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Abstract—Characterizing optimal paths for mobile robots is
an interesting, important, and challenging endeavor. Not only
they are interesting with respect to the optimized criteria, but
also they offer a family of motion primitives that can be used
for motion planning in the presence of obstacles. This paper
presents characterization of shortest paths for differential-drive
mobile robots, with the goal of classifying solutions in the spirit
of Dubins curves and Reeds-Shepp curves for car-like robots. To
obtain a well-defined notion of shortest, the total amount of wheel
rotation is optimized. Using Pontryagin maximum principle and
other tools, we establish the existence of optimal trajectories,
and derive the set of optimal paths. Some Reeds-Shepp curves
appear in the set of optimal paths, whereas there are optimal
paths which are different from Reeds-Shepp curves. To the best
of our knowledge, this is the first progress on the problem.

I. INTRODUCTION

This paper presents the family of all minimum wheel-

rotation trajectories for differential-drive mobile robots in

the plane without obstacles. By wheel-rotation we mean the
distance travelled by the robot wheels, which is independent

of the robot maximum speed. Thus, minimizing wheel-rotation

is a natural variation of the shortest path problem by Dubins

[4] and Reeds and Shepp [6], in which the distance travelled

by the car is minimized. In this regard, this work has been

basically motivated by Dubins and Reeds-Shepp shortest paths

for car-like vehicles. The first work on shortest paths for car-

like vehicles is done by Dubins [4]. He gives a characterization

of time-optimal trajectories for a car with a bounded turn

radius. In that problem, the car always moves forward with

constant speed. He uses a purely geometrical method to

characterize such shortest paths. Later, Reeds and Shepp [6]

solve a similar problem in which the car is able to move

backward as well. They identify 48 different shortest paths.

Shortly after Reeds and Shepp, their problem is solved and also

refined by Sussmann and Tang [13] with the help of optimal

control techniques. Sussmann and Tang show that there are

only 46 different shortest paths for Reeds-Shepp car. Souères

and Laumond [11] classify the shortest paths for a Reeds-

Shepp car into symmetric classes.

However, optimal trajectories for nonholonomic systems are

interesting not only because of the criterion that they optimize,

but also because they have a property that makes them useful

for motion planning in the presence of obstacles. If we restrict

the motions of the system to the set of optimal trajectories,
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Fig. 1. Minimum wheel-rotation trajectories up to symmetry: (A) and (B)
are composed of two swings, straight, and one or two swings respectively. (C)
and (D) are composed of four alternating swings. (E) is composed of swing,
rotation in place, and swing. (F) is composed of rotation in place, swing, and
rotation in place.
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we still conserve some important properties of the system

such as small-time local controllability. Consequently, local
planners that are based on families of optimal trajectories

satisfy the topological property [9]. Hence, different families
of optimal trajectories provide local planners that can be

helpful in different applications.

In [1], the time-optimal trajectories for the differential

drive is studied, and a complete characterization of all time-

optimal trajectories is given. Time-optimal trajectories for

the differential drive consist of rotation in place and straight

line segments. Our paper shows that minimum wheel-rotation

trajectories exist for all pairs of initial and goal configurations;

and they are different from time-optimal trajectories. They

are composed of rotation in place, straight line, and swing

segments (one wheel stationary and the other rolling). Since

any subpath of an optimal path is optimal, 28 different

minimum wheel-rotation trajectories are identified in our work,

which are maximal with respect to subpath partial order.

Souères and Boissonnat [10] study the time optimality of

Dubins car with angular acceleration control. They present

an incomplete characterization of time-optimal trajectories for

their system. However, full characterization of such time-

optimal trajectories seems to be difficult because Sussmann

[12] proves that there are time-optimal trajectories for that sys-

tem that require infinitely many input switchings (chattering

or Fuller phenomenon). Sussmann uses Zelikin and Borisov

theory of chattering control [14] to prove his result. Chyba and

Sekhavat [3] study time optimality for a mobile robot pulling

one trailer. For a numerical approach to time optimality for

differential-drive robots see Reister and Pin [7]. For a study

on acceleration-drivenmobile robots, see Renaud and Fourquet

[8].

The approach that we use to derive optimal trajectories

is similar to the one used in [1], [3], [10], [13]. However,

the difference between our method and the aforementioned

methods is that we develop specific geometric methods to

rule out non-optimal trajectories. We first prove that minimum

wheel-rotation trajectories exist for our problem. It is then

viable to apply the necessary condition of the Pontryagin

Maximum Principle (PMP) [5]. The geometric interpretation

of the PMP leads to geometric arguments that rule out some

non-optimal trajectories. The remaining finite set of candidates

are compared with each other to find the optimal ones. Some of

the proofs of theorems, lemmas, and propositions are omitted

due to space limitations.

II. PROBLEM FORMULATION

A differential-drive robot [1] is a three-dimensional system

with its configuration variable denoted by q = (x, y, θ) ∈ C =
R

2 × S
1 in which x and y are the coordinates of the point

on the axle, equidistant from the wheels, in a fixed frame in

the plane, and θ ∈ [0, 2π) is the angle between x-axis of the
frame and the robot local longitudinal axis (see Figure 2).

The robot has independent velocity control of each wheel.

Assume that the wheels have equal bounds on their velocity.

More precisely, u1, u2 ∈ [−1, 1], in which the inputs u1 and

b

u1

u2

θ

(x, y)

Fig. 2. Differential-drive model

u2 are respectively the left and the right wheel velocities, and

the input space is U = [−1, 1]× [−1, 1] ⊂ R
2. The system is

q̇ = f(q, u) = u1f1(q) + u2f2(q) (1)

in which f1 and f2 are vector fields in the tangent bundle

TC of configuration space. Let the distance between the robot
wheels be 2b. In that case,

f1 =
1

2

⎛
⎝cos θ

sin θ
− 1

b

⎞
⎠ and f2 =

1

2

⎛
⎝cos θ

sin θ
1
b

⎞
⎠ . (2)

The Lagrangian L and the cost functional J to be minimized
are

L(u) =
1

2
(|u1| + |u2|) (3)

J(u) =

∫ T

0

L(u(t))dt. (4)

The factor 1
2 above helps to simplify further formulas, and

does not alter the optimal trajectories.

For every pair of initial and goal configurations, we seek an

admissible control, i.e. a measurable function u : [0, T ] → U ,
that minimizes J while transferring the initial configuration to
the goal configuration. Since the cost J is invariant by scaling
the input within U , we can assume without loss of generality
that the controls are either constantly zero (u ≡ (0, 0)) or
saturated at least in one input, i.e. max(|u1(t)|, |u2(t)|) = 1
for all t ∈ [0, T ]. Throughout this paper, a trajectory for which
u ≡ (0, 0) over its time interval is called motionless.

III. EXISTENCE OF OPTIMAL TRAJECTORIES

As in [1], the system is controllable. Moreover, it can be

shown that the system is small-time local controllable. Hence,

there exists at least one trajectory between any pair of initial

and goal configurations, and it is meaningful to discuss the

existence of optimal trajectories. In the following, we will use

a version of Filippov Existence Theorem to prove the existence

of optimal trajectories.

Let the initial configuration be q0 = (x0, y0, θ0) and the
goal configuration be q1 = (x1, y1, θ1). Let AT be a set of

configurations AT = BT (x0, y0) × S
1 ⊂ C, in which T is an

arbitrary positive real number, and BT (x0, y0) is the closed
ball of radius T around (x0, y0) in the plane. The projection
of robot configuration onto x-y plane cannot leave BT (x0, y0)
in time T because

√
ẋ2 + ẏ2 ≤ 1. Note that T here is
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both maximum time and the radius of BT (x0, y0). Assume
T is large enough so that (x1, y1) ∈ BT (x0, y0). Let G =
{(q0, q1)} ⊂ C×C be the pair of initial and goal configurations,
and let ΩAT

be the set of all admissible trajectory-control

pairs (q(t), u(t)) defined on [0, T ] that transfer q0 to q1 while

staying in AT , i.e. (q(0), q(T )) ∈ G, and q([0, T ]) ⊂ AT .

Furthermore, assume T is chosen such that ΩAT
�= ∅. Define

Q(q) ⊂ R × TqC ∼= R
4 as

Q(q) = {(z0, z) | ∃u ∈ U : z0 ≥ L(u) and z = f(q, u)}.
(5)

Finally, let MT = AT × U ⊂ C × R
2. The following remarks

are necessary to verify applicability of the Filippov Existence

Theorem, which will shortly be used:

1) Since the differential drive is controllable, there exists a

trajectory qτ (t) that transfers the initial configuration to
the goal configuration in some time τ . Choosing T = τ
guarantees that qτ stays in AT because

√
ẋ2 + ẏ2 ≤

1. Thus, for every (q0, q1) the number T satisfying
assumptions above actually exists, and in particular, the

class ΩAT
is nonempty for an appropriate choice of T .

2) The sets AT , G, U , and MT are compact and conse-

quently closed. Also, L(u) given by (3) is continuous
on U , and f(q, u) is continuous on MT .

3) Q(q) is convex for all q. Since U is convex and f(q, ·)
is a linear transformation, f(q, U) is also convex. The
fact that L(·) is a convex function helps to establish the
claim.

Theorem 1 (Filippov Existence Theorem [2]). Let AT be
compact, G closed, MT compact, L(u) continuous on U , and
f continuous on MT . Assume that Q(q) are convex for all
q ∈ AT , and ΩAT

is nonempty. The functional J has an
absolute minimum in the nonempty class ΩAT

, which is the
set of all admissible trajectory-control pairs defined on [0, T ]
that transfer the initial configuration to the goal configuration
while staying in AT .
From this we derive the following corollary which estab-

lishes the existence of minimum wheel-rotation trajectories

for the system described in (1).

Corollary 1. Minimum wheel-rotation trajectories for the
differential-drive exist.

Proof. Observe that 1
2 ≤ L ≤ 1 along any trajectory because

at least one input is saturated. Let T be chosen so that
ΩAT

�= ∅. Theorem 1 guarantees the existence of a minimum
wheel-rotation trajectory-control pair (qT (t), uT (t)) in ΩAT

.

Let JT = J(uT ), and let τ be the time of qT . In that case,

τ ≤ T because (qT (t), uT (t)) is in ΩAT
. The observation

helps to show that JT ≤ τ ≤ T . Using Theorem 1, ΩA2T

contains a minimum wheel-rotation trajectory-control pair

(q2T (t), u2T (t)). Let J2T = J(u2T ). Note that J2T ≤ JT ≤ T
because all elements of ΩAT

are contained in ΩA2T
. Any

trajectory-control pair that is not in ΩA2T
takes at least 2T

time. The observation again helps to show that the cost of

any trajectory-control pair that is not in ΩA2T
is at least

2T/2 = T ≥ J2T . Thus, q2T (t) is an absolute minimum
wheel-rotation trajectory over all trajectories.

IV. NECESSARY CONDITIONS

Since we proved the existence of optimal trajectories in

the previous section, it is viable now to apply the Pontryagin

Maximum Principle (PMP) which is a necessary condition for

optimality.

A. Pontryagin Maximum Principle

Let the Hamiltonian H : R
3 × C × U → R be

H(λ, q, u) = 〈λ, q̇〉 + λ0L(u) (6)

in which λ0 is a constant. According to the PMP [5], for every

optimal trajectory q(t) defined on [0, T ] and associated with
control u(t), there exists a constant λ0 ≤ 0 and an absolutely
continuous vector-valued adjoint function λ(t), that is nonzero
if λ0 = 0, with the following properties along the optimal
trajectory:

λ̇ = −
∂

∂q
H, (7)

H(λ(t), q(t), u(t)) = max
z∈U

H(λ(t), q(t), z), (8)

H(λ(t), q(t), u(t)) ≡ 0. (9)

Def 1. An extremal is a trajectory q(t) that satisfies the
conditions of the PMP. Also, an extremal for which λ0 = 0 is
called abnormal.
Let the switching functions be

ϕ1 = 〈λ, f1〉 and ϕ2 = 〈λ, f2〉 , (10)

in which f1 and f2 are given by (2). We rewrite (6) as

H = u1ϕ1 + u2ϕ2 + λ0L. The PMP implies that an op-
timal trajectory is also an extremal; however, the converse
is not necessarily true. Throughout the current section, we

characterize all extremals because the optimal trajectories are
among them. In the following sections, we will provide more

restrictive conditions for optimality and we will rule out all

non-optimal ones.

B. Switching Structure Equations

Lemma 1 (Sussmann and Tang [13]). Let fk be a smooth
vector field in the tangent bundle of the configuration space
TC, and let q(t) be an extremal associated with control
u(t) and adjoint vector λ(t). Let ϕk be defined as ϕk(t) =
〈λ(t), fk(q(t))〉. It follows that

ϕ̇k = u1 〈λ, [f1, fk]〉 + u2 〈λ, [f2, fk]〉 . (11)

Lemma 1 reveals valuable information by relating the struc-

ture of the Lie algebra to the structure of ϕi functions. To

complete the Lie closure of {f1, f2}, we introduce f3 as the

Lie bracket of f1 and f2:

f3 = [f1, f2] =
1

2b

⎛
⎝ sin θ
− cos θ

0

⎞
⎠ . (12)
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Let ϕ3(t) = 〈λ(t), f3(q(t))〉 be the switching function asso-
ciated with f3. Lemma 1 implies the structure of switching

functions as follows [1]:

ϕ̇1 = −u2ϕ3, ϕ̇2 = u1ϕ3, ϕ̇3 =
1

4b2
(−u1 + u2)(ϕ1 + ϕ2).

(13)

Note that fi’s are linearly independent. Consequently,

{f1(q), f2(q), f3(q)} forms a basis for TqC. As an immediate
consequence of the PMP and Lemma 1, the following propo-

sition holds.

Proposition 1. An abnormal extremal is motionless.

Proof. If λ0 = 0, then (9) implies u1ϕ1 + u2ϕ2 ≡ 0. This
means |ϕ1| ≡ |ϕ2| ≡ 0 because by maximization of the
Hamiltonian, we must have uiϕi = |ϕi| for i = 1, 2. For
a detailed argument, see [1]. Consequently, ϕ1 and ϕ2 are

constantly zero, and ϕ̇1 ≡ ϕ̇2 ≡ 0. In this case, |ϕ1|+ |ϕ2|+
|ϕ3| �= 0 because {f1, f2, f3} forms a basis for tangent space
of the configuration space, and ϕi’s are the coordinates of a

nonzero vector λ(t) in this basis. Thus, ϕ3 �= 0 and (13) imply
u1 ≡ u2 ≡ 0.

C. Extremals

Having dealt with abnormal extremals in Proposition 1, we

may now, without loss of generality, scale the Hamiltonian (6)

so that λ0 = −2. More precisely, the PMP conditions are valid
if we replace λ(t) by − 2λ(t)

λ0

and λ0 by −2 in (6). We will
assume that λ0 = −2 for the rest of the paper. In that case,
the Hamiltonian has the simple form

H = u1ϕ1 + u2ϕ2 − (|u1| + |u2|). (14)

Equation 7 can be solved for λ to obtain

λ(t) =

⎛
⎝ c1

c2

c1y − c2x + c3

⎞
⎠ , (15)

in which c1, c2, and c3 are constants. Let i, j ∈ {1, 2}
throughout the rest of the paper.

Def 2. For some i = 1, 2 an extremal for which |ϕi(t)| = 1
over some interval of time of positive length is called singular.
In Lemma 2, we will show that a non-singular extremal is

motionless. We will also show that there are two categories of

singular extremals depending on whether or not c2
1 + c2

2 = 0.
The first category corresponds to c2

1 + c2
2 �= 0, and consists of

all singular extremals that are composed of a number of swing

(ui = 0) and straight (u1 = u2) intervals. Such extremals will

be called tight. The second category corresponds to c2
1 + c2

2 =
0. Such extremals will be called loose.

Lemma 2. Let q(t) be an extremal associated with the
control u(t) = (u1(t), u2(t)), adjoint vector function λ(t),
and switching functions ϕi(t). Moreover, assume q(t) is not
motionless. In that case, the following hold:

(i) |ϕi(t)| ≤ 1.

(ii)

ui(t) ∈

⎧⎨
⎩

[0, 1] if ϕi(t) = 1
{0} if |ϕi(t)| < 1

[−1, 0] if ϕi(t) = −1
. (16)

(iii) If c2
1 + c2

2 �= 0 and |ϕ1| = |ϕ2| = 1 over some interval
[t1, t2], then u1 = u2, and ϕ1 = ϕ2.

(iv) If c2
1 + c2

2 �= 0 and |ϕj | < |ϕi| = 1 over a time interval
[t1, t2], then uj = 0 and |ui| = 1, in which j �= i.

(v) If c1 = c2 = 0, then ϕ1 ≡ −ϕ2, and u1u2 ≤ 0. In other
words, the wheels move in opposite directions.

Proof. (i) By inspection of (14), if |ϕi| > 1, there exist
feasible controls yielding H > 0. This contradicts the
maximum principle (8) and (9), which states that the

maximum of H is zero.
(ii) If |ϕi| < 1, then (8) and (14) implies ui = 0. In a similar
way, if ϕi = 1, then ui ∈ [0, 1], and if ϕi = −1, then
ui ∈ [−1, 0].

(iii) Assume ϕ1 = −ϕ2. From (2), (10), and (15) it follows

that c1 cos θ + c2 sin θ ≡ 0. Differentiate this equation
to obtain θ̇ ≡ 0 because −c1 sin θ + c2 cos θ �= 0. Thus,
2bθ̇ = u1 − u2 = 0, and (16) implies u1 = u2 = 0,
which is not possible because q(t) is not motionless.

(iv) This follows from (16).
(v) In that case, ϕ1 ≡ −ϕ2 by (2), (10), and (15). It follows

from (16) that u1u2 ≤ 0.
Geometric interpretation of tight extremals in Section IV-

D will help to show that the number of switchings along a

tight extremal is finite. Along a tight extremal we can assume

u1 = 0, u2 ∈ {1,−1} or u1 ∈ {1,−1}, u2 = 0 on swing
segments, and u1 = u2 ∈ {1,−1} on straight segments
because at least one of the inputs is saturated. Thus, inputs

are always either zero or bang ui ∈ {1, 0,−1} along tight
extremals. In Section V-C, we will show that there may exist

many wheel-rotation equivalent loose extremals, and for an

appropriate choice of representative loose extremals, the inputs

are always either zero or bang. In this section, we finished an

elementary characterization of extremals. We have identified

three main types of extremals:

1) non-singular: u1 ≡ u2 ≡ 0 (i.e. motionless)
2) tight singular: composed of a finite number of swing
and straight segments

3) loose singular: u1u2 ≤ 0, ϕ1 ≡ −ϕ2, and |ϕ1| ≡ |ϕ2| ≡
1.

D. Geometric Interpretation of Tight Extremals

Let (x1, y1) and (x2, y2) be the coordinates of the left and
the right wheel respectively. In that case,(

x1

y1

)
=

(
x − b sin θ
y + b cos θ

) (
x2

y2

)
=

(
x + b sin θ
y − b cos θ

)
. (17)

Define functions γ1(x, y) and γ2(x, y) as

γ1(x, y) = c1y − c2x + c3 − 2b, (18)

γ2(x, y) = c1y − c2x + c3 + 2b. (19)
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S−

�2

S±

�1
S+

Fig. 3. The robot stays between two lines �1 and �2 along a tight extremal.

Taking (2), (10), (15), (17), (18), and (19) into account, we

obtain

ϕ1 = −
1

2b
γ2(x2, y2) + 1 = −

1

2b
γ1(x2, y2) − 1, (20)

ϕ2 =
1

2b
γ1(x1, y1) + 1 =

1

2b
γ2(x1, y1) − 1. (21)

Note that c2
1 + c2

2 > 0, and consider the parallel lines 	1 :
γ1(x, y) = 0 and 	2 : γ2(x, y) = 0 in the robot x-y plane. The
value of γi at each point P ∈ R

2 determines d(P, 	i) scaled by√
c2
1 + c2

2 for i = 1, 2, in which d(P, 	) is the signed distance
of point P from a line 	 ⊂ R

2. Since the base distance b of
the robot is positive, γ2 > γ1 everywhere in the plane. Thus,

	1 and 	2 cut the plane into five disjoint subsets (see Figure

3): S+, 	1, S±, 	2, and S− in which

S+ = {(x, y) ∈ R
2| γ2(x, y) > γ1(x, y) > 0} (22)

S± = {(x, y) ∈ R
2| γ2(x, y) > 0 > γ1(x, y)} (23)

S− = {(x, y) ∈ R
2| 0 > γ2(x, y) > γ1(x, y)}. (24)

Using Lemma 2 and (20) and (21), along a tight extremal

γ1(xi, yi) ≤ 0 ≤ γ2(xi, yi) for i = 1, 2. Thus, the robot
always stays in the band 	1 ∪ S± ∪ 	2 (see Figure 3). By

appropriately substituting in (16), we obtain

u1 ∈

⎧⎨
⎩

[−1, 0] if wheel 2 ∈ 	1

{0} if wheel 2 ∈ S±

[0, 1] if wheel 2 ∈ 	2

(25)

u2 ∈

⎧⎨
⎩

[0, 1] if wheel 1 ∈ 	1

{0} if wheel 1 ∈ S±

[−1, 0] if wheel 1 ∈ 	2

. (26)

V. CHARACTERIZATION OF EXTREMALS

A. Symmetries

Assume (q(t), u(t)) is a minimum wheel-rotation trajectory-
control pair that is defined on [0, T ]. Let q̃(t) be the trajectory
associated with control u(T − t), q̄(t) the trajectory associated
with control −u(t), and q̂(t) the trajectory associated with

control û(t) = (u2(t), u1(t)). Define the operators O1, O2,

and O3 acting on trajectory-control pairs by

O1 : (q(t), u(t)) �→ (q̃(t), u(T − t)) (27)

O2 : (q(t), u(t)) �→ (q̄(t),−u(t)) (28)

O3 : (q(t), u(t)) �→ (q̂(t), û(t)). (29)

Due to symmetries, O1(q(t), u(t)), O2(q(t), u(t)), and
O3(q(t), u(t)) are also minimum wheel-rotation trajectories.
O1 corresponds to reversing the extremal in time, O2 cor-

responds to reversing the inputs, and O3 corresponds to

exchanging the left and the right wheels.

B. Characterization of Tight Extremals

In the following we give only the representatives of sym-

metric families of tight extremals. We will use L, R, and S
to denote swing around the left wheel, the right wheel, and

straight line motions, respectively. In cases where the direc-

tions must be specified, we use a superscript: − is clockwise,
+ is counter-clockwise, + is forward, and − is backward.
Otherwise, the direction of swing is constant throughout the

extremal. The symbol ∗ means zero or more copies of the base

expression. Subscripts are non-negative angles.

Depending on the distance between 	1 and 	2 we identify

three different types of tight extremals.

Case 1: Let d(	1, 	2) = 2b. Besides swing, the robot can
move straight forward and backward by keeping the wheels

on 	i’s. In this case, the extremals are composed of a sequence

of swing and straight segments. In general, there can be

an arbitrary number of swing and straight segments. Since

the straight segments can be translated and merged together,

a representative subclass with only one straight segment is

described by the following forms:

• (R−
π L

−
π )∗R−

π

2

S
+
R

−
π

2

(L−
π R

−
π )∗

• (R−
π L

−
π )∗R−

π

2

S
+
L

+
π

2

(R+
π L

+
π )∗.

For optimal representatives of this class see (A) and (B) in

Figure 1. We call such tight extremals type I.

Case 2: Let d(	1, 	2) > 2b. The robot cannot move straight
because it cannot keep the wheels on 	i’s over some interval

of time. Thus, such extremals are of the form (RπLπ)∗. Note
that these extremals are subpaths of type I extremals.

Case 3: Let d(	1, 	2) < 2b. In this case, the extremals are
of the form (L−

γ R
−
γ L

+
γ R

+
γ )∗ in which γ ≤ π

2 . For optimal

representatives of this class see (C) and (D) in Figure 1. We

call such tight extremals type II.

Lemma 3. Let q(t) be a tight extremal associated with the
control u(t) that transfers (x0, y0, θ0) to (x1, y1, θ1). In this
case

J(u) = l =

∫ T

0

(
√

ẋ2 + ẏ2)dt, (30)

i.e. the cost J(u) is the length of the projection of q(t) onto
the x-y plane.
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Proof. Since 2
√

ẋ2 + ẏ2 =
√

(u1 + u2)2 = |u1 + u2|, it is
enough to show |u1 +u2| = |u1|+ |u2| along a tight extremal.
Tight extremals are composed of swing and straight segments.

Over a swing segment one of the inputs is zero, for instance

u1 = 0 in which case |u1 + u2| = |u2| = |u1| + |u2|. Over a
straight segment u1 = u2 and |u1 +u2| = 2|u1| = |u1|+ |u2|.

C. Characterization of Loose Extremals

So far, the only constraint on loose extremals is that the

inputs must belong to intervals [−1, 0] or [0, 1], and they must
have opposite signs. Thus, a variety of non-bang-bang controls

generate various loose extremals. For instance, it can be

verified that rotation round any point on the axle is a minimum

wheel-rotation trajectory. In this section, we will first show that

loose optimal trajectories can only cover a bounded region

of the configuration space around the initial configuration.

There may be different loose extremals that transfer the initial

configuration to the goal configuration. In particular, there may

exist different such loose extremals which have equal wheel

rotation. Equivalence of wheel rotation defines equivalence

classes of loose extremals. We will show in Lemma 6 that

there exist a representative, that is composed of rotation in

place and swing segments with a known structure, in every

equivalence class.

Lemma 4. Let q(t) be a loose extremal associated with the
control u(t), and let ϑ be the length of the projection of q(t)
onto S

1; in other words,

ϑ =

∫ T

0

|θ̇|dt. (31)

In this case we have J(u) = bϑ.

Proof. Since 2b|θ̇| = |u1 − u2|, it is enough to show that
|u1 − u2| = |u1| + |u2| along a loose extremal. According to
Lemma 2, u1u2 ≤ 0 along a loose extremal. Thus, |u1u2| =
−u1u2 which means (|u1|+ |u2|)2 = (u1−u2)

2. It is obvious

then that |u1| + |u2| = |u1 − u2|.

Lemma 5. Let (q(t), u(t)) be a loose trajectory-control pair
that tranfers the initial configuration (x0, y0, θ0) to the goal
configuration (x1, y1, θ1). It follows that J(u) = b|θ1 − θ0 +
2kπ| for some integer k. Furthermore, if q(t) is optimal, then
J(u) ≤ 5bπ.

Proof. According to Lemma 4, the cost of a loose extremal is
bϑ, in which ϑ is (31). In this case, ϑ = |θ1 − θ0 + 2kπ|
for some integer k and the cost is J(u) = b|θ1 − θ0 +
2kπ|. For the second part, suppose q(t) is optimal while
|θ1 − θ0 + 2kπ| > 5π. It can geometrically be shown that√

(x1 − x0)2 + (y1 − y0)2 ≤ 2bm, in which m is an integer
that satisfies the inequality (m−1)π < |θ1−θ0+2kπ| ≤ mπ.
Since |θ1 − θ0 + 2kπ| > 5π, we have m ≥ 6. The cost of
the trivial trajectory which is composed of rotation in place,

going straight, and again rotation in place is not more than

2bm + bπ. Thus, we have J(u) = b|θ1 − θ0 + 2kπ| >

b(m− 1)π > 2bm + bπ because m ≥ 6. This is contradictory
to the optimality of q(t).

Corollary 2. Starting from an initial configuration, loose
optimal trajectories are of bounded cost and bounded reach
in the x-y plane. We call such optimal extremals type III.

Lemma 6. Let (q(t), u(t)) be a loose optimal trajectory-
control pair that tranfers the initial configuration q0 to the
goal configuration q1. There exists a trajectory-control pair
(q̌(t), ǔ(t)) transferring q0 to q1, in which ǔ is composed of a
sequence of alternating rotation in place and swing segments
in the same direction. Furthermore, q(t) and q̌(t) have the
same wheel rotation, i.e. J(u) = J(ǔ).
Sketch of proof. Look at the time-optimal trajectories for
the system described in (1) with u1 ∈ [−1, 0], u2 ∈ [0, 1]
(our claim for the case in which u1 ∈ [0, 1], u2 ∈ [−1, 0]
follows from a similar argument). We know the time-optimal

trajectories for this modified system exist because its input

space is convex. Upon applying the PMP with the time as

the cost functional, the extremals are composed of a sequence

of rotation in place and swing segments. Let (q̌(t), ǔ(t)) be
the time optimal trajectory-control pair, i.e. ǔ is composed of
a sequence of rotation in place and swing segments. Lemma

4 implies that J(u) = bϑ and J(ǔ) = bϑ̌, in which ϑ and
ϑ̌ are as in (31). Since ϑ ≡ ±ϑ̌ up to a multiple of 2π, and
Lemma 5 holds for (q(t), u(t)), we have J(u) = J(ǔ) because
otherwise, it can be verified that ǔ is not time optimal.

VI. MINIMUM WHEEL-ROTATION TRAJECTORIES

Eventually, in this section we give type I, II, and III

minimum wheel-rotation trajectories up to symmetries. In

Section V-A we described the symmetries of this problem.

In the following we denote straight segment by S, swinging

around right and left wheels by R and L respectively, and

rotation in place by P. Directions are denoted by superscript

+ and − whenever it is required, otherwise it is constant
throughout the trajectory. Forward and counter-clockwise are

denoted by +, and backward and clockwise by −. Subscripts
denote angles.

Lemma 3 implies that wheel-rotation is equal to the length

of the curve that is traversed by the center of robot in the x-y
plane along tight extremals. Since equations of motion of the

differential-drive is the same as that of Reeds-Shepp car along

a tight extremal, the center of robot in the x-y plane traverses
a Reeds-Shepp curve along a tight minimum wheel-rotation

trajectory. Here we use previous results about Reeds-Shepp

curves in [11] to characterize tight minimum wheel-rotation

trajectories.

Lemma 7. If α > 0 then RπLα is not minimum wheel-
rotation.

Proof. For any β > 0, we first show that LβRπLβ is not

optimal. Observe that L−

β R
−
π L

−

β has (π+2β)b wheel rotation.

Let e = 4(1 − cosβ)b. The trajectory R
+
π

2
−βS

−
e R

+
π

2
−β has

(π − 2β)b + e wheel rotation. Since 1 − cosβ ≤ β we must
have (π−2β)b+e ≤ (π+2β)b. Second, we show that RπLα
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TABLE I

MINIMUM WHEEL-ROTATION TRAJECTORIES SORTED BY SYMMETRY CLASS

(A) (B) (C) (D) (E) (F)

Base L
−

α R
−

π

2

S
+
R

−

β
L
−

α R
−

π

2

S
+
L

+
π

2

R
+

β
L
−

α R
−

γ L
+
γ R

+

β
L

+
αR

−

γ L
−

γ R
+

β
R

+
αP

+
γ L

+

β
P

+
αR

+
γ P

+

β

O1 R
−

β
S

+
R

−

π

2

L
−

α R
+

β
L

+
π

2

S
+
R

−

π

2

L
−

α R
+

β
L

+
γ R

−

γ L
−

α R
+

β
L
−

γ R
−

γ L
+
α L

+

β
P

+
γ R

+
α P

+

β
R

+
γ P

+
α

O2 L
+
αR

+
π

2

S−R
+

β
L

+
αR

+
π

2

S−L
−

π

2

R
−

β
L

+
αR

+
γ L

−

γ R
−

β
L
−

α R
+
γ L

+
γ R

−

β
R

−

α P
−

γ L
−

β
P

−

α R
−

γ P
−

β

O3 R
+
αL

+
π

2

S+L
+

β
R

+
αL

+
π

2

S+R
−

π

2

L
−

β
R

+
αL

+
γ R

−

γ L
−

β
R

−

α L
+
γ R

+
γ L

−

β
L
−

α P
−

γ R
−

β
P

−

α L
−

γ P
−

β

O1 ◦ O2 R
+

β
S−R

+
π

2

L
+
α R

−

β
L
−

π

2

S−R
+
π

2

L
+
α R

−

β
L
−

γ R
+
γ L

+
α R

−

β
L

+
γ R

+
γ L

−

α L
−

β
P

−

γ R
−

α P
−

β
R

−

γ P
−

α

O1 ◦ O3 L
+

β
S

+
L

+
π

2

R
+
α L

−

β
R

−

π

2

S
+
L

+
π

2

R
+
α L

−

β
R

−

γ L
+
γ R

+
α L

−

β
R

+
γ L

+
γ R

−

α R
−

β
P

−

γ L
−

α P
−

β
L
−

γ P
−

α

O2 ◦ O3 R
−

α L
−

π

2

S
−

L
−

β
R

−

α L
−

π

2

S
−

R
+
π

2

L
+

β
R

−

α L
−

γ R
+
γ L

+

β
R

+
αL

−

γ R
−

γ L
+

β
L

+
αP

+
γ R

+

β
P

+
αL

+
γ P

+

β

O1 ◦ O2 ◦ O3 L
−

β
S−L

−

π

2

R
−

α L
+

β
R

+
π

2

S−L
−

π

2

R
−

α L
+

β
R

+
γ L

−

γ R
−

α L
+

β
R

−

γ L
−

γ R
+
α R

+

β
P

+
γ L

+
α P

+

β
L

+
γ P

+
α

α + β ≤ π
2

α + β ≤ 2 α, β < γ ≤ π
2

α, β < γ ≤ π
2

α + γ + β ≤ π α + γ + β ≤ π

is not optimal. Let 0 < ε < α be a small positive number
such that 2(1 − cos ε) < ε. We know that such ε exists. Let
g = 4(1 − cos ε)b. Consider the trajectory L

+
ε R

+
π

2
−εS

−
g R

+
π

2
−ε

which has the same end configuration as RπLε. However, it

has less wheel rotation than RπLε because g < 2bε. Since
any subpath of an optimal path should be optimal, RπLα is

not optimal.

Theorem 2. A type I minimum wheel-rotation trajectory is of
the following forms:

• L
−
α R

−
π

2

S
+
R

−

β

• L
−

ζ R
−
π

2

S
+
L

+
π

2

R
+
γ ,

in which α + β ≤ π
2 and ζ + γ ≤ 2.

Proof. In Section V-B case 1, we showed that type I extremals
are of the following forms:

• (R−
π L

−
π )∗R−

π

2

S
+
R

−
π

2

(L−
π R

−
π )∗

• (R−
π L

−
π )∗R−

π

2

S
+
L

+
π

2

(R+
π L

+
π )∗.

Lemma 7 shows that if η > 0 then LπRη cannot be

minimum wheel-rotation. It is enough to note that any subpath

of an optimal path is necessarily optimal. Hence, the only

possibilities are of the following form:

• L
−
α R

−
π

2

S
+
R

−
π

2

L
−
η

• L
−

ζ R
−
π

2

S
+
L

+
π

2

R
+
γ ,

in which α, η, ζ, γ < π. Assume α > 0. We claim that
η = 0, because a path of type R

+
S
−
R

+ is shorter than

L
−
α R

−
π

2

S
+
R

−
π

2

L
−
η . Hence, L

−
α R

−
π

2

S
+
R

−

β is possibly optimal

in which β ≤ π
2 . If α > π

2 , then a path of type R
+
L

+
π

2

S
+
R

−

is shorter than L−
α R

−
π

2

S
+. Thus, α, β, ζ, γ ≤ π

2 . Also, charater-

ization of Reeds-Shepp curves of type C|CSC in [11] implies
that α + β ≤ π

2 . Finally, if ζ + γ > 2, then L
+
π

2
−ζS

−
R

−
π

2
−γ

is shorter than L
−

ζ R
−
π

2

S
+
L

+
π

2

R
+
γ . Hence, ζ + γ ≤ 2. For such

an optimal trajectory see (A) and (B) in Figure 1.

Theorem 3. A type II minimum wheel-rotation trajectory is
of the following forms:

• L
−
α R

−
γ L

+
γ R

+
β

• L
+
αR

−
γ L

−
γ R

+
β ,

in which 0 ≤ α, β < γ ≤ π
2 .

Proof. In Section V-B case 3, we showed that type II ex-
tremals are of the form (L−

γ R
−
γ L

+
γ R

+
γ )∗. We prove that

two complete sets of four swings is not optimal, i.e.

R
+
γ L

−
γ R

−
γ L

+
γ R

+
γ L

−
γ R

−
γ L

+
γ is not optimal. In each set, the

amount of robot displacement in x-y plane is 8b sin2 γ
2 , in

which γ is the angle of swings. If 0 < γ < π
4 , then let ζ be

such that sin2 ζ
2 = 2 sin2 γ

2 . It follows that ζ < 2γ < π
2 . A

type II extremal that is composed of four swings of angle ζ
has less wheel rotation. If π

4 ≤ γ ≤ π
2 , then bπ+16b sin2 γ

2 <
8bγ, and the trivial trajectory which is composed of rotation
in place, going straight, and again rotation in place gives

less wheel rotation. A similar argument, based on what we

just showed, proves that L
−
γ R

−
γ L

+
γ R

+
γ L

−
γ R

−
γ L

+
γ R

+
γ is not

minimum wheel-rotation either. Moreover, Lemma 3 implies

that wheel-rotation is equal to the length of the curve that is

traversed by the center of robot in the x-y plane along tight
extremals. Since the center of robot in the x-y plane traverses
a Reeds-Shepp curve along a tight minimum wheel-rotation

trajectory, the only possibilities [11] are

• L
−
α R

−
γ L

+
γ R

+
β

• L
+
αR

−
γ L

−
γ R

+
β ,

in which α, β < γ ≤ π
2 . For such an optimal trajectory see

(C) and (D) in Figure 1.

Lemma 8. If α > 0 then Pπ−γRγPα is not minimum wheel-
rotation, in which 0 ≤ γ ≤ π.

Proof. It is enough to note that P−
π−γR

−
γ P

−
α has π+α wheel

rotation whereas L+
γ P

+
π−γ−α has π−α wheel rotation. Since

they connect the same initial and goal configurations, the

former cannot be minimum wheel-rotation.

Lemma 9. If 0 ≤ ζ, η ≤ γ ≤ π and ζ + η > γ then
RζPπ−γLη is not minimum wheel-rotation.

Proof. Suppose RζPπ−γLη is minimum wheel-rotation. Let

δ = γ − ζ. By assumption we have 0 ≤ δ < η. We
replace the subpath R

−

ζ P
−
π−γL

−

δ of R
−

ζ P
−
π−γL

−
η by an

equivalent trajectory L
+
δ P

+
π−γR

+
ζ to get L

+
δ P

+
π−γR

+
ζ L

−

η−δ .

Boundary points and wheel rotation of this trajectory is equal

to boundary points and wheel rotation of the original trajectory
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R
−

ζ P
−
π−γL

−
η . Hence, L

+
δ P

+
π−γR

+
ζ L

−

η−δ is a minimum wheel-

rotation trajectory. In particular, it must satisfy the PMP.

This is a contradiction because L
+
δ P

+
π−γR

+
ζ L

−

η−δ is not an

extremal.

Theorem 4. A type III minimum wheel-rotation trajectory is
of the following forms:

• RαPγLβ

• PαRγPβ ,

in which α + γ + β ≤ π.

Proof. In Section V-C, we showed for any loose extremal
there is an equivalent trajectory which is composed of swing

and rotation in place, i.e. (RγPπ−γLγPπ−γ)∗. Lemma 8
implies that a 4-piece trajectory of this type cannot be min-

imum wheel-rotation. Thus, the only possible type III mini-

mum wheel-rotation trajectories are of the following forms:

RζPπ−γLη and PαRγPβ , in which α, β ≤ π−γ and ζ, η ≤
γ. If α + γ + β > π then P

−
α R

−
γ P

−

β is not minimum wheel-

rotation, because P+
π−γ−αR

+
γ P

+
π−γ−β is shorter. If ζ +η > γ

then Lemma 9 proves thatRζPπ−γLη is not minimum wheel-

rotation. Hence, ζ + (π − γ) + η ≤ π, and by renaming
parameters we obtain the result. For such an optimal trajectory

see (E) and (F) in Figure 1.

Taking the symmetries in Section V-A into account, all the

maximally optimal trajectories with their symmetric clones are

given in Table I. Since the symmetry operatorsO1,O2, andO3

commute, we do not need to worry about their order. Finally,

we include the following lemma to compare minimum wheel-

rotation with optimal time:

Lemma 10. Let T � be the optimal time given in [1] and J�

the minimum wheel-rotation. It follows that 1
2T � ≤ J� ≤ T �.

VII. CONCLUSIONS

We used the Filippov theorem to first prove that the mini-

mum wheel-rotation trajectories exist for the differential drive.

By applying the Pontryagin Maximum Principle [5] and devel-

oping geometric arguments, we derived optimality necessary

conditions which helped to rule out non-optimal trajectories.

The remaining trajectories form 28 different minimum wheel-

rotation trajectories, which are listed in Table I. Based on

the characterization of minimum wheel-rotation trajectories,

it remains to further determine the applicable trajectory for

every pair of initial and goal configurations.

As it was seen in Section VI, the cost of a tight minimum

wheel-rotation trajectory is equal to the cost of an equivalent

Reeds-Shepp curve. However, since loose minimum wheel-

rotation trajectories are composed of rotation in place and

swing segments, they are not identical with equivalent Reeds-

Shepp curves. Regions of activity of different minimum wheel-

rotation trajectories and the relationship between Reeds-Shepp

cost and minimum wheel-rotation in general remain open

questions.
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[13] Héctor Sussmann and Guoqing Tang. Shortest paths for the Reeds-
Shepp car: A worked out example of the use of geometric techniques
in nonlinear optimal control. Technical Report SYNCON 91-10, Dept.
of Mathematics, Rutgers University, 1991.

[14] M.I. Zelikin and V.F. Borisov. Theory of Chattering Control. Birkhäuser,
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