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Deterministic vs. Probabilistic Roadmaps
Michael S. Branicky, Steven M. LaValle, Kari Olson, Libo Yang

Abstract— Within the popular probabilistic roadmap (PRM)
framework for motion planning, we challenge the use of randomiza-
tion. By applying quasi-random sampling techniques, we illustrate
both experimental and theoretical advantages of using deterministic
samples. Two quasi-random variants of PRM-based planners are
proposed: 1) a classical PRM with quasi-random sampling, and 2)
a quasi-random lattice-based Lazy roadmap. Both have been imple-
mented, and are shown through experiments to offer some perfor-
mance advantages in comparison to their randomized counterparts.
Furthermore, our theoretical analysis shows that our approach leads
to deterministic resolution completeness. We obtain the best possible
asymptotic convergence rate, which is shown to be superior to that
obtained by random sampling.

I. INTRODUCTION

Over two decades of path planning research have led
to two primary trends. By the 1980s, deterministic ap-
proaches provided both elegant, complete algorithms for
solving the problem (e.g., [10], [38], [41]), and also useful
approximate or incomplete algorithms (e.g., [14], [15], [23],
[28]). The curse of dimensionality due to high-dimensional
configuration spaces motivated researchers from the 1990s
to the present time to develop randomized approaches
which are incomplete, but capable of efficiently solving
many challenging, high-dimensional problems [4], [22], [26],
[28], [33]- A similar pair of trends occurred many years ago
in the area of numerical integration and related optimiza-
tion fields, where they were followed by a third trend: the
development of quasi-random approaches that use deter-
ministic sampling to achieve performance that is often su-
perior to random sampling. Quasi-random sampling ideas
have improved computational methods in many areas, in-
cluding integration [44], optimization [35], image process-
ing [18], computer graphics [42], and computational geom-
etry [11]. In this paper, the term quasi-random can be con-
sidered synonymous with deterministic; the term exists to
emphasize comparisons with random and pseudo-random
concepts.

It is therefore natural to ask: Can quasi-random sam-
pling ideas also improve path planning methods designed
for high degrees of freedom? Is randomization really the
key to solving high-dimensional problems? Contrary to
current motion planning trends, we argue in this paper
that randomization is not necessarily advantageous in solv-
ing high-dimensional planning problems. In some cases it
might lead to simpler algorithms; however, randomization
itself it is not the fundamental reason why path planning
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approaches have been successful in practice.

In this paper, we investigate the use of deterministic sam-
pling in the context of the popular probabilistic roadmap
(PRM) framework introduced in [26]. The main idea of the
PRM is to generate samples at random in the collision-free
subset of the configuration space, and then build a graph of
collision-free paths by connecting pairs of samples that are
within a specified distance threshold. The key novelty over
naive grid-based searching algorithms is the use of random
samples as opposed to using the tiling of samples and lattice
structure provided by a grid. While the number of sam-
ples required for a grid is known to increase exponentially
in dimension, it was argued that the PRM was “primarily
developed for robots with many dofs” [26] by overcoming
this difficulty through random sampling. Thus, the PRM
framework represents an ideal context for evaluating deter-
ministic sampling ideas.

Many extensions and variations of PRMs have been pro-
posed in the literature [1], [2], [8], [20], [31], [39], [43], [50].
Most variations consider alternative strategies for generat-
ing samples using randomization. For example, the Visi-
bility PRM generates samples at random but only keeps
two kinds: 1) those declared as guards that are not able to
connect to other guards, and 2) those declared as connec-
tors, which connect to guards and bring together two or
more connected components of the roadmap [43]. Creating
nodes in narrow passages has been the main motivation of
the enhancement step in [25], the generation of nodes near
the configuration space obstacles in [1], the penetration of
obstacles in [21], the Gaussian sampling in [8], the retrac-
tion to the configuration space medial axis in [50], and the
use of the workspace medial axis in [20] and [39]. It is dif-
ficult to compare random sampling to deterministic sam-
pling for each variation of the PRM. We speculate that ran-
domization appearing in other sampling techniques could
be safely replaced and possibly improved with determinis-
tic sampling; however, case-by-case comparisons would be
necessary, and are beyond the scope of this paper.

One PRM variation that considers an idea independent
of sampling is the Lazy PRM [6]. In this case, the idea is to
first construct a roadmap that ignores collision constraints,
and then perform collision checking to validate edges only
while searching for a solution. This results in dramatic
reduction in preprocessing time. In the worst case, all edges
will be checked, which is only as bad as the original PRM.
Given that the idea is sampling independent, we chose to
make and evaluate deterministic versions of the Lazy PRM
in addition to the basic PRM.

At first glance, the progression from deterministic to ran-
domized, and then back to deterministic might appear ab-
surd; thus, some explanation is required. There appear to
be two prevailing reasons for the preference of randomized



methods over classical deterministic techniques: 1) they
fight the curse of dimensionality by allowing a problem to
be solved without prior, systematic exploration of all alter-
natives; 2) if the “problem maker” is viewed as an opponent
in a game, then one can often avoid defeat by employing a
random strategy (imagine defeating a deterministic strat-
egy by designing a problem that causes worst-case perfor-
mance).

The first reason is often motivated by considering that
a grid with a fixed number of points per axis will require
a number of points that is exponential in the dimension
of the space. However, this result is not the fault of grids
or even deterministic sampling. It was proven long ago by
Sukharev [45] that any sampling method that constructs a
good covering of the space requires an exponential num-
ber of samples.! We believe the explanation for good
performance of path planners in solving challenging high-
dimensional problems is that they are able to either exploit
some greedy heuristics and/or find solutions to easier prob-
lems early by using low-resolution sampling. These benefits
are independent of the issue of randomization versus deter-
minism. We note that other researchers have argued that
the PRM sampling method must appropriately adapt to
the difficulty of the problem, as opposed to attempting a
uniform covering (e.g., [21], [43]). We are in agreement with
this idea, independently of whether samples are random or
deterministic.

The second reason (defeating an opponent) might be
valid in the case of “true” random numbers; however,
any machine implementation generates a deterministic se-
quence of pseudo-random numbers. These numbers are
designed to meet performance criteria that are based on
uniform probability densities; however, once it is under-
stood that these numbers are deterministic and being used
to solve a particular task, why not design a deterministic
sequence that can solve the task more efficiently, instead
of worrying about statistical closeness to a uniform proba-
bility density? This motivates the design of quasi-random
numbers. One could argue that it is difficult or impossi-
ble for an opponent to obtain the seed in a pseudo-random
number generator; one could even attempt to construct a
natural seed for number generation as considered in cryp-
tography [40]. However, even if we suppose that true ran-
dom numbers exist, it seems unlikely that practical ex-
amples drawn from applications will contain configuration
spaces that are designed to break a specific deterministic
sampling strategy. Furthermore, randomization can even
be introduced back into a deterministic sampling strategy
for precisely the reason of fooling an adversary while still
maintaining quasi-random sample distribution properties
that are superior to pseudo-random sampling [32].

In Section II we give an overview of quasi-random sam-
pling methods and literature. Section III presents a PRM
in which the pseudo-random samples have been replaced
with quasi-random samples; several experimental compar-
isons are made that illustrate the advantages of determin-

1For brevity, we call this the Sukharev sampling criterion; the
“goodness” is in terms of point dispersion, which will be defined in
Section II.

istic sampling. Section IV presents a Lazy PRM that re-
places pseudo-random samples with a deterministic lat-
tice; we refer to this as the Lazy LRM. Our experiments
show in this case that deterministic samples offer additional
benefits, such as immediate knowledge of neighborhood
structure and fast initial roadmap setup time. Section V
presents some analysis, including deterministic guarantees
that our planners succeed, which is not possible in the case
of randomized planners. Finally, some conclusions are pre-
sented in Section VI.

Parts of the work presented here were presented in earlier
form in [9].

II. SAMPLING METHODS

Deterministic sampling techniques have been developed
by numerous mathematicians over the past century. Ex-
cellent overviews of the subject include [32], [35]. A brief
treatment, specific to our problem, is presented here.

A. Sampling Criteria

Let X = [0,1]¢ C R? define a space over which to
generate samples.? Consider designing a set, P, of N d-
dimensional sample points {pg,...,pny_1} in a way that
covers X uniformly in some sense. If d = 1, the points may
be evenly spaced in an obvious, uniform way, but for d > 1
the problem becomes very challenging. There are both the
challenges of defining a useful criterion of uniformity and
then designing a sample set that attempts to optimize the
criterion.

A good criterion should measure whether the sample
points appear reasonable in various regions of X. For ex-
ample, the PRM repeatedly tries to connect to samples in
a randomly-centered ball in X. It would be useful if the
criterion measures how many samples will fall into these
neighborhoods. With this in mind, define a range space,
R, as a collection of subsets of X. Let R € R denote one
such subset. Reasonable choices for R include the set of all
axis-aligned rectangular boxes, the set of all balls, or the
set of all convex subsets.

Let p(R) denote the Lebesgue measure (or volume) of
subset R. If the samples in P are uniform in some ideal
sense, then it seems reasonable that the fraction of these
samples that lie in any subset R should be roughly u(R)
(divided by p(X), which is simply one). We define the
discrepancy [49] to measure how far from ideal the point
set P is:

D(P,R) = sup

‘|PmR| 3
ReER

M(R)‘ 1)

in which | - | applied to a finite set denotes its cardinality.

For a given range space, the goal is to select P to mini-
mize (1). If N is fixed, then the set of samples is considered
closed. An infinite sequence of samples is considered open,
and it can be evaluated by applying (1) asymptotically as
a function of N. By fixing N, lower discrepancy can gener-
ally be obtained. For example, if N = 1, P might contain

2This is without loss of generality because scalings, translations,
and embeddings are easily accomplished.



one point at the center of X. Imagine that this is the first
point in an open sequence. For N = 4, having the one point
at the center is probably not optimal. Thus, with closed
sample sets the points can be arranged in any way, but for
open sets they are bound to the sequence. Even though
closed sample sets can obtain lower discrepancy, an infi-
nite sequence is often more useful in applications because
it provides samples incrementally (which makes it easier to
replace a pseudo-random sequence).

Whereas discrepancy is based on measure, a metric-
based criterion, called dispersion, can be introduced:

(P, p) = sup min p(z, p). (2)
zeX PEP

Above p denotes any metric, such as Euclidean distance
or {°. We refer to such variants as Fuclidean dispersion
and £*° dispersion. Note that if p is a Euclidean metric,
the dispersion yields the radius of the largest empty ball.?
If R represents the set of all balls, then D is at least as
large as this volume because |P N R| = 0. It is known that
8(P,p) < D(P,R)7, if p is the £ metric and R is the
set of all axis-aligned rectangular subsets [35], [46]. (See
those references and [32] for further results.) Thus, low
discrepancy implies low dispersion. Dispersion is useful
in the analysis of the PRM because it indicates whether
samples can be connected for a given connection radius
parameter.

For a fixed N, it is interesting to consider the best possi-
ble dispersion that can be obtained for any sample set. We
refer to the following as the Sukharev sampling criterion
[45]: .

P> i ©
which holds true for any point set P, when § is the £*° dis-
persion. Suppose we would like to place N points in [0, 1]¢
so that the £°° dispersion is a small as possible. Assume for
convenience that N4 is an integer. Solving (3) for a pre-
scribed dispersion yields, N > (1/24)%, which means that
the number of samples is exponential in dimension, regard-
less of how the points are placed! It was also shown in [45]
that for any d and N, there exists a set, P, of N points
such that (3) is an equality. This is achieved by arranging
the points in a grid in which the discretization interval is
roughly (due to the floor) N~ and the first point is shifted
1 _1 .. .
3N "4 from the origin. This set represents the lowest pos-
sible £*° dispersion; for Euclidean dispersion, it remains an
open and challenging problem to find optimal point sets for
general d and N.

B. Halton, Hammersley, and Other Sample Sets

Numerous low-discrepancy sample sets have been pro-
posed. The choice of one set over others usually depends on
several concerns: 1) the desired range space, R, 2) theoreti-
cal bounds on the discrepancy, 3) the quality of the samples
as observed in applications, 4) the difficulty of construct-
ing the samples. The most common range space is the set

3Actually, for any metric, it gives the radius of the largest empty
ball in that metric restricted to the domain X.

of all axis-aligned rectangular subsets, which we denote by
Raar- The second and third concerns are both included be-
cause current theoretical analysis is unable to completely
characterize the practical value of a low-discrepancy sam-
ple set. For a well-studied sequence of samples, asymp-
totic bounds are usually given on the discrepancy, often
expressed with an unspecified constant. When the con-
stant is known, it is usually large, which produces a pes-
simistic bound. The fourth concern becomes important if
the computational complexity or implementation difficulty
outweigh the utility of the samples.

In an appendix of [32], the current upper and lower
bounds on the best possible discrepancy for an open se-
quence, attainable for different range spaces are summa-
rized. For example, the best known lower bound on D
using Rgqr 18

1
1. 4 ( loglog N >2d—2 )

0 (N log™=" NV logloglog N ’
however, if R represents the set of all balls, then the lower
bound is O(N ~(d+1)/2),

The best known upper bound for open sequences and
Raars O(log:,N ), is achieved by the Halton sequence, which
is constructed as follows [16]. Choose d distinct primes
P1,D2,--.,pd (usually the first d primes, p1 = 2, p» = 3,

..). To construct the ith sample, consider the digits of
the base p representation for i in the reverse order: i =
ap + par + p®as + p*az + ..., in which a; € {0,1,...,p}.
Define the following element of [0, 1]:

The ¢th sample in the Halton sequence is

(rpy (i),mpe (8), - 579, (3),  0=0,1,2,....
A Hammersley sequence is a closed-sequence variant of
the Halton sequence that achieves even lower asymptotic

discrepancy, O(W) [17]. Using only d — 1 distinct

primes, the ith sample in the Hammersley sequence is

(%,rm (@),...

For the case of d = 2, the Hammersley sequence is often
referred to as the Van der Corput sequence [48], which was
introduced much earlier. Figure 1 compares sample sets in
X =[0,1] x [0,1] and also shows the Voronoi diagram of
the point set (i.e., in each region the representative sample
is the closest among all samples). Notice that for pseudo-
random points there is a large variation in region size and
shape, which illustrates the nonuniformity of random sam-
ples. For Halton points, the Voronoi regions appear more
regular, and the Hammersley points are even better be-
cause it is a closed sample set. The computed Euclidean
dispersions for the three cases in order are: 0.0788, 0.0539,
and 0.0413.4 As expected, the dispersion is much better
for Halton and Hammersley sets.

()) i—01.. N1

4We actually computed a variant of dispersion by computing the
largest empty circle whose center lies in the convex hull of the points.
The difference is negligible for the large number of samples.
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(c) 500 Hammersley points

Fig. 1. Shown are 500 pseudo-random, Halton, and Hammersley
points, respectively, plus their associated Voronoi regions. No-
tice the regularity in the Voronoi diagram for the quasi-random
sample sets.

Fig. 2.
golden ratio, a = @ The Voronoi regions are also shown.

200 low-discrepancy lattice points generated by using the

In Section ITI, we use Halton and Hammersley points be-
cause of their well-known performance in practice and their
easy construction. There exist, however, sample sets with
even better performance. Currently, the family of sample
sets with the best known bounds (smallest constants in the
asymptotic analysis) draw from powerful algebraic geome-
try techniques [37]. See [32], [35], [46] for many others.

C. Quasi-Random Lattices

Given the regularity observed for Hammersley points
in Figure 1, it is natural to ask whether low-discrepancy
closed sample sets exist that have grid-like properties, such
as equal spacing between points and offsets to reach neigh-
bors that are identical for any sample. Such sets do ex-
ist and are called quasi-random lattices. Recent analysis
shows that some lattice sets achieve asymptotic discrep-
ancy, O(W%), for Rgar, which is equivalent to that
of the best known non-lattice sample sets [32]. Thus, re-
stricting the points to lie on a lattice seems to entail little
or no loss in performance [19], but with the added bene-
fit of grid-like structure that is useful for path planning.
Furthermore, as shown by Sukharev [45], the best possible
£ dispersion is obtained by placing the points in a grid
configuration.

As an example, consider Figure 2, which shows 200 lat-
tice points generated by the following technique. Let a be
a positive irrational number. For a fixed N (lattices are
closed sample sets), generate the ith point according to
(#,{ia}), in which {-} denotes the fractional part of the
real value (modulo-one arithmetic). This procedure can
be generalized to d dimensions by picking d — 1 distinct
irrational numbers. A technique for choosing the aj pa-
rameters by using the roots of irreducible polynomials is
discussed in [32]. The ith sample in the lattice is

(%,{ial},---,{iad_l}y i=0,1,...,N—1.

Many other possibilities exist for producing low-
discrepancy lattices. One, which is applied in Section IV, is
based on selecting d integers, 21, ..., Z4, and constructing



the ith sample as follows [44]:

121 124 .
— .., == =0,1,...,N —1.
({2} {2, i=on...

A variety of techniques for selecting good zj values are
presented in [44].

It is well-known that the points in a lattice form an
Abelian group with respect to addition, and that all points
can be specified in terms of a collection of d linearly-
independent basis vectors, bq,...,bqg, over the reals. For
any lattice point, p, there exists a set of d integers, 41, ...,

i4, such that
d
p=>)_ibj
i=1

assuming modulo-one arithmetic. Note that if the basis
vectors are chosen as the rows of a d x d identity matrix,
then a classical grid is obtained (which is known to have
high discrepancy, but low dispersion).

By using generators, the grid-like neighbors can be ob-
tained immediately by adding (or subtracting) one of the
generators to the sample. For example, in the case of a 2D
grid, the generators are [1,0], [0,1], which can be used to
obtain the coordinates of standard four-neighbors, or eight-
neighbors by allowing diagonals. This idea generalizes to
any lattice for quick determination of neighboring samples,
which is of critical importance in path planning algorithms
such as the PRM.

One additional feature for some lattices is the ability to
vary the resolution while preserving low discrepancy. Fam-
ilies of embedded lattices are described in [44], in which
each lattice contains twice as many samples as the previ-
ous one, and each lattice includes all points from lower-
resolution lattices. This feature is useful in planning for
gradually increasing the resolution over time. One way to
construct a family of embedded lattices is by

iz L (k1y...,kr,0,...,0)

N P ’
where 7 € {0,...,d}, each k; € {0,1}, the number of lat-
tice points is p" N, and p and N are relatively prime. In
Section IV, we define a lattice-based variant of the Lazy
PRM, and exploit the convenient neighborhood structure
and embeddings of quasi-random lattices.

Summarizing, there are two popular measures of point
uniformity: discrepancy and dispersion, both of which are
relevant in the PRM context. Dispersion indicates whether
there will be at least one neighbor for connection, while
discrepancy tries to ensure there will be an appropriate
number of alternatives for making attempted connections.
Many low-discrepancy and low-dispersion quasi-random
point sets have been proposed. One special subclass is
lattices, which offer built-in neighborhood structures that
are nicely suited for making PRM-like roadmaps.

ITI. Quasi-RaNDOM RoADMAP (QRM)
A. The Basic PRM

We present a brief description of the path planning prob-
lem and the probabilistic roadmap (PRM) approach intro-

BUILD_PRM
1 G.init();
2 fori=1to N
3 g +RAND_FREE_CONF(q);

4 G.add_vertex(q);

5 for each v € NBHD(g,G)

6 if ((not G.same_component(g,v)) and
7 CONNECT(g,v)) then

8 G.add_edge(q,v);

Fig. 3. The preprocessing phase: build a PRM.

duced in [26]. Let C denote the configuration space (or
C-space) of a robot in a 2D or 3D world that contains
static obstacles. Let Cyr.. denote the set of all collision-
free configurations. The path planning problem is to find
a continuous path, 7 : [0,1] = Cgree such that 7(0) = @ini
and 7(1) = ggoai-

The primary philosophy behind the PRM was to perform
substantial preprocessing so that multiple queries for the
same environment could be handled efficiently. Section IV
discusses a single-query version of the PRM. The approach
for the basic PRM results in two phases to path planning.
First, a roadmap encoded as an undirected graph, G, is
constructed in a preprocessing phase. In a query phase,
G is used to solve a particular path planning question for
a given @init and ggoq;. Each vertex in G represents an
element of C¢ree, and each edge represents a collision free
path between two configurations.

The algorithm outlined in Figure 3 constructs a PRM
with N vertices. In Step 3, a pseudo-random configuration
in Cgree is found by repeatedly picking a pseudo-random
configuration until one is determined by a collision detec-
tion algorithm to be in C ... The NBHD function in Line
5 is a range query in which all vertices within a specified
distance of ¢ are returned, sorted by distance from ¢ (other
variations are possible, of course). This is the step in which
the range space concepts from Section II become relevant to
planning: over a certain range space, it is important to have
the points distributed so that NBHD contains a sufficient
number of points. In Step 6, it is sometimes preferable to
replace the condition (not G.same_component(q,v)) with
G.vertex_degree(q) < K, for some fixed K (e.g., K = 15);
this was done in our experiments. The CONNECT func-
tion in Line 7 uses a fast local planner to attempt a con-
nection between ¢ and v. Usually, a “straight line” path
in Cyree is evaluated between ¢ and v by stepping along
incrementally with a collision detection algorithm. In [26]
a node enhancement phase is described which introduces
some heuristic techniques that try to reduce the number
of connected components by adding new nodes in criti-
cal places. We omit this phase here to facilitate sampling
comparisons. A 2D example is shown in Figure 4(a) for
which N = 1000. Note the characteristic clumping of the
randomly-chosen nodes and the relatively large areas of
free space that contain no samples. The figure also con-
firms the well-known fact that narrow passages in C-space
are notoriously difficult to find at random [8], [21]
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Fig. 4. a) A probabilistic roadmap based on traditional, pseudo-
random sampling; b) a quasi-random version based on Hammer-
sley points. Each uses 1000 samples and the same connection
radius, 0.05.

Once the PRM has been constructed, the query phase
attempts to solve planning problems. Essentially, g;ni: and
Qgoal are treated as new nodes in the PRM, and connections
are attempted. Then, standard graph search is performed
to connect @init tO ggoar. If the method fails, then either
more vertices are needed in the PRM, or there is no solu-
tion.

B. QRM Overview

Monte Carlo methods, such as the PRM and random
sampling-based techniques for integration and optimiza-
tion, have been adopted for problems with high dimen-
sion to overcome the curse of dimensionality. Recently,
quasi-Monte Carlo algorithms, which are identical to their
random siblings except that they use deterministic point
sets, have been shown to be both computationally efficient
and accurate for a variety of applications, including 360-
dimensional integrations performed in finance and bounded
optimization [47].

Our approach in the PRM context is to simply replace
the pseudo-random sample generator that appears in Line 3
of Figure 3 with a low-discrepancy, deterministic sampling
method. In Figure 4(b), we show a QRM constructed using
1000 Hammersley points, which is the same number as in
Figure 4(a). Here, however, a path through the narrow
passage has been found, there is no clumping of points,
and every point in C ... is fairly close to a vertex.

We can visualize the importance of the dispersion to the
roadmap by placing a ball with radius equal to the disper-
sion at each sample point; the entire sample space is now
covered. Obviously, the fewer of these balls we have, the
smaller our roadmap is (in terms of number of nodes); the
smaller these balls are, the easier it is to connect a query to
the roadmap. Going back to Figure 4, one can see that the
dispersion in (a) is larger than that in (b). Of course, other
methods (e.g., [8], [21]) can be used to address the narrow
corridor problem; however, it is interesting to note that
better performance can be obtained by merely replacing
pseudo-random samples with deterministic samples. This
seems to contradict the intuition that led to the PRM in the
first place. It may also be possible to improve the perfor-
mance of other PRM sampling techniques [1], [2], [8], [20],
[31], [39], [43], [50] by using deterministic replacements for
the samples.

We have used Hammersley, Halton, and generalized
Faure points as inputs to QRM algorithms to solve a vari-
ety of planning problems in a range of dimensions. Broadly
speaking, the QRM has performance better than or equal
to its PRM counterpart. We present some comparative
experiments in Section ITI-C. In Section V, theoretical ad-
vantages are considered, including resolution completeness,
which is not possible for the original PRM.

C. Comparing PRM and QRM Experimentally

Figure 5 shows the results of experiments performed on
narrow corridor problems that have the same geometry as
the example in Figure 4, but in higher-dimensional spaces.
The configuration spaces range from 2 to 10 dimensions,
and each involves a corridor with two bends and a cubic
cross section with its width indicated in the table (the en-
tire C-space in d dimensions is [0,1]%). The connection
radius is given in the third column. The number of nodes
required to find a path that travels through the corridor
is shown for both the QRM and 100 averaged trials of the
PRM. The final column indicates the improvement factor
of quasi-random over random sampling, in terms of the
number of nodes. We have also generally observed larger
improvement factors as the corridor width narrows. With
wide corridors in high-dimensional spaces, the performance
of the methods appears to be comparable.

Figure 6 shows a 6-DOF planning problem that the QRM
solved with 5908 nodes; the PRM averaged 8020 nodes over
35 trials (the min and max for the PRM were 5551 and
14863, respectively).

In the above experiments, Hammersley points using
the first d — 1 primes were used in C-spaces of di-
mension d. In all experiments, pseudo-random numbers
were generated using the linear congruential generator



| Dim. | Width | Rad. | PRM | QRM | Factor |

2 .03 10 464 195 2.38
3 .05 .25 828 579 1.56
3 10 .40 106 26 4.08
6 10 40 | 12857 | 4052 3.17
10 .25 .60 1531 | 1506 1.02
10 .20 .60 6260 | 2101 2.98

Fig. 5. A comparison between the PRM and QRM for narrow cor-
ridor problems. The QRM improvement factor is shown in the
final column. PRM results are averaged over 100 trials.

Fig. 6. A 6-DOF planning problem in which an elbow-shaped robot
passes through a small opening.

found in MATLAB™ or the random source class of the
LEDA/C++ library. Hammersley-Halton low-discrepancy
sequences were chosen by coding the definitions in Section
II-B. The time to generate the quasi-random samples in
comparison to pseudo-random samples was never a signifi-
cant factor.

IV. LAazy LATTICE ROADMAP (LAZY LRM)
A. The Basic Lazy PRM

A recent PRM variant called the Lazy PRM has been
proposed for the problem of answering single planning
queries efficiently, as opposed to building an extensive
roadmap prior to consideration of a planning query [6].
The resulting planner is sometimes very efficient in com-
parison to the original PRM. This represents a shift from
the multiple query philosophy of the original PRM [26], and
returns to the single query philosophy which was used in
earlier planners [4], [15], [33].

The key idea in the Lazy PRM is to build the roadmap
initially without the use of a collision detector. The differ-
ence with respect to the algorithm in Figure 3 is that the

condition in Lines 6 and 7 is dropped, and Line 8 is exe-
cuted every time. This allows the PRM to be constructed
quickly; however, more burden is placed on the searching
in the query phase. Once an initial-goal query is given, the
planner performs A* search on the roadmap to find a solu-
tion. If any of the solution edges are in collision, they are
removed from the roadmap, and the A* search is repeated.
Eventually, all edges may have to be checked for collision,
but often the problem is solved well before this happens.
If no solution is found, then more nodes may need to be
added to the roadmap. The advantage of the Lazy PRM
is that the collision checking is only performed as needed.
Thus, all edges do not have to be collision checked as in
the case of the original PRM.

One of the difficulties with the Lazy PRM is that it
constructs a large graph that does not represent anything
particular to a given environment with obstacles. Accord-
ing to the experiments in [6], the initial graph construc-
tion time represents a significant fraction of the total run-
ning time. Substantial time is spent on constructing a
randomly-generated graph that may contain thousands of
nodes and edges, and require thousands of nearest-neighbor
queries; however, the roadmap encodes no true information
because the obstacles are ignored. Although the graph con-
tains no problem-specific information, it cannot be com-
pressed nor constructed implicitly because it is based on
random sampling. Another difficulty is that without know-
ing the particular problem, it is difficult to determine how
many vertices should appear in the roadmap. How many
should be added if the query fails?

B. A Lazy LRM from Quasi-Random Lattices

The previously-mentioned difficulties with the Lazy
PRM led us to investigate the use of quasi-random lat-
tices in this context. These difficulties also motivated one
of the Lazy PRM authors to recently make a grid-based
variant [5]. Recall from Section II-C that lattices have a
regular, well-defined neighborhood structure. This allows
the initial roadmap to be implicitly defined with little or no
precomputation because all vertices, neighboring vertices,
and edges are defined implicitly by lattice rules. This is pre-
cisely what is obtained for classical grid search techniques.
The grid can be declared in memory and neighborhoods
are based on simple vector offsets, as opposed to the time-
consuming NBHD range query in Line 5 of Figure 3. If
memory limits are a problem, then a hashing scheme can
be used to represent only those vertices that have been ex-
plored. In a sense, we can make a “lazier” PRM in which
the initial graph is not even explicitly represented.

Given that lattices have discrepancy bounds that are as
good as the best bounds for non-lattice sample sets, we
can make a Lazy LRM (lattice roadmap) that simultane-
ously obtains the low-discrepancy benefits observed in the
QRM and the dramatic reduction in precomputation time.
Furthermore, embedded lattices, discussed in Section II-C,
enable a multi-resolution approach to the problem. For
example, if a lattice with IV points fails to solve a query,
the resolution can be doubled to 2N by implicitly declar-
ing more points. Families of embedded lattices for which



| Prob. | Min | Max | Avg | Lazy LRM |

Elbow | 1250 | 15250 | 4667 3963
Cup | 2000 | 12000 | 4800 2152
Truck | 5000 | 95000 | 35207 5138

Fig. 7. Comparisons of the number of nodes for the Lazy PRM vs.
the Lazy LRM. PRM results are for 25 trials.

| Prob. | Min | Max | Avg | PreCmp | Lazy LRM |

Elbow | 7.0 | 718 | 287 212 10.1
Cup | 233 | 253 | 36.9 15.9 1.23
Truck | 11.2 | 5480 | 935 800 18.5

Fig. 8. Comparisons of the running times for the Lazy PRM vs. the
Lazy LRM. The first three columns give the query times for the
Lazy PRM, and the fourth column is the time to construct the
initial graph for the Lazy PRM. The final column gives the Lazy
LRM query time (there is no initial graph construction because
the lattice is implicitly defined).

each resolution has low-discrepancy are presented in [44].
The basic idea for increasing the resolution in one step is to
reduce the length of a generator by a factor of two, which
doubles the number of points. We chose to use these lat-
tices in our implementation, which is described next.

C. Comparing the Lazy PRM and Lazy LRM

We now present an implementation of the Lazy LRM.
The primary difference with respect to the method in [6]
is that no initial roadmap is explicitly constructed: it is
defined implicitly by the rules of a chosen lattice for fixed
d and N. We also chose to run the A* algorithm only
once, and performed collision detection during the search.
We had first implemented the iterative search and deletion
scheme described in [6], but found it to be much less effi-
cient for our computed examples (for both the lattice-based
and pseudo-random Lazy roadmaps). The implementation
is in LEDA/C++, and uses the PQP collision detection
package from the Univ. of North Carolina. We used values
of z given in the appendix of [44].

We performed dozens of experiments on each of several
examples. Three of these examples are displayed in Figures
6, 9, and 10. These represent 3D environments that con-
tain a 6-DOF robot. The rotation portion of the C-space
is parameterized using yaw-pitch-roll angles. We compare
our Lazy LRM implementation to our implementation of
a (pseudo-random) Lazy PRM (note, however, that one
can adjust many parameters that affect performance). For
the Lazy PRM, we performed 25 trials on each example.
The table in Figure 7 shows the minimum, maximum, and
average number of nodes for the Lazy PRM in the first
three columns. The final column shows the number of
nodes used by the Lazy LRM. Figure 8 compares compu-
tation times. The Lazy LRM shows dramatic performance
improvements, primarily because it exploits the neighbor-
hood structure of the lattice to avoid the precomputation
required by the Lazy PRM. Furthermore, the number of
nodes often appears to be in favor of the Lazy LRM, for
reasons discussed in Section III.

V. THEORETICAL CONSIDERATIONS

Deterministic sampling enables the QRM and Lazy LRM
to be resolution complete, in the sense that if it possible to
solve the query, they will eventually solve it. This is in con-
trast to the original PRM and other randomized variants,
which are only probabilistically complete [28] (the prob-
ability tends to one that a solution will be found as the
number of samples grows to infinity).

Furthermore, we exploit dispersion bounds to character-
ize the set of configuration spaces that can be solved. This
characterization is in terms of a parameter that measures
the narrowest corridor width, in a manner similar to that of
[3], [7], [21]. We define a cylindrical tube, and the “width”
of Cree is expressed in terms of the largest possible cross
section of the tube, over all possible queries. Measuring
this parameter may be as difficult as the planning problem;
however, the expression of planner performance in terms of
parameters that are difficult to measure is common in ran-
domized planner analysis [3], [21], [22], [27]. If a solution
does not exist, the QRM is able to declare that either the
solution path must travel through a narrow passage that
has a width smaller than a specified value, or there is no
solution. Such a result might be useful in applications be-
cause once the corridor is known to be narrower than a
reasonable precision level, it is essentially equivalent to not
having a solution. Unfortunately, our result is based on
dispersion upper bounds that are not as tight as the ob-
served performance in practice. The implication is that
many more samples will be needed than are really neces-
sary before the planner can make conclusions about the
corridor width.

We assume in our PRM analysis that the radius param-
eter used to select neighbors in the NBHD function from
Line 5 of Figure 3 is always sufficiently large. In theory,
the radius can be made large enough so that an attempt
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Fig. 9. Placing a feather (1184 triangles) into a cup (1632 triangles).



Fig. 10. Getting a truck (22284 triangles) out of a cage (1032 trian-
gles).

can be made to connect every vertex to every other vertex.
In practice, this becomes impractical; therefore, a smaller
value is used.

Let v = (init, Ggoat) denote a query. The set, I'(Cfree),
of all queries in which ginit € Cfrees Qgoat € Cfree, and
Qinit 7 Ggoal, for a given Cy is called the query space
of Cfree. Let T's(Cpree) € I'(Cgree) denote the set of all
queries for which a solution exists.

Let C represent any d-dimensional configuration space,
parameterized to yield C = [0, 1]?\ ~, in which \ ~ denotes
appropriate topological identifications along the boundary
of the unit cube. Let ¥ represent the subset of the power
set of C corresponding to all open subsets that can be con-
structed with algebraic constraints, as formulated in [28].

Let a tube, B, represent an uncountable collection of balls
of equal radius whose centers are generated by a continuous
path, 7 : [0,1] = Cfpee. For each s € [0, 1] there exists an
open ball B € B that is centered at 7(s) and has radius
r, which is fixed for all B € B; let B(s) denote the ball
centered at 7(s). We call 2r the width, w(B), of the tube.

Let V(g) denote the set of all points visible from a set
q € Cpree (ie., for each ¢ € V(q), Ag+ (1 —AN)¢' € Csree
for all X € [0,1]).

Suppose that a query v € I's(Cfree) is given. Among all
possible tubes, let B(y) denote the tube with the largest
width such that B(0) C V(ginit) and B(1) C V(ggoar)- In
other words, the entire first ball is visible from ¢;,;:, and
the entire last ball is visible from ggq;. Denote this largest-
width tube as the B(y), and call its width the width, w(y),
of the query. For any query v € I'(Csrec) \ T's(Ctrec), we
say that its width is zero because no tube exists.

Define the width of Cyrece as
WCiree) =  inf  w(). (4)
V€L (Cree)

Let ¥(x) for € (0,00) denote the set of all Cgree € ¥
such that w(Cfree) > . Intuitively, this can be considered
as the set of problems for which the width of the narrowest
corridor is at least x.

Suppose that the roadmap, G, is constructed for a par-
ticular Cyree. Then, the algorithm is said to be complete
for Cgre. if all queries in T'(C f,e) are answered correctly in
the query phase. A solution path must be reported if one
exists; otherwise, failure is reported.

Our first two results establish the resolution complete-
ness and complexity of all QRM-based algorithms (includ-
ing the LRM introduced above). Therein, we only as-
sume that sampling is accomplished using a set P of low-
dispersion points, for which

5(P,p) < b(d)N~?,

where b(d) is a constant that may depend on the dimension
d. Propositions 1 through 3 below hold for any metric,
provided that both tube width and dispersion are measured
using the same metric, p. Propositions 4 through 6 hold
for norms (which are all related by constants in subsets of
R?) under the same provision.

Many such low-dispersion point sets and sequences ex-
ist, as introduced in Section II. For example, consider the
Halton and Hammersley sequences generated by applying
the first d or d — 1 primes: p;, with p1 =2, po =3, p3 =5,
.... The Halton points satisfy [34], [35]

§(P1*) <

5(P7 EOO) < DPa Nﬁl/da

for the Euclidean and ¢°° norms, respectively. The Ham-
mersley points satisfy [34], [35]

§(P,%) <

d—1

204+ p; N7H4,
i=1

S(PL®) < (14 pgi) N7,

The Euclidean constants can be improved by using the re-
sults in [34], however, we avoid any further refinements
here. Improvements can also be obtained by using quasi-
random samples for which tighter bounds exist [35], [37]. A
grid constructed to achieve the Sukharev sampling criterion
[45] yields b(d) = 1+/d for ¢* dispersion. If £ dispersion
is considered, then b(d) can even be made dimension inde-
pendent. In this case, the Sukharev grid yields b(d) = 1,
which is the tightest bound possible.

The following proposition characterizes, in terms of tube
width, the set of C ¢ for which a QRM or LRM will cor-

rectly solve all queries after N samples are used.



Proposition 1 After N iterations, the QRM is complete
for all Cgree € U(4b(d)N /%), in which N is the number
of points, d is the dimension of C, and b(d) is a factor that
depends on the sampling method.

Proof: Suppose first that C = [0, 1]¢ (ignoring any iden-
tifications). Assume that Csc. € ¥(2b(d)N~'/%). To show
completeness, we establish that for any solvable query, a so-
lution path will be found; let v € I's(C sree) be such a query.
Because Cfree € ¥(2b(d)N /%), there exists a tube, B, of
width at least 2b(d)N /4, such that B(0) C V(ginit) and
B(1) C V(qgou)-

Let P denote the set of sample points, which is also the
set of vertices in the roadmap, G. Each ball B € B must
contain at least one ¢ € P. This follows from the fact
that N samples were generated, and it has been shown in
[34] that for Euclidean dispersion, 6(P) < b(d)N~'/2. If
any ball of radius b(d)N~'/? is empty, then the dispersion
would violate this upper bound.

First, consider connecting g;ns¢ and ggoq; to the roadmap.
Since B(0) C V (¢init), all configurations found by linear in-
terpolation between g;n;¢ and any point in B(0) are collision
free. Therefore, g;,;; will be connected to a configuration
in P (either one contained in B(0), or at least one in the
same connected component of G as a configuration of P
that lies in B(0)). Using a similar argument for B(1), ggoa
will also be connected to a roadmap vertex.

It finally remains to show that there exists a path in G
between the two configurations in P to which gini and ggoa
are connected. Consider the balls of B as parameterized
using B(s) for s € [0,1]. We construct a sequence, qo, - ..,
qr—1 of k configurations as follows. Let gy be any element of
PN B(0). Let s1 € [0,1] denote the last point at which the
ball B(s) contains qg, by starting with B(0) and increasing
s continuously. Let ¢ be any element of PN B(s1) \ {qo}-
Note that the B(s;) must contain at least two points in P
because ¢o lies on its boundary. Inductively, let g; be any
element of PN B(s;) \ {gi—1}, where s; is the first point at
which B(s) does not contain g;_;. Note that the induction
is finite, and let gx—; denote the final configuration in the
sequence.

We argue that there must exist a path in G between
each pair, g;, gi+1, of configurations for i € {0,...,k —
2}. The point ¢; must lie on the boundary of B(s;41);
therefore, B(s; 1) contains two points of P. Furthermore,
all points between g; and ¢;11 via linear interpolation must
be collision free. The algorithm in Figure 3 would either
have produced an edge between them, or failed to because
both were already part of the same connected component
of G. Either way, there exists a path in G between g;
and ¢;y+1. By applying this for each configuration in the
sequence, there exists a path in G between ¢o and qp_;.
Furthermore, g is connected to g;nit, and gx—1 is connected
t0 ggoar- Therefore, the query is correctly answered by
returning a solution path.

We now turn to the case in which ¢ = [0,1]¢\ ~, in
which ~ denotes boundary identifications needed to appro-
priately reflect the topology of transformation groups that
arise in motion planning: S', P3, etc. For the dispersion
measurements in [0,1]%, balls near the boundary have to
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Fig. 11. A narrow corridor in C¢yee, used in the proof of Proposi-
tion 3.

be contained entirely inside the unit cube. Once identifica-
tions are considered, some balls are allowed to overflow as
long as their center lies in [0, 1]. Since §(P) < b(d)N—1/¢
for [0, 1]¢, these overflowing empty balls cannot have radius
larger than 2b(d)N ~'/?. Thus, the dispersion in the part of
the proof for [0, 1]¢ is simply scaled by two for the case of
[0,1]%\ ~ by assuming C e € ¥(4b(d)N /%) in the first
step, which establishes the proposition. B

The previous proposition can be reworked to bound the

width of the query:
Proposition 2 After N iterations, the QRM for a query
v either reports a solution path or correctly declares that
one of the following is true: there is no solution path, or
w(7y) < 4b(d)N—1/4.

Proof: This follows directly from Proposition 1. Since
the QRM is complete for ¥(4b(d)N /), if no solution is
found after N iterations, then w(Csree) < 4b(d)N~/? and
w(y) < 4b(d)N-1/. m

The next proposition indicates that if the dispersion is
at least d, then it is possible for a PRM-based planner to
miss solutions in corridors of width 4.

Proposition 3 For any sample set, P, that has dispersion
at least 6, no roadmap constructed using the algorithm in
Figure 8 can be complete for © \ ¥(4).

Proof: We argue that completeness is lost by producing
a Cree and query v € T'y(Cyree) that will be answered
incorrectly. If the dispersion is §, then there exists a ball,
B C [0,1]% with radius & such that PN B = (. Consider
the narrow corridor in Cy.e. that is shown in Figure 11.
Assume that a no tube greater than width § can be placed
in the corridor. If Cyre. is chosen so that B is located as
shown in the shaded area, then there will be no path in G
that traverses the corridor. For any point on one side of the
corridor outside of B, the straight-line path to any point
on the other side of the corridor outside of B will intersect
C\ Cfree- Thus, a solution path will not be found. ®

From this the next proposition follows, which establishes
that any PRM approach will require an exponential num-
ber of samples. It is assumed that the sampling scheme
generates samples independently of the obstacle region.
Proposition 4 Under any sampling scheme (randomized
or deterministic), a roadmap requires a number of samples
exponential in dimension, d, to be complete for ¥(4).

Proof: This follows immediately from Proposition 3 and
the Sukharev sampling criterion [45]. B

We now consider asymptotic bounds for the QRM and
PRM. The next proposition indicates that the QRM does
the best possible, up to a constant of proportionality.
Proposition 5 The number of samples required by the
QRM and Lazy LRM to be complete for ¥(§) is asymp-



totically optimal.

Proof: By Proposition 3, to be complete for ¥(§), the
dispersion must be less than 6. Thus, the goal of the
PRM algorithm should be to reduce § using as few samples
as possible. The Hammersley-Halton sequences achieve
the best possible asymptotic dispersion [34]; therefore, the
number of samples used in the QRM is asymptotically op-
timal. For the Lazy LRM, asymptotic optimality can be
obtained by using the Sukharev grid [45]. B

The following proposition gives some indication that ran-

dom sampling does not yield the best possible asymptotic
convergence in the PRM.
Proposition 6 For a fized d, the PRM with random sam-
pling requires O((log N)2) times as many samples (with
probability one) as the QRM to achieve the same £ dis-
PErsion.

Proof: It was shown by Deheuvels [35] that £>° disper-
sion for random samples is O((log N)2 N~ 1) with probabil-
ity one. The asymptotic dispersion for Hammersley-Halton
sequences is optimal by reaching the Sukharev sampling
criterion, O(N~4). The factor difference between the two
is O((log N)4). ®

It is important to note that there is a well-known gap
between the theoretical bounds for quasi-random sets and
their good behavior observed in practice. If d is large
and N is modest in size, then the theoretical results de-
rived here will not be useful in practice. Nevertheless,
low-discrepancy points have still shown better performance
than random samples in these exact situations [47]. See
Figure 12; it is interesting to note that in 2 dimensions,
3(195)~1/2 ~ (464)~'/* (which uses the discrepancy upper
bound on dispersion for uniform random points; the con-
stants in the a.s. bound are not known to us at this time).
In the other dimensions, N is (sometimes many orders of
magnitude) too small for the theoretical advantages of the
quasi-random points to take effect. Nevertheless, we empir-
ically observe similar or better performance in terms of the
number of nodes required to generate successful plans, as
indicated in Sections III and IV. One way to improve the
gap is to use low-discrepancy sets that have lower proven
bounds than the Hammersley-Halton sets [37].

VI. DiscussiON: WHERE ARE WE GOING?

Based on the proposed planners in Sections III and IV
we conclude that replacing pseudo-random sampling with
deterministic sampling offers both practical and theoret-
ical advantages in the PRM context. Based on our ex-
periments, quasi-random samples appear to offer perfor-
mance improvements similar to those observed in other
fields where Monte Carlo methods were replaced by quasi-
Monte Carlo methods. The regular neighborhood struc-
ture of quasi-random lattices led to further performance
benefits, in the context of lazy evaluation. We emphasize
the difficulty, however, in providing conclusive experimen-
tal comparisons, given that there is no practical way to
represent the distribution of problems on which these al-
gorithms will be applied. Also, it is hard to compare de-
terministic, predictable methods to randomized methods,
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Fig. 12. Comparison of number of points needed to achieve a desired
dispersion, from discrepancy bounds.

which yield varying results in multiple executions. We do,
however, obtain deterministic converge analysis. Our QRM
and Lazy LRM planners can determine whether or not a so-
lution exists at a specified resolution, which is not possible
with their randomized counterparts.

Note that we do not claim that our methods here are
the fastest available. Our goal was simply to illustrate the
power of deterministic sampling techniques in precisely the
place where randomization is currently believed to be of
great value. Many exciting directions for future research
and discussion exist, especially in deterministic analysis of
derandomized path planning algorithms and in considering
possible derandomized versions of other randomized path
planning algorithms, both PRM variants and others.

We have not yet considered the implications of the C-
space topology on the sampling criteria. One of our moti-
vations for choosing the lattices of [44] was their design
for rapid integration of periodic functions (the integra-
tion occurs over a torus). Although the general theory
encompasses arbitrary measures in topological spaces [36],
well-known sample sets such as the Hammersley-Halton se-
quences are designed for low-discrepancy over [0, 1]%. There
are exceptions, such as the low-dispersion sequence given
for a d-dimensional torus in [12] (page 115). If the bound-
ary identifications are taken into account, it should be pos-
sible to take advantage of sample sets that have even lower
discrepancy. The problem of designing low-discrepancy
samples for different topological spaces is yet to be inves-
tigated in the context of motion planning.

We believe the implications of our work put a new twist
on the understanding of various path planning algorithms.
For a fresh perspective, consider the following methods in
light of our work:

e Grid search: Modern planning algorithms have at-
tempted to improve on well-known grid-based search meth-
ods in which the C-space is partitioned into a grid. If
collision checking is performed during search, this classic



approach can be considered as a Lazy LRM in which the
lattice generators are simply the grid directions. A* search
is typically used, but any graph search method is applica-
ble.

+ Potential field methods: Both randomized and deter-
ministic potential field methods attempt to improve search
by using heuristics to escape local minima [4], [15], [24]. For
the randomized potential field planner in [4], the search is
even performed over an implicit grid. Thus, it can be con-
sidered as a Lazy LRM on a grid lattice, with A* search
replaced by the potential field method.

e PRM: The basic PRM proposed the use of substantial
preprocessing to construct a roadmap based on random
sampling in an attempt to reduce the exponential number
of samples needed for a grid-based approach. Given the
Sukharev sampling criterion, however, we know that an
exponential number of samples is needed in any case. Fur-
thermore, random sampling actually achieves slower theo-
retical convergence than deterministic sampling [35].

¢ Lazy PRM: The Lazy PRM provides a kind of missing
link between classical grid search and the basic PRM. The
spirit is much like classical search (assuming only one exe-
cution of the A* algorithm), but occurs over a randomly-
generated graph, instead of an implicitly defined lattice.

e QRM: This appears to an improvement over the PRM
by merely using quasi-random samples. Based on sam-
pling theory, we observe that one must generate an expo-
nential number of samples whether the PRM uses pseudo-
random or quasi-random sampling. The QRM performs
asymptotically-optimal sampling. We could also construct
a Lazy QRM, which we would expect to be an improvement
over the Lazy PRM.

o Lazy LRM: We are back to a method that appears very
similar to classical grid based search, except that the grid is
generalized to a lattice (which is essentially a nonorthogo-
nal grid). Yet surprisingly, the method is an improvement
over the Lazy PRM (and we believe over a Lazy QRM),
which is in turn an improvement to the PRM, which in
turn was designed to avoid the pitfalls of grids. The main
reason why the circular implication falters is that no sam-
pling method can avoid the need for an exponential number
of samples.

¢ Other methods: Of course many other planning ap-
proaches can be considered. Incremental searching meth-
ods, such as the randomized potential field planner [4],
RRTConCon [30], or the planner in [22], can be considered
as alternatives to A* search in any roadmap approach. For
example, the Lazy LRM could be searched using a random-
ized potential field planner instead of A*.

Given these observations, what characteristics are im-
portant for sampling in high-dimensional spaces? We be-
lieve that the ability of a planner to vary the “resolution”
of the sampling during execution is crucial. It must be
able to solve easier queries early at a low level of reso-
lution. Of course, this idea can be traced back to clas-
sic quad-trees and other multi-resolution ideas in planning
(e.g. [14]). Methods such as bidirectional search based
on Rapidly-exploring Random Trees [29], [30] allow solu-
tions to be found at a low level of resolution before sys-
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tematically exploring everything in the worst case. In this
way, easier planning queries can be resolved quickly. In
the sampling-based roadmap context, this means that in-
terleaving roadmap construction and path queries is impor-
tant. It might be possible to find a path with a roadmap
that contains only a few samples. Upon failure, more sam-
ples should be added, and the query can be tried again.
In this case, the planner can answer easier queries quickly
before resorting to a high-level of resolution.

We also recognize the difficulty of naming recent path
planners. The name “roadmap” was introduced in classical
path planning [10], [28], [38] to represent a network of paths
that are accessible from anywhere in C f,.., and the connec-
tivity of the roadmap must preserve the Csc. connectiv-
ity. The original PRM captures this spirit by converging
to the correct connectivity and accessibility probabilisti-
cally. However, the use of grids and lattices in the Lazy ap-
proaches, or other approaches to achieve accessibility and
connectivity, does not seem to capture the spirit of original
roadmaps because the space is densely covered by uniform
sampling. Given our progression of terminology, one can
imagine moving from a PRM, to QRM, to LRM, and finally
to grid roadmap. This is far from the economy of paths ob-
tained by a method such as retraction [38]; it instead corre-
sponds to a quantization effect. Also, single-query planners
such as those in [4], [22], [30], [33] do not attempt to pro-
vide accessibility and connectivity; they perform variants
of classical heuristic search to obtain a solution path for a
single query, which is quite unlike the roadmap framework.
Thus, as non-probabilistic, non-roadmap approaches show
their advantages, the PRM term, and even the roadmap
term in general, may be less useful for characterizing re-
cent, practical approaches to motion planning.

Although this paper has indicated advantages of deter-
ministic sampling methods, we do not claim that random-
ized approaches offer no advantages. For the PRM and
Lazy PRM, it is straightforward to make a derandomized
variant because the samples directly become vertices in the
graph. In general, however, derandomization of algorithms
is a challenging task that often leads to a much more com-
plicated solution [11]. Also, randomization has been found
useful for overcoming uncertainties and improving robust-
ness in contexts such as manipulation planning and exe-
cution [13]. Significant work remains to evaluate tradeoffs
between randomization and determinism for other motion
planning algorithms and for robotics in general.
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