Reducing Metric Sensitivity in Randomized Trajectory Design

Peng Cheng

Steven M. LaValle

Dept. of Computer Science
Towa State University
Ames, TA 50011 USA

Abstract

This paper addresses trajectory design for generic
problems that involve: 1) complicated global constraints
that include nonconvex obstacles, 2) nonlinear equa-
tions of motion that involve substantial drift due to
momentum, 3) a high dimensional state space. Our
approach to this challenging class of problems is to de-
velop randomized planning algorithms on the basis of
Rapidly-exploring Random Trees (RRTs). RRTs use
metric-induced heuristics to conduct a greedy explo-
ration of the state space; however, performance sub-
stantially degrades when the chosen metric does not
adequately reflect the true cost-to-go. In this paper, we
present an adaptive version of the RRT that is capable
of refining its exploration strategy in the presence of
a poor metric. Initial experiments on problems in ve-
hicle dynamics and spacecraft navigation indicate sub-
stantial performance improvement over existing tech-
niquUes.

1 Introduction

Trajectory design in the presence of both local, dif-
ferential constraints and global, state-space constraints
is an important problem in robotics and many other
applications. In addition to these constraints, both the
high-dimensionality and the nonlinearity of dynamical
systems are of interest in this paper. In robotics, com-
putation of open-loop trajectories for basic manipula-
tion and motor tasks for highly-complex robots, such
as the Honda humanoid, is a typical problem. In the
control kernel of the autonomous vehicles, a trajectory
planner needs to be so fast enough operate almost in
real time for a vehicle to adapt to a change in operat-
ing regimes or control authority. The trajectory design
problem also exists in virtual prototyping. For exam-
ple, to find a flaw in the design of a new car at an
early stage, evaluation of the vehicle can be achieved
by experiments that use a “virtual stunt driver”, a tra-
jectory design algorithm, and the ”car”, a high-quality

Figure 1: A designed trajectory for a car that drives
through a virtual town at 72 kph. The vehicle dy-
namics are modeled as a nine-dimensional nonlinear
systems that accounts for tire loading, skidding, and
basic suspension effects.

simulator. Fig. 1 shows such an experiment to check
if the car can drive safely through a town with a given
speed. Similar problems exist in the prototyping of air-
craft, spacecraft, hover-crafts, submarines, and a wide
variety of mechanical machinery.

Finding a feasible trajectory is hard. Even the sim-
ple generalized mover’s problem, which has no differ-
ential constraints, is PSPACE-hard [30]. The classic
approach trajectory design in robotics research has
been to decouple the general robotics problem by solv-
ing basic path planning that takes into account obsta-
cles while ignoring differential constraints, and then
find a trajectory and controller that satisfies the dy-
namics and tracks the path [6, 22, 32]. However, the
result of a purely kinematic planner might be unex-
ecutable by the robot due to limits on the actuator
forces and torques. Approaches that avoid decoupling
have been proposed recently. For problems that in-
volve low degrees of freedom, classical dynamic pro-
gramming ideas can be employed to yield numerical
optimal control solutions for a broad class of problems

[3, 5, 20, 21]. This idea has been proposed in various
forms in the motion planning and robotics literature
[1, 7,10, 11, 12, 13, 15, 23, 27, 28, 29, 31]. Due to the
curse of dimensionality, dynamic programming meth-
ods are impractical for the generic, high-dimensional
problems considered in this paper.

Attempts to fight the curse of dimensionality have
led to the introduction of randomized (or Monte-Carlo)
approaches into trajectory design. Algorithms based
on Rapidly-exploring Random Trees (RRTs) [24, 25]
have been proposed recently for trajectory design for
problems that involve dynamics and complicated ob-
stacle constraints. An RRT achieves rapid exploration
by iteratively sampling a random state in the state
space and extending the nearest state in the RRT to
get as close as possible to the random state. Various
RRT-based planners has been designed recently for au-
tonomous vehicles motion planning [14] and for nonlin-
ear underactuated vehicles [33]. A trajectory planner
also based on randomized incremental search was pro-
posed for time-varying systems in [18].

In spite of the successes of RRTs, one of the key
shortcomings is the sensitivity of their performance
with respect to a chosen metric on the state space.
The metric serves as a guide to improve performance;
however, for systems that involve substantial momen-
tum, the metric can provide misleading information
that dramatically increases the computation time. For
some systems it may be possible design better metrics
(as in the hybrid optimal cost-to-go function in [14]),
but in general there is a need to develop randomized
trajectory design algorithms that achieve reliable per-
formance in spite of a bad metric. It is this demand
that leads to the emergence of the method in this pa-
per.

2 Problem Description

The problems considered in this paper can be for-
mulated in terms of the following components:

1. State Space: A differentiable manifold, X, with
an associated real-valued metric function, p : X x
X — [0, 00), which specifies the distance between
pair of points in X.

2. Boundary Values: z;,;; € X and X001 C X.

3. Constraint Satisfaction: A function, D : X —
{true, false}, that determines whether global
constraints are satisfied for state x.

4. Input set: A set U that specifies the complete
set of controls that can affect the state.

5. Equation of motion: & = f(x,u), that charac-
terizes the evolution of the state of the robot. An
incremental simulator integrates this equation to
obtain future states.

BUILD_RRT(&init)
1 T.init(.’cinit);
for k=1to K do
Trand < RANDOM_STATE(),
Tnear + NEAREST NEIGHBOR(Zrana, T);

Upest < CONTROL(Znear, Trand, Lnew, T , SUCCESS);

T .add_vertex(Tnew);
T.add_edge(.’linear, Tnew, Ubest);

2

3

4

5

6 if success
7

8

9 Return T

Figure 2: The basic RRT construction algorithm,
in which NEAREST_NEIGHBOR chooses the nearest
state to the random state and CONTROL selects the
best input to extend the nearest state. Their algo-
rithms are presented in Fig. 3.

The global state constraints are encoded in the con-
straint satisfaction, which can discriminate if a state
satisfies the global constraints. The equation of motion
expresses the nonlinear differential constraints of the
system. The objective of the trajectory design prob-
lem is to find a control function, w : [tg,tf] — U, in
which ¢y is the starting time, t; is the ending time
when the robot reaches the goal state. By applying
this control sequence to the robot system, the robot
will move from x;,;; and transform from one collision
free state to another collision free state according to
the equation of the motion until it reaches Xgoq;.

3 RRTs and Metric Issues

An introduction to the RRT To understand met-
ric sensitivity of the RRT-based planner, it is neces-
sary to first describe the RRT, which is employed by
the planner to explore the state space. An RRT is
constructed as shown in Fig. 2. At first, let the initial
state be the root of the tree. For each iteration, choose
a random state in the state space, and select the near-
est node in the tree based on the metric function, p.
For the selected nearest state, an input is chosen to ap-
plied to generate a new state. If the new state satisfies
the global constraints, and the distance between the
new state and the random state is the smallest in all
collision free states generated by applying every input
in the input set to the selected state, this new state
will be added to the search tree.

The basic RRT attempts to rapidly explore the state
space. To solve a trajectory design problem, the RRT
is adapted and incorporated into a planning algorithm
[26], such as a goal-biased RRT (sometimes choose the
goal state instead of the random state) and bidirec-
tional RRTs (explore the state space using two RRTs).

NEAREST NEIGHBOR(Z,qnd, T)
1 dmnin<+ oo
2 forallzin T
3 d <+ p(x,Zrand);
4 if d < dmin
5 dmin < d;
6 Thest < T;
7 return Npest

CONTROL(Znear; Trand, Tnew, T , SuCCESS)
1 Amin P(xnear,-z'rand)i
success < false;
for all win U
z' < Integrate(Tpear,u);
if D(z')
d < p(z',Trana);
dmin — d;
success < true;
Ubest £ U;

= = © 00 O Otk W

= o

return Upest

Figure 3: An algorithm to choose best input and its
resulting new state.

Dependency of RRT on the metric The ideal
metric is the optimal cost-to-go, which is the opti-
mal cost for the robot to move from one state to an-
other state. The cost might be understood as the
distance traveled, the energy consumed, or the time
elapsed during the execution of a trajectory. Unfortu-
nately, calculating the optimal cost-to-go is at least the
same difficulty as the trajectory design problem. Both
the differential constraints and the global constraints
have to be considered. The effect of the differential
constraints can be seen from the following example.
Suppose a car-like robot is driving forward with high
speed. The radius of the smallest circle in which it can
turn is 100 meters. The robot is driving past the origin
of y axis to the positive direction of the y axis. One
state is at the 150 meters and another is at -100 me-
ters. A Euclidean metric might cause the algorithm to
prefer the -100 state; however it is worse because the
car cannot drive backwards and would have to turn
around to go to -100 the state; the state at 150, is
closer in terms of the true cost. To understand the
effect of global constraints on the metric, imagine that
a robot is in a labyrinth of nonconvex obstacles. Two
states might be close in terms of a Euclidean metric,
but the correct metric should use the shortest path
within the labyrinth. This is a well-known problem,
which also occurs in potential field methods [2, 17].

The performance degradation occurs for the follow-
ing reasons:

1. The RRT chooses the nearest state only depend-
ing on the metric function. When the metric function

provides bad information, the tree might grow in the
wrong direction, making it hard for the RRT to ex-
plore the whole state space(Fig. 9). Another problem
is that if only the distance information is considered,
many states, which are even destined to a result in a
collision, might be chosen numerous times for expan-
sion.

2. The best input for the nearest state is selected
by relying only on the metric. Similar to the above
situation, selecting the best input based on the metric
information might drive the robot along a poor path.
The input that yields good exploration might be dis-
carded because the new state derived from this input
has ”larger” distance to the random state than that of
the other states derived from the other inputs.

4 Adaptive Reduction of Metric Sensi-
tivity

The idea in this paper is not to design a system-
specific metric, but to collect information during the
exploration of the state space and expand the search
tree according to both the metric information and in-
formation collected. These can make the RRT less
metric-sensitive and therefore more robust.

The following information is collected during the
search:

1. Exploration information: For each RRT-node,
we keep track of whether an input has already
been applied and evaluated. If an input has been
applied for a state, it will not be considered for the
state again. If the inputs for a state are exhausted,
this state will be excluded from the search space.
In this way, the RRT will have more chances to
explore the state space. Moreover, the planner
avoids doing collision checking for the same input
and state repeatedly.

2. Path collision tendency: Given a set, S, of all
input sequences of length n time steps, the path
collision probability of the state, x, is the collision
probability of the path generated by applying a
random input sequence in S to x. It can be cal-
culated by applying all input sequences in S to z
and dividing the number of collision paths by the
number of all input sequences. It provides some
characterization of the distribution of global state
constraints for the planner. States with collision
probability 1 will be prevented from expanding be-
cause all paths via them will collide. States with
less collision probability will be given more prior-
ity to expand because they have better chance to
evade the constraints. However, calculating the
actual collision probability is impractical for large
input sets and long input sequences (one might
as well use dynamic programming to solve the

problem in this case). The path collision ten-
dency, a lower bound for the actual probability
(explained in the following part), is used in this
paper. With more and more exploration, the path
collision tendency will approaches but never ex-
ceed the actual probability and any states whose
actual collision probability is less than 1 will not
be prevented from expanding by overestimating
its collision probability.

To collect the exploration information, a vector is
kept at each state in the search tree. Each element of
the vector corresponds to an input in U (it is assumed
that U is approximated by a finite set). Initially, each
element of the vector is set to be unexpanded. If one
input leads to a collision or it successfully expands a
state and generates a new nodes in the tree, its corre-
sponding element in the vector is set to be expanded.

To calculate the path collision tendency, the follow-
ing method is adopted. Initially, for each new state
appended to the search tree, its collision tendency is
0. In the exploration, when the new state, x5, is se-
lected to expand the tree. Instead of trying all input
sequence of length k, all of the possible first inputs
are tested on it. For example, suppose there are M
inputs in the input set and n inputs lead x, to colli-
sion directly. In this case, the path collision tendency
of zs becomes n/M. Furthermore, the path collision
tendency of its parent state, ,, is increased by n/M?
because we are sure that n inputs of one of its child
states lead to eventual collision. Similarly for the kt*
parent state of x,, n collision inputs of z; will increase
its path collision tendency by n/M (k+1) " Because the
path collision tendency accumulates only when colli-
sions happen and the RRT is not performing an ex-
haustive search, only part of all possible collision paths
are consider; the path collision tendency will always be
no larger than the actual probability. Fig. 4 shows the
value of the path collision tendency collected in the
exploration and provides the global constraints infor-
mation in the searched state space.

The exploration information and path collision ten-
dency help the RRT to choose a better state for ex-
pansion. When selecting the nearest neighbor state
for a random state, the planner will first check if all
the inputs of a state, x, are exhausted. If they are
exhausted, = is just ignored; otherwise, the probabil-
ity of not choosing = equals path collision tendency of
2. The modified NEAREST NEIGHBOR function is
given in Fig. 5.

The exploration information is helpful for selecting
the best input. When a state is selected, whether a
input is an expanded input will be checked first. If it is
an expanded input, it will not be considered, otherwise
it will be expanded to see if the new state is collision
free and is closer to the random state. If this new state
is collision free and closer to random state, this input
will be considered as a better input. If the new state

el # Sl e

Fl

LYy B
"

-
H
a
=
.
X
-
b
-
=

L .
ot s,
P

=k aeati ow YR

b B AT g -

-

L o L B

Figure 4: Path collision tendency collected in the ex-
ploration, in which the points represent the states
and the shade of a point represents the value of the
path collision tendency (darker indicates higher colli-
sion probability.

is in the collision region, the collected information will
be collected. The modified CONTROL algorithm is in
Fig. 6.

5 Improved RRT-Based Planners

The improved RRT can be incorporated into any of
the RRT-based planners described in [26]. A single-
tree planner expands one RRT from the initial state,
and a solution is found after a new state added to the
RRT that lies in Xg04;. A goal-based planner is ob-
tained by replacing the random state with a function
that tosses a biased coin to determine what should be
returned. If the coin toss yields “heads”, then zg04; is
returned; otherwise, a random state is returned. Even
with a small probability of returning heads (such as
0.05), the method usually converges to the goal much
faster than the basic RRT. If too much bias is intro-
duced; however, the planner begins to behave like a
randomized potential field planner that is trapped in
a local minimum.

A bidirectional planner expands two trees from both
the initial state and the goal state, and a solution if a
pair of states, one from each tree, are within a distance
threshold. The computation time is divided between
two processes: 1) exploring the state space; 2) trying to
grow the trees into each other. Two trees, 7, and T are

NEAREST _NEIGHBOR(Zrqnd, T)
2 forallzinT

3 if inputs of = are exhausted

4 r < random number in [0,1];

5 if r > o(x);

6 d p(wamrand);

7 ifd <dpin

8 dmin — d;

9 Toest < T3

10 return Tpey;

Figure 5: The modified NEAREST_NEIGHBOR al-
gorithm, in which o(z) represents the path collision
tendency of the state x.

CONTROL(Znear; Trand, Tnews T > SUCCESS)

2 success < false;

3 foralluinU

4 if u has not been expanded

5 z' « Integrate(Tnear,u);
6 if D(z')

7 d+ p(',Trand);

8 if d < dpmin

9 dmz’n — d;

10 success < true;

11 Ubest < U;

12 else

13 mark u as expanded

14 UPDATE_TREEINFO(2neqr, T)

15 mark upest as expanded
16 return Upest

Figure 6: Modified CONTROL algorithm, in which
the UPDATE_TREEINFO function updates the infor-
mation during the exploration. The detailed algorithm
is given in Fig. 7.

UPDATE_TREEINFO (Znear, T)
1 p+ 1/M;
0(Znear) & 0(ZTnear) + p;
p+ 1/M?
Z1 < Tpear;
while z; is not root
22 parent(z1);
o(z2) o(x2) +p;
p < p/M;
Tl < T2,

© 00O Uik Wi

Figure 7: An algorithm to collect information during
the exploration.

B

Figure 8: The task is to design a trajectory that causes
a fast lane change for a car going 60 mph.

maintained at all times until they become connected
and a solution is found. In each iteration, one tree
is extended, and an attempt is made to connect the
nearest vertex of the other tree to the new vertex.

The performance is generally better in comparison
to a single-tree planner; however, detecting a solution
becomes an interesting problem. It is possible that
during the exploration of the dual RRTs the original
planner might continue to explore the state space even
there is already a solution existed between the two
RRTs. The exploration fronts of two search trees pass-
ing through each other is also mentioned in [16]. To
overcome the above problem, we currently test whether
each new node in one tree is within a specified dis-
tance to any node in the other tree. Although costly,
it generally leads to reliable performance because all
alternatives are considered.

6 Experimental Results

Our implementation was built on top of the C++
Motion Strategy Library!. FExperiments were con-
ducted on a 1000Mhz PC running Red Hat Linux
6.2. Comparisons between planners were conducted
in which for each type of planner, one version uses
the original RRT, and the other uses the improved
RRT proposed in this paper. Several experiments were
performed for challenging trajectory design problems
that include vehicle dynamics problems and spacecraft
problems.

Fig. 8 shows a problem in which a car drives at
96kph and needs to complete a lane changing maneu-
ver in a 305m stretch of road. This problem is referred
to in the automotive industry as the Consumer Union
Short Course. The original RRT and the improved
RRT are shown in Fig. 9 and Fig. 10, respectively.
The vehicle dynamics model is highly nonlinear, con-
siders nonlinear loads on the pavement, and has five
state variables. It is a simplified version of the nine-
dimensional system given in the appendix.

Figure 11 gives some comparative statistics for so-
lutions to the lane changing problem under the appli-
cation of the bidirectional planner. Fifty trials were

Lhttp://janowiec.cs.iastate.edu/msl/

Figure 9: RRT exploration (after 10000 iterations), us-
ing a weighted Euclidean metric. Exploration is lim-
ited because some nodes are repeatedly selected for
expansion without making progress.

Figure 10: Improved RRT exploration (after 6555 it-
erations), using the same metric.

performed in which six versions were run: the orig-
inal RRT with 2000, 4000, and 8000 iterations, and
the improved RRT with 2000, 4000, and 8000 itera-
tions. Note that the success rate improves dramati-
cally. Furthermore, the average number of nodes gen-
erated by the improved RRT is greatly increased, in-
dicating greater exploration. Also, less collision detec-
tion was performed by the improved RRT. Although
computation times are comparable, note that most of
the original RRT trials result in failure.

Fig. 1 shows an experiment of driving a car at 72kph
through a virtual town which is 300m by 300m. The
nine-dimensional system is described in the appendix.
The model considers the rolling angle and the rolling
speed of the car. The pressure on the individual tires
varies because of rolling effects. If the pressure on one
tire is less than 0, the car is in a dangerous state. This
makes it very difficult to control.

Based on 50 trials, in which for each trial, there are
60000 RRT iterations, the improved goal-biased RRT
planner finds the solution 38 times with an average of
989.65 seconds and 25712.1 nodes. The original goal-
biased RRT planner performed much worse, finding a
solution only 10 times out of 50 trials (note that either
success rate can be improved by increasing the number
of iterations).

The final experiment involves moving an underac-
tuated spacecraft out of a cage by firing thrusters (Fig.
12). The model is a twelve-dimensional nonlinear sys-

RRT Planner Improved RRT Planner
It 2000 | 4000 | 8000 2000 4000 8000
S 1/50 | 0/50 | 4/50 || 23/50 | 37/50 | 49/50

N 336 - 636.5 1359 2542 3283
CD 56.9 - 27.3 2.48 4.49 5.75
T 10.61 - 52.15 11.9 28.8 44.7

Figure 11: Comparison of RRT-based planner and Ro-
bust RRT-based planner, in which “It” means how
many iterations the search tree extends, “S” means the
number of successes out of 50, “N” means the average
nodes in the search tree, “CD” means the average col-
lision checking times (in thousands), “T” means the
average time needed to find the solution.

tem described in the appendix. The spacecraft can
translate and rotate in 3D space. Three thrusters pro-
vide the driving forces and torques, which applied in
directions that avoid the mass center. For 50 trials
and 40000 RRT iterations in each run, the improved
bidirectional RRT planner solves the problem 41 times
with an average of 737.32 seconds and 17129 nodes.
The original bidirectional RRT planner only solved the
problem 3 times out of 50 trials, even though 100000
RRT iterations were run in each trial.

7 Discussion

We have presented an improved RRT-based plan-
ning method for problems that involve obstacles, high
dimensionality, and nonlinear systems with drift. In
particular, sensitivity to poor metrics is reduced by ap-
plying information gathered during the search. From
the perspective of classical AI search, if the random
state in the RRT algorithm is replaced by the goal
state, then the RRT reduces to a greedy search that
does not consider repeated states, and is based on the
single heuristic metric function. RRTs are able to over-
come typical local minima problems; however, the ef-
ficiency of the search still depend on the quality of
the heuristic information. The improved RRT uses
the exploration information to exclude the repeated
states from the state space and enables the planner
to have more chances to search the unexplored state
space. The path collision tendency collected during the
exploration provides the global state constraints infor-
mation distributed in each state in the search tree.
Combining the collected information and the metric
function yields an improved RRT-based planner that
can find the solutions more efficiently.

To handle the problem of search frontiers of the bidi-
rectional planner passing through each other, a naive
method was used in this paper by checking every new

Figure 12: An experiment of thrusting a spacecraft
with 3 thrusters to move out of a cage

pair of states. It is very time consuming especially
when the problem is difficult and the number of the
states in the tree is large. Some research in the bidi-
rectional search, such as BS* [19] and wave-shaping
algorithms [8, 9] might help to alleviate this problem.

8 Acknowledgments

We are very grateful to James Bernard for his gen-
eral advice, and for assisting us in the development of
the vehicle dynamics models used in the experiments.
We also thank James Kuffner and Libo Yang. This
work was funded in part by NSF CAREER Award
IRI-9875304 (LaValle).

References

[1] J. Barraquand and J.-C. Latombe. Nonholonomic
multibody mobile robots: Controllability and motion
planning in the presence of obstacles. In IEEE Int.
Conf. Robot. & Autom., pages 2328-2335, 1991.

[2] J. Barraquand and J.-C. Latombe. Robot motion
planning: A distributed representation approach. Int.
J. Robot. Res., 10(6):628-649, December 1991.

[3] R. E. Bellman. Dynamic Programming. Princeton
University Press, Princeton, NJ, 1957.

[4] J. Bernard, J. Shannan, and M. Vanderploeg. Vehicle
rollover on smooth surfaces. In_Proc. SAE Passen-
ger Car Meeting and Ezposition, Dearborn, Michigan,
1989.

[5] D. P. Bertsekas. Convergence in discretization proce-
dures in dynamic programming. IEEE Trans. Autom.
Control, 20(3):415-419, June 1975.

[6] J. Bobrow, S. Dubowsky, and J. Gibson. Time-
optimal control of robotic manipulators. Int. Journal
of Robotics Research, 4(3), 1985.

[7] J. Canny, A. Rege, and J. Reif. An exact algorithm
for kinodynamic planning in the plane. Discrete and
Computational Geometry, 6:461-484, 1991.

[8] D. D. Champeaux. Bidirectional heuristic search
again. Journal of the ACM, 30(1):22-32, January
1983.

[9] D. D. Champeaux and L. Sint. An improved bidirec-
tional heuristic search algorithm. Journal of the ACM,
24(2):177-191, April 1977.

[10] M. Cherif. Kinodynamic motion planning for all-
terrain wheeled vehicles. In IEEE Int. Conf. Robot.
& Autom., 1999.

[11] C. Connolly, R. Grupen, and K. Souccar. A Hamil-
tonian framework for kinodynamic planning. In Proc.
of the IEEE International Conf. on Robotics and Au-
tomation (ICRA’95), Nagoya, Japan, 1995.

[12] B. Donald and P. Xavier. Provably good approxima-
tion algorithms for optimal kinodynamic planning for
cartesian robots and open chain manipulators. Algo-
rithmica, 14(6):480-530, 1995.

[13] B. Donald and P. Xavier. Provably good approxi-
mation algorithms for optimal kinodynamic planning:
Robots with decoupled dynamics bounds. Algorith-
mica, 14(6):443-479, 1995.

[14] E. Frazzoli, M. A. Dahleh, and E. Feron. Robust hy-
brid control for autonomous vehicles motion planning.
Technical Report LIDS-P-2468, Laboratory for Infor-
mation and Decision Systems, Massachusetts Institute
of Technology, 1999.

[15] G. Heinzinger, P. Jacobs, J. Canny, and B. Paden.
Time-optimal trajectories for a robotic manipulator:
A provably good approximation algorithm. In Proc.
of IEEE Int. Conf. on Robotics and Automation, pages
150-155, Cincinnati, OH, 1990.

[16] H. Kaindl and G. Kainz. Bidirectional heuristic search
reconsidered. Journal of Artificial Intelligence Re-
search, pages 283-317, December 1997.

[17] O.Khatib. Real-time obstacle avoidance for manipula-
tors and mobile robots. Int. J. Robot. Res., 5(1):90-98,
1986.

[18] R. Kindel, D. Hsu, J.-C. Latombe, and S. Rock. Kin-
odynamic motion planning amidst moving obstacles.
In IEEE Int. Conf. Robot. & Autom., 2000.

[19] J. BH. Kwa. BS* An admissible bidirectional
staged heuristic search algorithm. Artificial Intelli-
gence, 38:95-109, 1989.

[20] R.E. Larson. A survey of dynamic programming com-

putational procedures. IEEE Trans. Autom. Control,
12(6):767-774, December 1967.

[21] R. E. Larson and J. L. Casti. Principles of Dynamic
Programming, Part II. Dekker, New York, NY, 1982.

[22] J.-C. Latombe. Robot Motion Planning. Kluwer Aca-
demic Publishers, Boston, MA, 1991.

[23] S. M. LaValle. Numerical computation of optimal nav-
igation functions on a simplicial complex. In P. Agar-
wal, L. Kavraki, and M. Mason, editors, Robotics: The
Algorithmic Perspective. A K Peters, Wellesley, MA,
1998.

[24] S. M. LaValle. Rapidly-exploring random trees:
A new tool for path planning. TR 98-11,
Computer Science Dept., Iowa State University.
<http://janowiec.cs.iastate.edu/papers/rrt.ps>, Oct.
1998.

[25] S. M. LaValle and J. Kuffner Jr. Randomized kin-
odynamic planning. In Proc. of IEEE Int. Conf. on
Robotics and Automation, 1999.

[26] S. M. LaValle and J. Kuffner Jr. Rapidly-exploring
random trees: Progress and prospects. In 2000

Workshop on the Algorithmic Foundations of Robotics,
2000.

[27] K. M. Lynch and M. T. Mason. Stable pushing: Me-
chanics, controllability, and planning. Int. J. Robot.
Res., 15(6):533-556, 1996.

[28] C. O’Dunlaing. Motion planning with inertial con-
straints. Algorithmica, 2(4):431-475, 1987.

[29] J. Reif and H. Wang. Non-uniform discretization ap-
proximations for kinodynamic motion planning. In
J.-P. Laumond and M. Overmars, editors, Algorithms

for Robotic Motion and Manipulation, pages 97-112.
A K Peters, Wellesley, MA, 1997.

[30] J. H. Reif. Complexity of the mover’s problem and
generalizations. In Proc. 20th IEEE Symp. on Foun-
dations of Computer Science (FOCS), pages 421-427,
1979.

[31] G. Sahar and J. M. Hollerbach. Planning of mini-
mum time trajectories for robot arms. Int. Journal of
Robotics Research, 5(3):90-100, 1986.

[32] Z. Shiller and S. Dubowsky. On computing time-
optimal motions of robotic manipulators in the pres-

ence of obstacles. IEEE Trans. on Robotics and Au-
tomation, 7(7), December 1991.

[33] G. J. Toussaint, T. Bagar, and F. Bullo. Motion plan-
ning for nonlinear underactuated vehicles using hinfin-
ity techniques. Coordinated Science Lab, University
ot Illinois, September 2000.

Appendix

The nine-dimensional car model The follow-
ing model is adapted from [4]. The state vector is
(z,y,7,%,0,q,v,8,5). The 3D coordinate frame is de-
signed with the z coordinate increasing from left to
right, the y coordinate increasing from top to bottom,
and the z coordinate inward (to form a right-handed
coordinate system). Let 8 be the steering angle. Let a
and b be the distance from the front and rear axles to
the car center, respectively. Let ¢ be the yaw angle of
the car. Let s be the forward speed of the car, and let
v be the sideways speed (arising from slipping). Let r
be the angular velocity. Let ¢ be the roll (which de-
scribes the sideways tilting of the car). Let g be the

roll angle rate. Let oy and a, be the slipping angle
of the front and rear wheels, respectively. These are
expressed as

v+ ar
apr = -
f " B
and
v—br
o, = .
s

Let Coy and Cy, be the cornering stiffness between
the forces along the y axis, Fy,y and F),, respectively,
on the front and rear wheels. TUnder some condi-
tions, it is possible for the car to slip sideways. If
Nip/2 > Cop tan(|ayg|), the calculated friction force is
less than the maximum possible friction, then Fy; =
—Cqyray; otherwise, Fyr = uNgSgn(ayf)(l — z¢/2),
in which Sgn denotes the sign function, p is a con-
stant, and zy = Nyu/2Csstan(|ay|). Similarly, if
Nyp/2 > Cyrtan(|ay]), then Fy, = —Cyra,; other-
wise, Fy, = puN,Sgn(a,)(1 — 2,/2), in which z, =
N¢p/2Cqr tan(|a,|). Let M be the car mass, and let
I be the yaw moment of inertia. Let Hy be the dis-
tance from the joint connecting the chassis with the
car frame (the chassis and frame are flexibly attached
to model a simple suspension system). The constants
K, ¢, and other details are described an in [4].

Let h = (—(K — MgHs)¢ — cq — (Fys + Fyr)Hs) /1.
The following represent the nine equations of motion:
& =scosty—vsiny, §y = ssinyp+vcosy, © = (Fypa—
F?ﬂ'b)/[a ¢ =, ‘b : q, g = h‘a v= (Fyf +Fyr)/M_
sr— Hoh, § = w1, = us.

The inputs are u;, which is linear acceleration, and
ug, which is the change in the steering angle.

The twelve-dimensional spacecraft model The
state is (SL’, Yz, ¢; ¢7 ﬂ; Sz S8y, 82,8y,8¢, 8[‘3)7 in which
x,y,z are the position, ¥, ¢, 8 are the Euler orienta-
tion angle, s;,sy,s, are the speeds of translation in
z,y,z axis directions and sy, 54,53 are the speeds of
the Euler angles.

Let M is the mass of the spacecraft, I is its inertial
matrix. Three thrusters are respectively installed on
the z,y, 2z axis direction. To provide both the driving
forces and torques, these thrusters do not apply the
force through the mass center. Let the forces from the
thrusters are F;, Fy, F;, the vertical distance from the
mass center to the force is Ly, Ly, L, and the orienta-
tion transformation matrix is R, which is the function
of Y, ¢, B. The twelve motion equations are:

T = Sg, y = Sy,
Z = Sz, 'l/} = Sy
¢ = S¢» B = S(ﬂ)a
$g =Fy/M, $, = F, /M,
5, =F, /M, 5y =1[1, 0, 0] R Ayyg,
86 =10, 1, O] R Aygp,
56 =10, 0, 1] R Ayges,

in which Aygg = I~ [FyL,, F,L,, F.L.]7.

