path parame-
ters.

As it was seen in Section 6, numerical computations show that minimum
wheel-rotation cost function is similar to Reeds-Shepp cost function. More-
over, a collection of Reeds-Shepp curves are among minimum wheel-rotation
trajectories. This may suggest that minimum wheel-rotation cost function is
equal to Reeds-Shepp cost function. However, since loose minimum wheel-
rotation trajectories are composed of rotation in place and swing segments,
they are not identical with equivalent Reeds-Shepp curves. Regions of activity
of different minimum wheel-rotation trajectories and the relationship between
Reeds-Shepp cost and minimum wheel-rotation in general remain open ques-
tions.
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