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Chapter 7

Visual Rendering

This chapter addresses visual rendering, which specifies what the visual display
should show through an interface to the virtual world generator (VWG). Chapter
3 already provided the mathematical parts, which express where the objects in
the virtual world should appear on the screen. This was based on geometric
models, rigid body transformations, and viewpoint transformations. We next
need to determine how these objects should appear, based on knowledge about
light propagation, visual physiology, and visual perception. These were the topics
of Chapters 4, 5, and 6, respectively. Thus, visual rendering is a culmination of
everything covered so far.

Sections 7.1 and 7.2 cover the basic concepts; these are considered the core
of computer graphics, but VR-specific issues also arise. They mainly address
the case of rendering for virtual worlds that are formed synthetically. Section
7.1 explains how to determine the light that should appear at a pixel based on
light sources and the reflectance properties of materials that exist purely in the
virtual world. Section 7.2 explains rasterization methods, which efficiently solve
the rendering problem and are widely used in specialized graphics hardware, called
GPUs. Section 7.3 addresses VR-specific problems that arise from imperfections
in the optical system. Section 7.4 focuses on latency reduction, which is critical to
VR, so that virtual objects appear in the right place at the right time. Otherwise,
many side effects could arise, such as VR sickness, fatigue, adaptation to the
flaws, or simply having an unconvincing experience. Finally, Section 7.5 explains
rendering for captured, rather than synthetic, virtual worlds. This covers VR
experiences that are formed from panoramic photos and videos.

7.1 Ray Tracing and Shading Models

Suppose that a virtual world has been defined in terms of triangular primitives.
Furthermore, a virtual eye has been placed in the world to view it from some
particular position and orientation. Using the full chain of transformations from
Chapter 3, the location of every triangle is correctly positioned onto a virtual
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screen (this was depicted in Figure 3.13). The next steps are to determine which
screen pixels are covered by the transformed triangle and then illuminate them
according to the physics of the virtual world.

An important condition must also be checked: For each pixel, is the triangle
even visible to the eye, or will it be blocked by part of another triangle? This
classic visibility computation problem dramatically complicates the rendering pro-
cess. The general problem is to determine for any pair of points in the virtual
world, whether the line segment that connects them intersects with any objects
(triangles). If an intersection occurs, then the line-of-sight visibility between the
two points is blocked. The main difference between the two major families of
rendering methods is how visibility is handled.

Object-order versus image-order rendering For rendering, we need to con-
sider all combinations of objects and pixels. This suggests a nested loop. One
way to resolve the visibility is to iterate over the list of all triangles and attempt
to render each one to the screen. This is called object-order rendering, and is the
main topic of Section 7.2. For each triangle that falls into the field of view of
the screen, the pixels are updated only if the corresponding part of the triangle is
closer to the eye than any triangles that have been rendered so far. In this case,
the outer loop iterates over triangles whereas the inner loop iterates over pixels.
The other family of methods is called image-order rendering, and it reverses the
order of the loops: Iterate over the image pixels and for each one, determine
which triangle should influence its RGB values. To accomplish this, the path of
light waves that would enter each pixel is traced out through the virtual environ-
ment. This method will be covered first, and many of its components apply to
object-order rendering as well.

Ray tracing To calculate the RGB values at a pixel, a viewing ray is drawn
from the focal point through the center of the pixel on a virtual screen that is
placed in the virtual world; see Figure 7.1. The process is divided into two phases:

1. Ray casting, in which the viewing ray is defined and its nearest point of
intersection among all triangles in the virtual world is calculated.

2. Shading, in which the pixel RGB values are calculated based on lighting
conditions and material properties at the intersection point.

The first step is based entirely on the virtual world geometry. The second step uses
simulated physics of the virtual world. Both the material properties of objects
and the lighting conditions are artificial, and are chosen to produce the desired
effect, whether realism or fantasy. Remember that the ultimate judge is the user,
who interprets the image through perceptual processes.



7.1. RAY TRACING AND SHADING MODELS 185

Figure 7.1: The first step in a ray tracing approach is called ray casting, which
extends a viewing ray that corresponds to a particular pixel on the image. The
ray starts at the focal point, which is the origin after the eye transform Teye has
been applied. The task is to determine what part of the virtual world model is
visible. This is the closest intersection point between the viewing ray and the set
of all triangles.

Ray casting Calculating the first triangle hit by the viewing ray after it leaves
the image pixel (Figure 7.1) is straightforward if we neglect the computational
performance. Starting with the triangle coordinates, focal point, and the ray
direction (vector), the closed-form solution involves basic operations from analytic
geometry, including dot products, cross products, and the plane equation [26]. For
each triangle, it must be determined whether the ray intersects it. If not, then
the next triangle is considered. If it does, then the intersection is recorded as
the candidate solution only if it is closer than the closest intersection encountered
so far. After all triangles have been considered, the closest intersection point
will be found. Although this is simple, it is far more efficient to arrange the
triangles into a 3D data structure. Such structures are usually hierarchical so that
many triangles can be eliminated from consideration by quick coordinate tests.
Popular examples include BSP-trees and Bounding Volume Hierarchies [7, 11].
Algorithms that sort geometric information to obtain greater efficiently generally
fall under computational geometry [9]. In addition to eliminating many triangles
from quick tests, many methods of calculating the ray-triangle intersection have
been developed to reduce the number of operations. One of the most popular is
the Möller-Trumbore intersection algorithm [19].

Lambertian shading Now consider lighting each pixel and recall the basic
behavior of light from Section 4.1. The virtual world simulates the real-world
physics, which includes the spectral power distribution and spectral reflection
function. Suppose that a point-sized light source is placed in the virtual world.
Using the trichromatic theory from Section 6.3, its spectral power distribution
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Figure 7.2: In the Lambertian shading model, the light reaching the pixel de-
pends on the angle θ between the incoming light and the surface normal, but is
independent of the viewing angle.

is sufficiently represented by R, G, and B values. If the viewing ray hits the
surface as shown in Figure 7.2, then how should the object appear? Assumptions
about the spectral reflection function are taken into account by a shading model.
The simplest case is Lambertian shading, for which the angle that the viewing
ray strikes the surface is independent of the resulting pixel R, G, B values. This
corresponds to the case of diffuse reflection, which is suitable for a “rough” surface
(recall Figure 4.4). All that matters is the angle that the surface makes with
respect to the light source.

Let n be the outward surface normal and let ℓ be a vector from the surface
intersection point to the light source. Assume both n and ℓ are unit vectors, and
let θ denote the angle between them. The dot product n · ℓ = cos θ yields the
amount of attenuation (between 0 and 1) due to the tilting of the surface relative
to the light source. Think about how the effective area of the triangle is reduced
due to its tilt. A pixel under the Lambertian shading model is illuminated as

R = dRIR max(0, n · ℓ)
G = dGIG max(0, n · ℓ)
B = dBIB max(0, n · ℓ),

(7.1)

in which (dR, dG, dB) represents the spectral reflectance property of the material
(triangle) and (Ir, IG, IR) is represents the spectral power distribution of the light
source. Under the typical case of white light, IR = IG = IB. For a white or gray
material, we would also have dR = dG = dB.

Using vector notation, (7.1) can be compressed into

L = dI max(0, n · ℓ) (7.2)

in which L = (R,G,B), d = (dR, dG, dB), and I = (IR, IG, IB). Each triangle is
assumed to be on the surface of an object, rather than the object itself. Therefore,
if the light source is behind the triangle, then the triangle should not be illumi-
nated because it is facing away from the light (it cannot be lit from behind). To
handle this case, the max function appears in (7.2) to avoid n · ℓ < 0.
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Figure 7.3: In the Blinn-Phong shadingmodel, the light reaching the pixel depends
on the angle between the normal n and the bisector b of the ℓ and v. If n = b,
then ideal reflection is obtained, as in the case of a mirror.

Blinn-Phong shading Now suppose that the object is “shiny”. If it were a
perfect mirror, then all of the light from the source would be reflected to the pixel
only if they are perfectly aligned; otherwise, no light would reflect at all. Such
full reflection would occur if v and ℓ form the same angle with respect to n. What
if the two angles are close, but do not quite match? The Blinn-Phong shading
model proposes that some amount of light is reflected, depending on the amount
of surface shininess and the difference between v and ℓ [3]. See Figure 7.3. The
bisector b is the vector obtained by averaging ℓ and v:

b =
ℓ+ v

‖ℓ+ v‖
. (7.3)

Using the compressed vector notation, the Blinn-Phong shading model sets the
RGB pixel values as

L = dI max(0, n · ℓ) + sI max(0, n · b)x. (7.4)

This additively takes into account shading due to both diffuse and specular com-
ponents. The first term is just the Lambertian shading model, (7.2). The second
component causes increasing amounts of light to be reflected as b becomes closer
to n. The exponent x is a material property that expresses the amount of surface
shininess. A lower value, such as x = 100, results in a mild amount of shininess,
whereas x = 10000 would make the surface almost like a mirror. This shading
model does not correspond directly to the physics of the interaction between light
and surfaces. It is merely a convenient and efficient heuristic, but widely used in
computer graphics.

Ambient shading Another heuristic is ambient shading, which causes an object
to glow without being illuminated by a light source. This lights surfaces that fall
into the shadows of all lights; otherwise, they would be completely black. In
the real world this does not happen because light interreflects between objects
to illuminate an entire environment. Such propagation has not been taken into
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Figure 7.4: A bidirectional reflectance distribution function (BRDF), meticulously
specifies the ratio of incoming and outgoing light energy for all possible perspec-
tives.

account in the shading model so far, thereby requiring a hack to fix it. Adding
ambient shading yields

L = dI max(0, n · ℓ) + sI max(0, n · b)x + La, (7.5)

in which La is the ambient light component.

Multiple light sources Typically, the virtual world contains multiple light
sources. In this case, the light from each is combined additively at the pixel. The
result for N light sources is

L = La +
N
∑

i=1

dIi max(0, n · ℓi) + sIi max(0, n · bi)
x, (7.6)

in which Ii, ℓi, and bi correspond to each source.

BRDFs The shading models presented so far are in widespread use due to
their simplicity and efficiency, even though they neglect most of the physics. To
account for shading in a more precise and general way, a bidirectional reflectance
distribution function (BRDF) is constructed [21]; see Figure 7.4. The θi and θr
parameters represent the angles of light source and viewing ray, respectively, with
respect to the surface. The φi and φr parameters range from 0 to 2π and represent
the angles made by the light and viewing vectors when looking straight down on
the surface (the vector n would point at your eye).

The BRDF is a function of the form

f(θi, φi, θr, θi) =
radiance

irradiance
, (7.7)

in which radiance is the light energy reflected from the surface in directions θr
and φr and irradiance is the light energy arriving at the surface from directions
θi and φi. These are expressed at a differential level, roughly corresponding to an
infinitesimal surface patch. Informally, it is the ratio of the amount of outgoing
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light to the amount of incoming light at one point on the surface. The previous
shading models can be expressed in terms of a simple BRDF. For Lambertian
shading, the BRDF is constant because the surface reflects equally in all directions.
The BRDF and its extensions can account for much more complex and physically
correct lighting effects, with a wide variety of surface textures. See Chapter 7 of
[1] for extensive coverage.

Global illumination Recall that the ambient shading term (7.5) was intro-
duced to prevent surfaces in the shadows of the light source from appearing black.
The computationally intensive but proper way to fix this problem is to calculate
how light reflects from object to object in the virtual world. In this way, ob-
jects are illuminated indirectly from the light that reflects from others, as in the
real world. Unfortunately, this effectively turns all object surfaces into potential
sources of light. This means that ray tracing must account for multiple reflec-
tions. This requires considering piecewise linear paths from the light source to
the viewpoint, in which each bend corresponds to a reflection. An upper limit is
usually set on the number of bounces to consider. The simple Lambertian and
Blinn-Phong models are often used, but more general BDRFs are also common.
Increasing levels of realism can be calculated, but with corresponding increases in
computation time.

VR-specific issues VR inherits all of the common issues from computer graph-
ics, but also contains unique challenges. Chapters 5 and 6 mentioned the increased
resolution and frame rate requirements. This provides strong pressure to reduce
rendering complexity. Furthermore, many heuristics that worked well for graphics
on a screen may be perceptibly wrong in VR. The combination of high field-of-
view, resolution, varying viewpoints, and stereo images may bring out new prob-
lems. For example, Figure 7.5 illustrates how differing viewpoints from stereopsis
could affect the appearance of shiny surfaces. In general, some rendering artifacts
could even contribute to VR sickness. Throughout the remainder of this chapter,
complications that are unique to VR will be increasingly discussed.

7.2 Rasterization

The ray casting operation quickly becomes a bottleneck. For a 1080p image at
90Hz, it would need to be performed over 180 million times per second, and the
ray-triangle intersection test would be performed for every triangle (although data
structures such as a BSP would quickly eliminate many from consideration). In
most common cases, it is much more efficient to switch from such image-order
rendering to object-order rendering. The objects in our case are triangles and
the resulting process is called rasterization, which is the main function of modern
graphical processing units (GPUs). In this case, an image is rendered by iterating
over every triangle and attempting to color the pixels where the triangle lands
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Figure 7.5: Complications emerge with shiny surfaces because the viewpoints are
different for the right and left eyes. Using the Blinn-Phong shading model, a
specular reflection should have different brightness levels for each eye. It may be
difficult to match the effect so that it is consistent with real-world behavior.

on the image. The main problem is that the method must solve the unavoidable
problem of determining which part, if any, of the triangle is the closest to the focal
point (roughly, the location of the virtual eye).

One way to solve it is to sort the triangles in depth order so that the closest
triangle is last. This enables the triangles to be drawn on the screen in back-to-
front order. If they are properly sorted, then any later triangle to be rendered will
rightfully clobber the image of previously rendered triangles at the same pixels.
The triangles can be drawn one-by-one while totally neglecting the problem of
determining which is nearest. This is known as the Painter’s algorithm. The
main flaw, however, is the potential existence of depth cycles, shown in Figure
7.6, in which three or more triangles cannot be rendered correctly in any order
by the Painter’s algorithm. One possible fix is to detect such cases and split the
triangles.

Depth buffer A simple and efficient method to resolve this problem is to man-
age the depth problem on a pixel-by-pixel basis by maintaining a depth buffer (also
called z-buffer), which for every pixel records the distance of the triangle from the
focal point to the intersection point of the ray that intersects the triangle at that
pixel. In other words, if this were the ray casting approach, it would be distance
along the ray from the focal point to the intersection point. Using this method,
the triangles can be rendered in arbitrary order. The method is also commonly
applied to compute the effect of shadows by determining depth order from a light
source, rather than the viewpoint. Objects that are closer to the light cast a
shadow on further objects.

The depth buffer stores a positive real number (floating point number in prac-
tice) at every pixel location. Before any triangles have been rendered, a maximum
value (floating-point infinity) is stored at every location to reflect that no surface
has yet been encountered at each pixel. At any time in the rendering process, each
value in the depth buffer records the distance of the point on the most recently
rendered triangle to the focal point, for the corresponding pixel in the image.
Initially, all depths are at maximum to reflect that no triangles were rendered yet.
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Figure 7.6: Due to the possibility of depth cycles, objects cannot be sorted in three
dimensions with respect to distance from the observer. Each object is partially in
front of one and partially behind another.

Figure 7.7: If p is inside of the triangle, then it must be to the right of each of the
edge vectors, e1, e2 and e3. Barycentric coordinates specify the location of every
point p in a triangle as a weighted average of its vertices p1, p2, and p3.
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Each triangle is rendered by calculating a rectangular part of the image that
fully contains it. This is called a bounding box. The box is quickly determined
by transforming all three of the triangle vertices to determine the minimum and
maximum values for i and j (the row and column indices). An iteration is then
performed over all pixels inside of the bounding box to determine which ones
lie in inside the triangle and should therefore be rendered. This can be quickly
determined by forming the three edge vectors shown in Figure 7.7 as

e1 = p2 − p1
e2 = p3 − p2
e3 = p1 − p3.

(7.8)

The point p lies inside of the triangle if and only if

(p− p1)× e1 < 0 , (p− p2)× e2 < 0 , (p− p3)× e3 < 0, (7.9)

in which × denotes the standard vector cross product. These three conditions
ensure that p is “to the left” of each edge vector.

Barycentric coordinates As each triangle is rendered, information from it is
mapped from the virtual world onto the screen. This is usually accomplished
using barycentric coordinates (see Figure 7.7), which expresses each point in the
triangle interior as a weighted average of the three vertices:

p = α1p1 + α2p2 + α3p3 (7.10)

for which 0 ≤ α1, α2, α3 ≤ 1 and α1 + α2 + α3 = 1. The closer p is to a vertex
pi, the larger the weight αi. If p is at the centroid of the triangle, then α1 =
α2 = α3 = 1/3. If p lies on an edge, then the opposing vertex weight is zero. For
example, if p lies on the edge between p1 and p2, then α3 = 0. If p lies on a vertex,
pi, then αi = 1, and the other two barycentric coordinates are zero.

The coordinates are calculated using Cramer’s rule to solve a resulting linear
system of equations. In particular, let dij = ei · ej for all combinations of i and j.
Furthermore, let

s = 1/(d11d22 − d12d12). (7.11)

The coordinates are then given by

α1 = s(d22d31 − d12d32)
α2 = s(d11d32 − d12d31)
α3 = 1− α1 − α2.

(7.12)

The same barycentric coordinates may be applied to the points on the model in
R

3, or on the resulting 2D projected points (with i and j coordinates) in the image
plane. In other words, α1, α2, and α3 refer to the same point on the model both
before, during, and after the entire chain of transformations from Section 3.5.

Furthermore, given the barycentric coordinates, the test in (7.9) can be re-
placed by simply determining whether α1 ≥ 0, α2 ≥ 0, and α3 ≥ 0. If any
barycentric coordinate is less than zero, then p must lie outside of the triangle.
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Figure 7.8: Texture mapping: A simple pattern or an entire image can be mapped
across the triangles and then rendered in the image to provide much more detail
than provided by the triangles in the model. (Figure from Wikipedia.)

Mapping the surface Barycentric coordinates provide a simple and efficient
method for linearly interpolating values across a triangle. The simplest case is
the propagation of RGB values. Suppose RGB values are calculated at the three
triangle vertices using the shading methods of Section 7.1. This results in values
(Ri, Gi, Bi) for each i from 1 to 3. For a point p in the triangle with barycentric
coordinates (α1, α2, α3), the RGB values for the interior points are calculated as

R = α1R1 + α2R2 + α3R3

G = α1G1 + α2G2 + α3G3

B = α1B1 + α2B2 + α3B3.
(7.13)

The object need not maintain the same properties over an entire triangular
patch. With texture mapping, a repeating pattern, such as tiles or stripes can
be propagated over the surface [6]; see Figure 7.8. More generally, any digital
picture can be mapped onto the patch. The barycentric coordinates reference a
point inside of the image to be used to influence a pixel. The picture or “texture”
is treated as if it were painted onto the triangle; the lighting and reflectance
properties are additionally taken into account for shading the object.

Another possibility is normal mapping, which alters the shading process by
allowing the surface normal to be artificially varied over the triangle, even though
geometrically it is impossible. Recall from Section 7.1 that the normal is used in
the shading models. By allowing it to vary, simulated curvature can be given to
an object. An important case of mapping the normals is called bump mapping,
which makes a flat surface look rough by irregularly perturbing the normals. If
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Figure 7.9: Bump mapping: By artificially altering the surface normals, the shad-
ing algorithms produce an effect that looks like a rough surface. (Figure by Brian
Vibber.)

the normals appear to have texture, then the surface will look rough after shading
is computed.

Aliasing Several artifacts arise due to discretization. Aliasing problems were
mentioned in Section 5.4, which result in perceptible staircases in the place of
straight lines, due to insufficient pixel density. Figure 7.10(a) shows the pixels
selected inside of a small triangle by using (7.9). The point p usually corresponds
to the center of the pixel, as shown in Figure 7.10(b). Note that the point may
be inside of the triangle while the entire pixel is not. Likewise, part of the pixel
might be inside of the triangle while the center is not. You may notice that Figure
7.10 is not entirely accurate due to the subpixel mosaics used in displays (recall
Figure 4.36). To be more precise, aliasing analysis should take this into account
as well.

By deciding to fully include or exclude the triangle based on the coordinates
of p alone, the staircasing effect is unavoidable. A better way is to render the
pixel according to the fraction of the pixel region that is covered by the triangle.
This way its values could be blended from multiple triangles that are visible
within the pixel region. Unfortunately, this requires supersampling, which means
casting rays at a much higher density than the pixel density so that the triangle
coverage fraction can be estimated. This dramatically increases cost. Commonly,
a compromise is reached in a method called multisample anti-aliasing (or MSAA),
in which only some values are calculated at the higher density. Typically, depth
values are calculated for each sample, but shading is not.

A spatial aliasing problem results from texture mapping. The viewing transfor-
mation may dramatically reduce the size and aspect ratio of the original texture as
it is mapped from the virtual world onto the screen. This may leave insufficient
resolution to properly represent a repeating pattern in the texture; see Figure
7.12. This problem is often addressed in practice by pre-calculating and storing
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(a) (b)

Figure 7.10: (a) The rasterization stage results in aliasing; straight edges appear
to be staircases. (b) Pixels are selected for inclusion based on whether their center
point p lies inside of the triangle.

Figure 7.11: A mipmap stores the texture at multiple resolutions so that it can be
appropriately scaled without causing signficant aliasing. The overhead for storing
the extra image is typically only 1/3 the size of the original (largest) image. (The
image is from NASA and the mipmap was created by Mike Hicks.)
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(a) (b)

Figure 7.12: (a) Due to the perspective transformation, the tiled texture suffers
from spatial aliasing as the depth increases. (b) The problem can be fixed by
performing supersampling.

a mipmap for each texture; see Figure 7.11. The texture is calculated at various
resolutions by performing high-density sampling and storing the rasterized result
in images. Based on the size and viewpoint of the triangle on the screen, the
appropriately scaled texture image is selected and mapped onto the triangle to
reduce the aliasing artifacts.

Culling In practice, many triangles can be quickly eliminated before attempting
to render them. This results in a preprocessing phase of the rendering approach
called culling, which dramatically improves performance and enables faster frame
rates. The efficiency of this operation depends heavily on the data structure
used to represent the triangles. Thousands of triangles could be eliminated with a
single comparison of coordinates if they are all arranged in a hierarchical structure.
The most basic form of culling is called view volume culling, which eliminates all
triangles that are wholly outside of the viewing frustum (recall Figure 3.18). For
a VR headset, the frustum may have a curved cross section due to the limits of
the optical system (see Figure 7.13). In this case, the frustum must be replaced
with a region that has the appropriate shape. In the case of a truncated cone, a
simple geometric test can quickly eliminate all objects outside of the view. For
example, if

√

x2 + y2

−z
> tan θ, (7.14)

in which 2θ is the angular field of view, then the point (x, y, z) is outside of the
cone. Alternatively, the stencil buffer can be used in a GPU to mark all pixels that
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Figure 7.13: Due to the optical system in front of the screen, the viewing frustum
is replaced by a truncated cone in the case of a circularly symmetric view. Other
cross-sectional shapes may be possible to account for the asymmetry of each eye
view (for example, the nose is obstructing part of the view).

would be outside of the lens view. These are quickly eliminated from consideration
by a simple test as each frame is rendered.

Another form is called backface culling, which removes triangles that have
outward surface normals that point away from the focal point. These should
not be rendered “from behind” if the model is consistently formed. Additionally,
occlusion culling may be used to eliminate parts of the model that might be
hidden from view by a closer object. This can get complicated because it once
again considers the depth ordering problem. For complete details, see [1].

VR-specific rasterization problems The staircasing problem due to aliasing
is expected to be worse for VR because current resolutions are well below the
required retina display limit calculated in Section 5.4. The problem is made
significantly worse by the continuously changing viewpoint due to head motion.
Even as the user attempts to stare at an edge, the “stairs” appear to be more like
an “escalator” because the exact choice of pixels to include in a triangle depends
on subtle variations in the viewpoint. As part of our normal perceptual processes,
our eyes are drawn toward this distracting motion. With stereo viewpoints, the
situation is worse: The “escalators” from the right and left images will usually
not match. As the brain attempts to fuse the two images into one coherent view,
the aliasing artifacts provide a strong, moving mismatch. Reducing contrast at
edges and using anti-aliasing techniques help alleviate the problem, but aliasing
is likely to remain a significant problem until displays reach the required retina
display density for VR.

A more serious difficulty is caused by the enhanced depth perception afforded
by a VR system. Both head motions and stereo views enable users to perceive
small differences in depth across surfaces. This should be a positive outcome;
however, many tricks developed in computer graphics over the decades rely on
the fact that people cannot perceive these differences when a virtual world is
rendered onto a fixed screen that is viewed from a significant distance. The result
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Figure 7.14: A Fresnel lens (pronounced like “frenelle”) simulates a simple lens by
making a corrugated surface. The convex surface on the top lens is implemented
in the Fresnel lens shown on the bottom. (Figure by Piotr Kożurno.)

for VR is that texture maps may look fake. For example, texture mapping a
picture of a carpet onto the floor might inadvertently cause the floor to look as if
it were simply painted. In the real world we would certainly be able to distinguish
painted carpet from real carpet. The same problem occurs with normal mapping.
A surface that might look rough in a single static image due to bump mapping
could look completely flat in VR as both eyes converge onto the surface. Thus,
as the quality of VR systems improves, we should expect the rendering quality
requirements to increase, causing many old tricks to be modified or abandoned.

7.3 Correcting Optical Distortions

Recall from Section 4.3 that barrel and pincushion distortions are common for
an optical system with a high field of view (Figure 4.20). When looking through
the lens of a VR headset, a pincushion distortion typically results. If the images
are drawn on the screen without any correction, then the virtual world appears
to be incorrectly warped. If the user yaws his head back and forth, then fixed
lines in the world, such as walls, appear to dynamically change their curvature
because the distortion in the periphery is much stronger than in the center. If it
is not corrected, then the perception of stationarity will fail because static objects
should not appear to be warping dynamically. Furthermore, contributions may be
made to VR sickness because incorrect accelerations are being visually perceived
near the periphery.

How can this problem be solved? Significant research is being done in this
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area, and the possible solutions involve different optical systems and display tech-
nologies. For example, digital light processing (DLP) technology directly projects
light into the eye without using lenses. Another way to greatly reduce this prob-
lem is to use a Fresnel lens (see Figure 7.14), which more accurately controls the
bending of light rays by using a corrugated or sawtooth surface over a larger area;
an aspheric design can be implemented as well. A Fresnel lens is used, for exam-
ple, in the HTC Vive VR headset. One unfortunate side effect of Fresnel lenses
is that glaring can be frequently observed as light scatters across the ridges along
the surface.

Whether small or large, the distortion can also be corrected in software. One
assumption is that the distortion is circularly symmetric. This means that the
amount of distortion depends only on the distance from the lens center, and not
the particular direction from the center. Even if the lens distortion is perfectly
circularly symmetric, it must also be placed so that it is centered over the eye.
Some headsets offer IPD adjustment, which allows the distance between the lenses
to be adjusted so that they are matched to the user’s eyes. If the eye is not centered
on the lens, then asymmetric distortion arises. The situation is not perfect because
as the eye rotates, the pupil moves along a spherical arc. As the position of the
pupil over the lens changes laterally, the distortion varies and becomes asymmetric.
This motivates making the lens as large as possible so that this problem is reduced.
Another factor is that the distortion will change as the distance between the lens
and the screen is altered. This adjustment may be useful to accommodate users
with nearsightedness or farsightedness, as done in the Samsung Gear VR headset.
The adjustment is also common in binoculars and binoculars, which explains why
many people do not need their glasses to use them. To handle distortion correctly,
the headset should ideally sense the adjustment setting and take it into account.

To fix radially symmetric distortion, suppose that the transformation chain
TcanTeyeTrb has been applied to the geometry, resulting in the canonical view
volume, as covered in Section 3.5. All points that were inside of the viewing
frustum now have x and y coordinates ranging from −1 to 1. Consider referring
to these points using polar coordinates (r, θ):

r =
√

x2 + y2

θ = atan2(y, x),
(7.15)

in which atan2 represents the inverse tangent of y/x. This function is commonly
used in programming languages to return an angle θ over the entire range from
0 to 2π. (The arctangent alone cannot do this because the quadrant that (x, y)
came from is needed.)

We now express the lens distortion in terms of transforming the radius r,
without affecting the direction θ (because of symmetry). Let f denote a function
that applies to positive real numbers and distorts the radius. Let ru denote the
undistorted radius, and let rd denote the distorted radius. Both pincushion and
barrel distortion are commonly approximated using polynomials with odd powers,

200 S. M. LaValle: Virtual Reality

resulting in f being defined as

rd = f(ru) = ru + c1r
3

u + c2r
5

u, (7.16)

in which c1 and c2 are suitably chosen constants. If c1 < 0, then barrel distortion
occurs. If c1 > 0, then pincushion distortion results. Higher-order polynomials
could also be used, such as adding a term c3r

7

u on the right above; however, in
practice this is often considered unnecessary.

Correcting the distortion involves two phases:

1. Determine the radial distortion function f for a particular headset, which
involves a particular lens placed at a fixed distance from the screen. This
is a regression or curve-fitting problem that involves an experimental setup
that measures the distortion of many points and selects the coefficients c1,
c2, and so on, that provide the best fit.

2. Determine the inverse of f so that it be applied to the rendered image before
the lens causes its distortion. The composition of the inverse with f should
cancel out the distortion function.

Unfortunately, polynomial functions generally do not have inverses that can
be determined or even expressed in a closed form. Therefore, approximations are
used. One commonly used approximation is [13]:

f−1(rd) ≈
c1r

2

d + c2r
4

d + c2
1
r4d + c2

2
r8d + 2c1c2r

6

d

1 + 4c1r2d + 6c2r4d
. (7.17)

Alternatively, the inverse can be calculated very accurately off-line and then stored
in an array for fast access. It needs to be done only once per headset design.
Linear interpolation can be used for improved accuracy. The inverse values can
be accurately calculated using Newton’s method, with initial guesses provided by
simply plotting f(ru) against ru and swapping the axes.

The transformation f−1 could be worked directly into the perspective transfor-
mation, thereby replacing Tp and Tcan with a nonlinear operation. By leveraging
the existing graphics rendering pipeline, it is instead handled as a post-processing
step. The process of transforming the image is sometimes called distortion shad-
ing because it can be implemented as a shading operation in the GPU; it has
nothing to do with “shading” as defined in Section 7.1. The rasterized image that
was calculated using methods in Section 7.2 can be converted into a transformed
image using (7.17), or another representation of f−1, on a pixel-by-pixel basis. If
compensating for a pincushion distortion, the resulting image will appear to have
a barrel distortion; see Figure 7.15. To improve VR performance, multiresolution
shading is used in Nvidia GTX 1080 GPUs. One problem is that the resolution is
effectively dropped near the periphery because of the transformed image (Figure
7.15). This results in wasted shading calculations in the original image. Instead,
the image can be rendered before the transformation by taking into account the
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Figure 7.15: The rendered image appears to have a barrel distortion. Note that
the resolution is effectively dropped near the periphery. (Figure by Nvidia.)

final resulting resolutions after the transformation. A lower-resolution image is
rendered in a region that will become compressed by the transformation.

The methods described in this section may also be used for other optical
distortions that are radially symmetric. For example, chromatic aberration can be
partially corrected by transforming the red, green, and blue subpixels differently.
Each color is displaced radially by a different amount to compensate for the radial
distortion that occurs based on its wavelength. If chromatic aberration correction
is being used, then if the lenses are removed from the VR headset, it would become
clear that the colors are not perfectly aligned in the images being rendered to the
display. The rendering system must create a distortion of pixel placements on the
basis of color so that they will be moved closer to the correct places after they
pass through the lens.

7.4 Improving Latency and Frame Rates

The motion-to-photons latency in a VR headset is the amount of time it takes
to update the display in response to a change in head orientation and position.
For example, suppose the user is fixating on a stationary feature in the virtual
world. As the head yaws to the right, the image of the feature on the display
must immediately shift to the left. Otherwise, the feature will appear to move if
the eyes remain fixated on it. This breaks the perception of stationarity.

A simple example Consider the following example to get a feeling for the
latency problem. Let d be the density of the display in pixels per degree. Let ω
be the angular velocity of the head in degrees per second. Let ℓ be the latency
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in seconds. Due to latency ℓ and angular velocity ω, the image is shifted by dωℓ
pixels. For example, if d = 40 pixels per degree, ω = 50 degrees per second, and
ℓ = 0.02 seconds, then the image is incorrectly displaced by dωℓ = 4 pixels. An
extremely fast head turn might be at 300 degrees per second, which would result
in a 24-pixel error.

The perfect system As a thought experiment, imagine the perfect VR system.
As the head moves, the viewpoint must accordingly change for visual rendering.
A magic oracle perfectly indicates the head position and orientation at any time.
The VWG continuously maintains the positions and orientations of all objects
in the virtual world. The visual rendering system maintains all perspective and
viewport transformations, and the entire rasterization process continuously sets
the RGB values on the display according to the shading models. Progressing with
this fantasy, the display itself continuously updates, taking no time to switch the
pixels. The display has retina-level resolution, as described in Section 5.4, and a
dynamic range of light output over seven orders of magnitude to match human
perception. In this case, visual stimulation provided by the virtual world should
match what would occur in a similar physical world in terms of the geometry.
There would be no errors in time and space (although the physics might not
match anyway due to assumptions about lighting, shading, material properties,
color spaces, and so on).

Historical problems In practice, the perfect system is not realizable. All of
these operations require time to propagate information and perform computations.
In early VR systems, the total motion-to-photons latency was often over 100ms.
In the 1990s, 60ms was considered an acceptable amount. Latency has been
stated as one of the greatest causes of VR sickness, and therefore one of the
main obstructions to widespread adoption over the past decades. People generally
adapt to a fixed latency, which somewhat mitigates the problem, but then causes
problems when they have to readjust to the real world. Variable latencies are
even worse due to the inability to adapt [10]. Fortunately, latency is no longer the
main problem in most VR systems because of the latest-generation tracking, GPU,
and display technology. The latency may be around 15 to 25ms, which is even
compensated for by predictive methods in the tracking system. The result is that
the effective latency is very close to zero. Thus, other factors are now contributing
more strongly to VR sickness and fatigue, such as vection and optical aberrations.

Overview of latency reduction methods The following strategies are used
together to both reduce the latency and to minimize the side effects of any re-
maining latency:

1. Lower the complexity of the virtual world.

2. Improve rendering pipeline performance.
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Figure 7.16: A variety of mesh simplification algorithms can be used to reduce the
model complexity while retaining the most important structures. Shown here is
a simplification of a hand model made by the open-source library CGAL. (Figure
by Fernando Cacciola.)

3. Remove delays along the path from the rendered image to switching pixels.

4. Use prediction to estimate future viewpoints and world states.

5. Shift or distort the rendered image to compensate for last-moment viewpoint
errors and missing frames.

Each of these will be described in succession.

Simplifying the virtual world Recall from Section 3.1 that the virtual world
is composed of geometric primitives, which are usually 3D triangles arranged in a
mesh. The chain of transformations and rasterization process must be applied for
each triangle, resulting in a computational cost that is directly proportional to the
number of triangles. Thus, a model that contains tens of millions of triangles will
take orders of magnitude longer to render than one made of a few thousand. In
many cases, we obtain models that are much larger than necessary. They can often
be made much smaller (fewer triangles) with no perceptible difference, much in
the same way that image, video, and audio compression works. Why are they too
big in the first place? If the model was captured from a 3D scan of the real world,
then it is likely to contain highly dense data. Capture systems such as the FARO
Focus3D X Series capture large worlds while facing outside. Others, such as the
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Matter and Form MFSV1, capture a small object by rotating it on a turntable.
As with cameras, systems that construct 3D models automatically are focused on
producing highly accurate and dense representations, which maximize the model
size. Even in the case of purely synthetic worlds, a modeling tool such as Maya
or Blender will automatically construct a highly accurate mesh of triangles over a
curved surface. Without taking specific care of later rendering burdens, the model
could quickly become unwieldy. Fortunately, it is possible to reduce the model
size by using mesh simplification algorithms; see Figure 7.16. In this case, one
must be careful to make sure that the simplified model will have sufficient quality
from all viewpoints that might arise in the targeted VR system. In some systems,
such as Unity 3D, reducing the number of different material properties across the
model will also improve performance.

In addition to reducing the rendering time, a simplified model will also lower
computational demands on the Virtual World Generator (VWG). For a static
world, the VWG does not need to perform any updates after initialization. The
user simply views the fixed world. For dynamic worlds, the VWG maintains a
simulation of the virtual world that moves all geometric bodies while satisfying
physical laws that mimic the real world. It must handle the motions of any
avatars, falling objects, moving vehicles, swaying trees, and so on. Collision de-
tection methods are needed to make bodies react appropriately when in contact.
Differential equations that model motion laws may be integrated to place bodies
correctly over time. These issues will be explained in Chapter 8, but for now it
is sufficient to understand that the VWG must maintain a coherent snapshot of
the virtual world each time a rendering request is made. Thus, the VWG has a
frame rate in the same way as a display or visual rendering system. Each VWG
frame corresponds to the placement of all geometric bodies for a common time
instant. How many times per second can the VWG be updated? Can a high,
constant rate of VWG frames be maintained? What happens when a rendering
request is made while the VWG is in the middle of updating the world? If the
rendering module does not wait for the VWG update to be completed, then some
objects could be incorrectly placed because some are updated while others are
not. Thus, the system should ideally wait until a complete VWG frame is finished
before rendering. This suggests that the VWG update should be at least as fast
as the rendering process, and the two should be carefully synchronized so that a
complete, fresh VWG frame is always ready for rendering.

Improving rendering performance Any techniques that improve rendering
performance in the broad field of computer graphics apply here; however, one must
avoid cases in which side effects that were imperceptible on a computer display
become noticeable in VR. It was already mentioned in Section 7.2 that texture
and normal mapping methods are less effective in VR for this reason; many more
discrepancies are likely to be revealed in coming years. Regarding improvements
that are unique to VR, it was mentioned in Sections 7.2 and 7.3 that the stencil
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Figure 7.17: If a new frame is written to the video memory while a display scanout
occurs, then tearing arises, in which parts of two or more frames become visible
at the same time. (Figure from http://www.overclock.net/ user Forceman.)

buffer and multiresolution shading can be used to improve rendering performance
by exploiting the shape and distortion due to the lens in a VR headset. A further
improvement is to perform rasterization for the left and right eyes in parallel in the
GPU, using one processor for each. The two processes are completely independent.
This represents an important first step, among many that are likely to come, in
design of GPUs that are targeted specifically for VR.

From rendered image to switching pixels The problem of waiting for co-
herent VWG frames also arises in the process of rendering frames to the display:
When it is time to scan out the rendered image to the display, it might not be
finished yet. Recall from Section 5.4 that most displays have a rolling scanout
that draws the rows of the rasterized image, which sits in the video memory, onto
the screen one-by-one. This was motivated by the motion of the electron beam
that lit phosphors on analog TV screens. The motion is left to right, and top to
bottom, much in the same way we would write out a page of English text with
a pencil and paper. Due to inductive inertia in the magnetic coils that bent the
beam, there was a period of several milliseconds called vblank (vertical blanking
interval) in which the beam moves from the lower right back to the upper left of
the screen to start the next frame. During this time, the beam was turned off to
avoid drawing a diagonal streak across the frame, hence, the name “blanking”.
Short blanking intervals also occurred as each horizontal line to bring the beam
back from the right to the left.

In the era of digital displays, the scanning process in unnecessary, but it nev-
ertheless persists and causes some trouble. Suppose that a display runs at 100
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Figure 7.18: Buffering is commonly used in visual rendering pipelines to avoid
tearing and lost frames; however, it introduces more latency, which is detrimental
to VR. (Figure by Wikipedia user Cmglee.)

FPS. In this case, a request to draw a new rendered image is made every 10ms.
Suppose that vblank occurs for 2ms and the remaining 8ms is spent drawing
lines on the display. If the new rasterized image is written to the video memory
during the 2ms of vblank, then it will be correctly drawn in the remaining 8ms.
It is also possible to earn extra time through beam racing [4, 18]. However, if a
new image is being written and passes where the beam is scanning it out, then
tearing occurs because it appears as if is screen is torn into pieces; see Figure
7.17. If the VWG and rendering system produce frames at 300 FPS, then parts
of 3 or 4 images could appear on the display because the image changes several
times while the lines are being scanned out. One solution to this problem to use
vsync (pronounced “vee sink”), which is a flag that prevents the video memory
from being written outside of the vblank interval.

Another strategy to avoid tearing is buffering, which is shown in Figure 7.18.
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The approach is simple for programmers because it allows the frames to be written
in memory that is not being scanned for output to the display. The unfortunate
side effect is that it increases the latency. For double buffering, a new frame
is first drawn into the buffer and then transferred to the video memory during
vblank. It is often difficult to control the rate at which frames are produced
because the operating system may temporarily interrupt the process or alter its
priority. In this case, triple buffering is an improvement that allows more time
to render each frame. For avoiding tearing and providing smooth video game
performance, buffering has been useful; however, it is detrimental to VR because
of the increased latency.

Ideally, the displays should have a global scanout, in which all pixels are
switched at the same time. This allows a much longer interval to write to the
video memory and avoids tearing. It would also reduce the latency in the time
it takes to scan the first pixel to the last pixel. In our example, this was an 8ms
interval. Finally, displays should reduce the pixel switching time as much as pos-
sible. In a smartphone LCD screen, it could take up to 20ms to switch pixels;
however, OLED pixels can be switched in under 0.1ms.

The power of prediction For the rest of this section, we consider how to live
with whatever latency remains. As another thought experiment, imagine that
a fortune teller is able to accurately predict the future. With such a device, it
should be possible to eliminate all latency problems. We would want to ask the
fortune teller the following:

1. At what future time will the pixels be switching?

2. What will be the positions and orientations of all virtual world models at
that time?

3. Where will the user be looking at that time?

Let ts be answer to the first question. We need to ask the VWG to produce
a frame for time ts and then perform visual rendering for the user’s viewpoint
at time ts. When the pixels are switched at time ts, then the stimulus will be
presented to the user at the exact time and place it is expected. In this case,
there is zero effective latency.

Now consider what happens in practice. First note that using information from
all three questions above implies significant time synchronization across the VR
system: All operations must have access to a common clock. For the first question
above, determining ts should be feasible if the computer is powerful enough and
the VR system has enough control from the operating system to ensure that
VWG frames will be consistently produced and rendered at the frame rate. The
second question is easy for the case of a static virtual world. In the case of a
dynamic world, it might be straightforward for all bodies that move according
to predictable physical laws. However, it is difficult to predict what humans will

208 S. M. LaValle: Virtual Reality

Perturbation Image effect
∆α (yaw) Horizontal shift
∆β (pitch) Vertical shift
∆γ (roll) Rotation about image center
∆x Horizontal shift
∆y Vertical shift
∆z Contraction or expansion

Figure 7.19: Six cases of post-rendering image warp based on the degrees of
freedom for a change in viewpoint. The first three correspond to an orientation
change. The remaining three correspond to a position change. These operations
can be visualized by turning on a digital camera and observing how the image
changes under each of these perturbations.

do in the virtual world. This complicates the answers to both the second and
third questions. Fortunately, the latency is so small that momentum and inertia
play a significant role; see Chapter 8. Bodies in the matched zone are following
physical laws of motion from the real world. These motions are sensed and tracked
according to methods covered in Chapter 9. Although it might be hard to predict
where you will be looking in 5 seconds, it is possible to predict with very high
accuracy where your head will be positioned and oriented in 20ms. You have no
free will on the scale of 20ms! Instead, momentum dominates and the head motion
can be accurately predicted. Some body parts, especially fingers, have much less
inertia, and therefore become more difficult to predict; however, these are not as
important as predicting head motion. The viewpoint depends only on the head
motion, and latency reduction is most critical in this case to avoid perceptual
problems that lead to fatigue and VR sickness.

Post-rendering image warp Due to both latency and imperfections in the
prediction process, a last-moment adjustment might be needed before the frame
is scanned out to the display. This is called post-rendering image warp [16] (it
has also been rediscovered and called time warp and asynchronous reprojection in
the recent VR industry). At this stage, there is no time to perform complicated
shading operations; therefore, a simple transformation is made to the image.

Suppose that an image has been rasterized for a particular viewpoint, expressed
by position (x, y, z) and orientation given by yaw, pitch, and roll (α, β, γ). What
would be different about the image if it were rasterized for a nearby viewpoint?
Based on the degrees of freedom for viewpoints, there are six types of adjustments;
see Figure 7.19. Each one of these has a direction that is not specified in the figure.
For example, if ∆α is positive, which corresponds to a small, counterclockwise yaw
of the viewpoint, then the image is shifted horizontally to the right.

Figure 7.20 shows some examples of the image warp. Most cases require the
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(a) (b)

(c) (d)

Figure 7.20: Several examples of post-rendering image warp: (a) Before warping,
a larger image is rasterized. The red box shows the part that is intended to be sent
to the display based on the viewpoint that was used at the time of rasterization;
(b) A negative yaw (turning the head to the right) causes the red box to shift to
the right. The image appears to shift to the left; (c) A positive pitch (looking
upward) causes the box to shift upward; (d) In this case, the yaw is too large and
there is no rasterized data to use for part of the image (this region is shown as a
black rectangle).
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Figure 7.21: If the viewing position changes, then a visibility event might be
encountered. This means that part of the object might suddenly become visible
from the new perspective. In this sample, a horizontal shift in the viewpoint
reveals a side of the cube that was originally hidden. Furthermore, the top of the
cube changes its shape.

rendered image to be larger than the targeted display; otherwise, there will be
no data to shift into the warped image; see Figure 7.20(d). If this ever happens,
then it is perhaps best to repeat pixels from the rendered image edge, rather than
turning them black [16].

Flaws in the warped image Image warping due to orientation changes pro-
duces a correct image in the sense that it should be exactly what would have
been rendered from scratch for that orientation (without taking aliasing issues
into account). However, positional changes are incorrect! Perturbations in x and
y do not account for motion parallax (recall from Section 6.1), which would re-
quire knowing the depths of the objects. Changes in z produce similarly incorrect
images because nearby objects should expand or contract by a larger amount
than further ones. To make matters worse, changes in viewpoint position might
lead to a visibility event, in which part of an object may become visible only in
the new viewpoint; see Figure 7.21. Data structures such as an aspect graph [22]
and visibility complex [23] are designed to maintain such events, but are usually
not included in the rendering process. As latencies become shorter and predic-
tion becomes better, the amount of perturbation is reduced. Careful perceptual
studies are needed to evaluate conditions under which image warping errors are
perceptible or cause discomfort. An alternative to image warping is to use parallel
processing to sample several future viewpoints and render images for all of them.
The most correct image can then be selected, to greatly reduce the image warping
artifacts.

Increasing the frame rate Post-rendering image warp can also be used to
artificially increase the frame rate. For example, suppose that only one rasterized
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(a) (b)

Figure 7.22: (a) As of 2015, Netflix offers online movie streaming onto a large
virtual TV screen while the user appears to sit in a living room. (b) The movies
are texture-mapped onto the TV screen, frame by frame. Furthermore, the gaze
pointer allows the user to look in a particular direction to select content.

image is produced every 100 milliseconds by a weak computer or GPU. This would
result in poor performance at 10 FPS. Suppose we would like to increase this to
100 FPS. In this case, a single rasterized image can be warped to produce frames
every 10ms until the next rasterized image is computed. In this case, 9 warped
frames are inserted for every rasterized image that is properly rendered. This
process is called inbetweening or tweening, and has been used for over a century
(one of the earliest examples is the making of Fantasmagorie, which was depicted
in Figure 1.26(a)).

7.5 Immersive Photos and Videos

Up until now, this chapter has focused on rendering a virtual world that was
constructed synthetically from geometric models. The methods developed over
decades of computer graphics research have targeted this case. The trend has
recently changed, though, toward capturing real-world images and video, which
are then easily embedded into VR experiences. This change is mostly due to the
smartphone industry, which has led to hundreds of millions of people carrying
high resolution cameras with them everywhere. Furthermore, 3D camera tech-
nology continues to advance, which provides distance information in addition to
color and light intensity. All of this technology is quickly converging to the case
of panoramas, which contained captured image data from all possible viewing di-
rections. A current challenge is to also capture data within a region of all possible
viewing positions and orientations.
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Texture mapping onto a virtual screen Putting a photo or video into a
virtual world is an extension of texture mapping. Figure 7.22 shows a commercial
use in which Netflix offers online movie streaming through the Samsung Gear VR
headset. The virtual screen is a single rectangle, which may be viewed as a simple
mesh consisting of two triangles. A photo can be mapped across any triangular
mesh in the virtual world. In the case of a movie, each frame is treated as a photo
that is texture-mapped to the mesh. The movie frame rate is usually much lower
than that of the VR headset (recall Figure 6.17). As an example, suppose the
movie was recorded at 24 FPS and the headset runs at 96 FPS. In this case, each
movie frame is rendered for four frames on the headset display. Most often, the
frame rates are not perfectly divisible, which causes the number of repeated frames
to alternate in a pattern. An old example of this is called 3:2 pull down, in which
24 FPS movies were converted to NTSC TV format at 30 FPS. Interestingly, a
3D movie (stereoscopic) experience can even be simulated. For the left eye on
the headset display, the left-eye movie frame is rendered to the virtual screen.
Likewise, the right-eye movie frame is rendered to the right-eyed portion of the
headset display. The result is that the user perceives it as a 3D movie, without
wearing the special glasses! Of course, she would be wearing a VR headset.

Capturing a wider field of view Mapping onto a rectangle makes it easy to
bring pictures or movies that were captured with ordinary cameras into VR; how-
ever, the VR medium itself allows great opportunities to expand the experience.
Unlike life in the real world, the size of the virtual screen can be expanded without
any significant cost. To fill the field of view of the user, it makes sense to curve
the virtual screen and put the user at the center. Such curving already exists in
the real world; examples are the 1950s Cinerama experience, which was shown
in Figure 1.29(d), and modern curved displays. In the limiting case, we obtain a
panoramic photo, sometimes called a photosphere. Displaying many photospheres
per second leads to a panoramic movie, which we may call a moviesphere.

Recalling the way cameras work from Section 4.5, it is impossible to capture a
photosphere from a single camera in a single instant of time. Two obvious choices
exist:

1. Take multiple images with one camera by pointing it in different directions
each time, until the entire sphere of all viewing directions is covered.

2. Use multiple cameras, pointing in various viewing directions, so that all
directions are covered by taking synchronized pictures.

The first case leads to a well-studied problem in computer vision and computa-
tional photography called image stitching. A hard version of the problem can be
made by stitching together an arbitrary collection of images, from various cameras
and times. This might be appropriate, for example, to build a photosphere of a
popular tourist site from online photo collections. More commonly, a smartphone
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(a) (b)

Figure 7.23: (a) The 360Heros Pro10 HD is a rig that mounts ten GoPro cameras
in opposing directions to capture panoramic images. (b) The Ricoh Theta S
captures panoramic photos and videos using only two cameras, each with a lens
that provides a field of view larger than 180 degrees.

user may capture a photosphere by pointing the outward-facing camera in enough
directions. In this case, a software app builds the photosphere dynamically while
images are taken in rapid succession. For the hard version, a difficult optimiza-
tion problem arises in which features need to be identified and matched across
overlapping parts of multiple images while unknown, intrinsic camera parameters
are taken into account. Differences in perspective, optical aberrations, lighting
conditions, exposure time, and changes in the scene over different times must be
taken into account. In the case of using a smartphone app, the same camera is
being used and the relative time between images is short; therefore, the task is
much easier. Furthermore, by taking rapid images in succession and using inter-
nal smartphone sensors, it is much easier to match the overlapping image parts.
Most flaws in such hand-generated photospheres are due to the user inadvertently
changing the position of the camera while pointing it in various directions.

For the second case, a rig of identical cameras can be carefully designed so that
all viewing directions are covered; see Figure 7.23(a). Once the rig is calibrated
so that the relative positions and orientations of the cameras are precisely known,
stitching the images together becomes straightforward. Corrections may never-
theless be applied to account for variations in lighting or calibration; otherwise,
the seams in the stitching may become perceptible. A tradeoff exists in terms of
the number of cameras. By using many cameras, very high resolution captures can
be made with relatively little optical distortion because each camera contributes
a narrow field-of-view image to the photosphere. At the other extreme, as few as
two cameras are sufficient, as in the case of the Ricoh Theta S (Figure 7.23(b)).
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(a) (b)

Figure 7.24: (a) The photophere is texture-mapped onto the interior of a sphere
that is modeled as a triangular mesh. (b) A photosphere stored as a cube of six
images can be quickly mapped to the sphere with relatively small loss of resolution;
a cross section is shown here.

The cameras are pointed 180 degrees apart and a fish-eyed lens is able to capture
a view that is larger than 180 degrees. This design dramatically reduces costs,
but requires significant unwarping of the two captured images.

Mapping onto a sphere The well-known map projection problem from cartog-
raphy would be confronted to map the photosphere onto a screen; however, this
does not arise when rendering a photosphere in VR because it is mapped directly
onto a sphere in the virtual world. The sphere of all possible viewing directions
maps to the virtual-world sphere without distortions. To directly use texture
mapping techniques, the virtual-world sphere can be approximated by uniform
triangles, as shown in Figure 7.24(a). The photosphere itself should be stored in
a way that does not degrade its resolution in some places. We cannot simply use
latitude and longitude coordinates to index the pixels because the difference in
resolution between the poles and the equator would be too large. We could use co-
ordinates that are similar to the way quaternions cover the sphere by using indices
(a, b, c) and requiring that a2 + b2 + c2 = 1; however, the structure of neighboring
pixels (up, down, left, and right) is not clear. A simple and efficient compromise is
to represent the photosphere as six square images, each corresponding to the face
of a cube. This is like a virtual version of a six-sided CAVE projection system.
Each image can then be easily mapped onto the mesh with little loss in resolution,
as shown in Figure 7.24(b).
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Once the photosphere (or moviesphere) is rendered onto the virtual sphere,
the rendering process is very similar to post-rendering image warp. The image
presented to the user is shifted for the rotational cases that were described in
Figure 7.19. In fact, the entire rasterization process could be performed only
once, for the entire sphere, while the image rendered to the display is adjusted
based on the viewing direction. Further optimizations could be made by even
bypassing the mesh and directly forming the rasterized image from the captured
images.

Perceptual issues Does the virtual world appear to be “3D” when viewing a
photosphere or moviesphere? Recall from Section 6.1 that there are many more
monocular depth cues than stereo cues. Due to the high field-of-view of modern
VR headsets and monocular depth cues, a surprisingly immersive experience is
obtained. Thus, it may feel more “3D” than people expect, even if the same part
of the panoramic image is presented to both eyes. Many interesting questions
remain for future research regarding the perception of panoramas. If different
viewpoints are presented to the left and right eyes, then what should the radius of
the virtual sphere be for comfortable and realistic viewing? Continuing further,
suppose positional head tracking is used. This might improve viewing comfort,
but the virtual world will appear more flat because parallax is not functioning.
For example, closer objects will not move more quickly as the head moves from
side to side. Can simple transformations be performed to the images so that depth
perception is enhanced? Can limited depth data, which could even be extracted
automatically from the images, greatly improve parallax and depth perception?
Another issue is designing interfaces inside of photospheres. Suppose we would
like to have a shared experience with other users inside of the sphere. In this
case, how do we perceive virtual objects inserted into the sphere, such as menus
or avatars? How well would a virtual laser pointer work to select objects?

Panoramic light fields Panoramic images are simple to construct, but are
clearly flawed because they do not account how the surround world would appear
from any viewpoint that could be obtained by user movement. To accurately
determine this, the ideal situation would be to capture the entire light field of
energy inside of whatever viewing volume that user is allowed to move. A light
field provides both the spectral power and direction of light propagation at every
point in space. If the user is able to walk around in the physical world while
wearing a VR headset, then this seems to be an impossible task. How can a rig
of cameras capture the light energy in all possible locations at the same instant
in an entire room? If the user is constrained to a small area, then the light field
can be approximately captured by a rig of cameras arranged on a sphere; a pro-
totype is shown in Figure 7.25. In this case, dozens of cameras may be necessary,
and image warping techniques are used to approximate viewpoints between the
cameras or from the interior the spherical rig. To further improve the experience,
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Figure 7.25: The Pantopticam prototype from Figure Digital uses dozens of cam-
eras to improve the ability to approximate more viewpoints so that stereo viewing
and parallax from position changes can be simulated.

light-field cameras (also called plenoptic cameras) offer the ability to capture both
the intensity of light rays and the direction that they are traveling through space.
This offers many advantages, such as refocusing images to different depths, after
the light field has already been captured.

Further Reading

Close connections exist between VR and computer graphics because both are required
to push visual information onto a display; however, many subtle differences arise and
VR is much less developed. For basic computer graphics, many texts provide addi-
tional coverage on the topics from this chapter; see, for example [17]. For much more
detail on high-performance, high-resolution rendering for computer graphics, see [1].
Comprehensive coverage of BRDFs appears in [2], in addition to [1].

Ray tracing paradigms may need to be redesigned for VR. Useful algorithmic back-
ground from a computational geometry perspective can be found in [29, 7]. For optical
distortion and correction background, see [8, 12, 14, 15, 27, 28]. Chromatic aberration
correction appears in [20]. Automatic stitching of panoramas is covered in [5, 24, 25].
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